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Atrial fibrillation (AF) significantly increases the risk of stroke and heart failure, but
is frequently asymptomatic and intermittent; therefore, its timely diagnosis
poses challenges. Early detection in selected patients may aid in stroke
prevention and mitigate structural heart complications through prompt
intervention. Smartwatches, coupled with powerful artificial intelligence (AI)-
enabled algorithms, offer a promising tool for early detection due to their
widespread use, easiness of use, and potential cost-effectiveness.
Commercially available smartwatches have gained clearance from the FDA to
detect AF and are becoming increasingly popular. Despite their promise, the
evolving landscape of AI-enabled smartwatch-based AF detection raises
questions about the clinical value of this technology. Following the ongoing
digital transformation of healthcare, clinicians should familiarize themselves
with how AI-enabled smartwatches function in AF detection and navigate their
role in clinical settings to deliver optimal patient care. In this review, we
provide a concise overview of the characteristics of AI-enabled smartwatch
algorithms, their diagnostic performance, clinical value, limitations, and discuss
future perspectives in AF diagnosis.
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Introduction

Atrial fibrillation (AF) constitutes the most common cardiac arrhythmia with a

prevalence that is increasing. According to the Global Burden of Diseases study, the

number of individuals affected by AF has doubled from 1990 to 2019, reaching

approximately 60 million globally (1). This upward trajectory is projected to continue,

with estimates suggesting that by 2030, the United States alone could see over 12.1

million people diagnosed with AF (2).

AF is associated with a fivefold increased risk of stroke, as well as an increased risk for

heart failure (3, 4). However, its episodic manifestation and frequently asymptomatic

nature, pose significant challenges for AF diagnosis (5). For instance, research data

suggest that paroxysmal AF can be detected in 10%–20% of patients with cryptogenic
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strokes and extended monitoring with implantable devices is

recommended in this population to increase sensitivity of AF

detection (6–8). In selected asymptomatic patients, early AF

detection could be helpful in preventing stroke using oral

anticoagulation (OAC) or preventing heart failure using rhythm

control strategies (4, 9).

Smartwatches empowered by artificial intelligence (AI)

algorithms have emerged as a promising tool for early detection

of AF (10, 11). Recent cost-effectiveness studies also underscore

their potential to serve as a widespread tool for early arrhythmic

detection (12). However, AF confirmation still requires

electrocardiography (ECG) and widespread incorporation of

smartwatches for AF detection has not been established (13–15).

In this review we first summarize the characteristics and

performance of smartwatches that use AI-enabled algorithms for

AF detection; secondly, we discuss their clinical applicability, the

challenges around their use, and finally outline future directions

in the field.
Smartwatch technology for AF detection

Photoplethysmography
A common technology for detecting AF with smartwatches is

photoplethysmography (PPG). This technique involves

illuminating the skin with a light-emitting diode (LED) and

detecting the light reflected back with a photodetector (16). The

intensity of the reflected light constitutes the PPG signal, which

varies according to blood volume changes in the vessels

throughout the cardiac cycle. Therefore, the PPG signal

represents a pulse pressure waveform that enables passive,

continuous, or semi-continuous heart rhythm monitoring

measured at the wrist (17).

Since various neural, cardiac, and respiratory factors regulate

blood flow, physiologic cardiovascular parameters such as heart

rate, blood pressure, oxygen saturation, and respiratory rate could

be derived from PPG signal analysis (18). Importantly, the peak

of the PPG signal correlates closely with the R wave of the

electrocardiogram (ECG) (19). As such, the PPG signal can

provide R-R intervals, i.e., heart rate variability (20) and in AF,

the PPG signal exhibits greater irregularity of pulse waveform

(16). Assessment of PPG variability through a detection

algorithm is used to detect AF.

Single-lead ECG
Another common method for detecting AF with smartwatches

is based on the recording of a single-lead ECG. In this method, the

watch’s back acts as a positive electrode and the contralateral

fingertip is placed on the crown, acting as a negative electrode

(21). This creates a bipolar ECG-lead, simulating Einthoven’s

ECG lead I. The recorded ECG tracing is typically saved and can

be analyzed either manually by physicians or automatically. In

addition to single-lead ECG, other techniques further explore the

use of a smartwatch-based wireless 6-lead limb-like ECG, which

requires interpretation by cardiologists, combined with PPG to

increase accuracy of AF detection (22).
Frontiers in Cardiovascular Medicine 02
Detection algorithms and machine learning
Detection algorithms may rely on traditional statistics or AI,

particularly machine learning (ML) and deep learning (DL)

algorithms (23). For commercially available smartwatches, the

AI-empowered algorithms utilized for AF detection remain

proprietary to each company (24, 25). Nonetheless, we will

provide a brief overview of how similar algorithms described in

the research setting function to aid physicians in understanding

their mechanisms. PPG or ECG signals, once captured, undergo

several preprocessing steps including noise reduction,

normalization, and segmentation. Feature extraction focuses on

both time-domain and frequency-domain attributes, which might

include heart rate variability indices, the morphology of the PPG

or ECG waveform, and temporal intervals between heartbeats. A

tachogram, a visual representation of heart rate variability plotted

against time, serves as a key component in the PPG-based AF

detection process (26). Typically, a set number of irregular

tachograms over a period of time is involved in the algorithm’s

decision to trigger an irregular pulse notification (IPN). ML

models such as support vector machines and random forests

analyze these engineered features to classify heart rhythms,

benefitting from the clear delineation of feature-based input

(27, 28). In contrast, DL models such as convolutional neural

networks (CNNs) and recurrent neural networks (RNNs) can

process raw or minimally preprocessed signal data (29, 30). These

models are adept at automatically detecting complex patterns

within large datasets, which is beneficial for identifying subtle and

non-linear indicators of AF. CNNs, for instance, are useful for

spatial pattern recognition within ECG signals, while RNNs excel

at analyzing sequential data, capturing dynamic changes over

time which are crucial for continuous ECG monitoring (31).
Challenges
PPG sensors can yield missing signals or inconclusive/

unclassified rhythms. Missing signals are often due to poor

sensor-skin contact. On the other hand, insufficient quality of

the signal may be attributed to motion artifacts, such as from

muscular motion. Overall, PPG sensors tend to underestimate AF

detection at both higher and lower heart rates when compared to

standard detection methods (32). Additionally, ectopic beats can

further complicate AF detection by generating pulse irregularities

(22). Although evidence remain inconclusive, skin pigmentation

may also restrict PPG performance (33, 34). Moreover, the PPG

signal may be weaker in elderly, due to pathologic or physiologic

changes associated with aging including reduced peripheral blood

flow, increased arterial wall stiffness, and skin changes (35, 36).

On the other hand, there may be a low amplitude of P-waves

with single-lead ECG, which challenges the classification of

electrical activity (37). Lastly, limitations of using smartwatch to

detect AF include the necessity for user cooperation and regular

charging, depending on its battery life (10).

Similarly, AI models, despite their capabilities, require robust,

diverse datasets for training to ensure effective performance

across various demographic groups and conditions. Additionally,

these models necessitate significant computational resources,
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particularly in DL frameworks, to process extensive data and learn

through sophisticated layers of abstraction. The interpretability of

these AI systems is also crucial, particularly in healthcare

settings, where providers prefer algorithms that offer insights into

their decision-making processes (38). This aligns with the

increasing demand for explainable AI in clinical environments,

highlighting another significant limitation.
Diagnostic performance of Ai-empowered
smartwatches in AF detection

Currently, AF diagnosis requires that a physician reviews a

standard 12-lead ECG or rhythm strips (9, 39). This also serves

as the gold standard to determine the diagnostic accuracy of

smartwatches. Table 1 summarizes key recent studies conducted

from 2019 and onwards that evaluated the diagnostic

performance of smartwatches for detecting AF.

Large-scale, pragmatic studies that were conducted for major

smartwatch companies like Apple and Fitbit assessed the ability to

screen for AF in the general population relying on PPG (40, 41).

The Apple Heart Study evaluated over 400,000 individuals (mean

age 41 ± 13 years, 42% women) for IPN with the Apple Watch

indicating possible AF in that event (40). The duration of PGG

monitoring and the criteria to triggering an IPN for AF varied

significantly among studies assessing PPG sensors. PPG

monitoring was more intermittent with the Apple algorithm,

where the IPN required at least 5/6 consecutive irregular 1-minute

tachograms within a 48-hour period (40). Conversely, the Fitbit

algorithm allowed for more continuous monitoring and applied

stricter notification criteria, requiring at least 30 min of irregular

rhythm before notifying the user (41). Participants who received

such an IPN notification received a single-lead ECG patch via

mail to wear for 1 week, which was used to diagnose AF. Overall,

only 0.52% of the study population received an IPN using the

Apple algorithm, with the percentage correlating with increased

age (≥65 years: IPN 3.2%). Similarly, the Fitbit Heart Study

assessed the performance of the Fitbit Watch among over 400,000

participants (median age 47 years, interquartile range 35–58 years,

71% women), of whom 1% received an IPN (≥65 years: IPN

3.6%) (41). Of those who received an IPN in the Fitbit and Apple

Heart studies, only up to 25% of all notified participants in these

studies returned the ECG patch. 32.2% and 34.0%, respectively

were confirmed to have AF lasting at least 30 s on the

reference ECG patch. The positive predictive value (PPV) for AF,

confirmed concurrently on the ECG patch, of the Apple

algorithm was 84.0% (95% CI, 76.0%–92.0%). The PPV was lower

among those over 65, i.e., 78% (95% CI, 64.0%–92.0%). The Fitbit

algorithm yielded a sensitivity of 67.6%, specificity of 98.4%, and

PPV of 98.2% (95% CI, 95.5%–99.5%), with a slight reduction

among those aged ≥65 years at 97.0% (95% CI, 91.4%–99.4%).

Among studies conducted in research settings and among

populations at high-risk for AF, the performance of PPG sensors

varied with sensitivity ranging from 87.8% (42) to 94.2% (22)

and specificity up to 99.1% (22). Other studies examined the

performance of intelligent ECG (iECG), a smartwatch-based
Frontiers in Cardiovascular Medicine 03
single-lead ECG with automatic AF detection function (43–46).

AF was considered present if episodes lasted for at least 30 s. The

sensitivity of automatic AF detection with iECG varied from as

low as 41.0% among post-cardiac surgery patients (44) to 94.4%

among high-risk inpatient populations (45), while the specificity

ranged from 69.0% (46) to 100.0% (44). These performance

indices should be interpreted with caution, as most of these

studies employed intention-to-diagnose analyses, excluding a

significant number of tracings that were deemed inconclusive.

Badertscher et al. demonstrated a reduction in such inconclusive

tracings from 14% to 4.1% after a cardiologist’s review, and this

was further supported by Mannhart et al. (43, 46). Avram et al.

demonstrated that obtaining a confirmatory iECG one hour apart

the first one improved the specificity (100.0%) without affecting

sensitivity (96.0%). Moreover, novel AI algorithms have

demonstrated excellent performance in reducing inconclusive

classification rates (47). Lastly, in most studies, patients were

instructed on how to use the technology for AF detection which

may not reflect real-life circumstances or digital literacy,

especially among the elderly.
Clinical impact of AF detection using
Ai-empowered smartwatches

Potential benefits
The main potential advantage of detecting asymptomatic AF

using smartwatches lies in the opportunity for early diagnosis and

therapeutic intervention. Identifying AF among high risk,

asymptomatic patients could lead to the initiation of OAC,

potentially reducing the risk for stroke (4). The eBRAVE-AF trial

showed that PPG-based screening more than doubled the detection

rate of asymptomatic AF leading to subsequent OAC initiation

(48). A recent meta-analysis demonstrated a significant reduction

in stroke risk after OAC initiation in patients with asymptomatic

AF detected by implantable cardiac devices (49). However, the

results of studies investigating the specific clinical benefits of

smartwatch-detected AF and the populations to which may apply,

are pending (50). Additionally, increasing evidence suggests that

early initiation of rhythm control not only lowers the risk of

stroke, but also reduces the structural, long-term complications of

AF, particularly HF (51, 52). Furthermore, identifying AF early

could prompt the early identification and management of other

concomitant cardiovascular conditions such as hypertension,

underlying heart disease and diabetes mellitus (53). Lastly,

population screening for AF using smartwatches is proposed as a

more cost-effective approach compared to no screening or

conventional screening (12). Nevertheless, no consensus has been

reached yet regarding AF screening due to a lack of clinical data to

support its potential benefits in asymptomatic patient groups at

risk for AF and its complications (5, 9, 54).

Identifying populations for smartwatch-based AF
detection

In the absence of relevant guidelines, it may be reasonable to

introduce smartwatch AF screening in certain populations. For
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example, the 2020 ESC Guidelines for AF recommend AF

screening for patients over 75 (5). Additionally, the same

guidelines suggest screening for those at high stroke risk,

though the optimal cut-offs on assessment tools, e.g.,

CHA2DS2-VASc score, for smartwatch-based AF detection

require further clarification. Oppportunistic screening for AF is

also suggested for patients aged 65 years and above, where

smartwatches have already been incorporated as screening

options (5). In contrast, the US Preventive Services Task Force

implies that the current evidence is insufficient to assess the

balance of benefits and harms for AF screening (54). It is

noteworthy that AI algorithms utilizing Electronic Medical

Records (PULsE-AI, FIND-AF) or ECGs (BEAGLE) may

facilitate the identification of high-risk patients (55–57).

However, it would be difficult to envision that smartwatches

could be used for screening or substitute other established

methods of AF detection in symptomatic patients at high risk

for AF, such as those with cryptogenic stroke.

Clinical challenges and risks
Once the smartwatch indicates possible AF, the main question

is how healthcare providers should proceed (10). In existing clinical

studies, individuals were referred to contact a healthcare provider

(40, 41, 58). Healthcare providers then confirmed the presence of

AF through a standard ECG confirmatory test. This approach

aligns with the 2020 ESC Guidelines for AF, which included

smartwatches in the screening recommendations (5). However,

the introduction of smartwatches for AF diagnosis poses risks for

putting high stress on the healthcare system, particularly if

extended population screening is implemented (59, 60).

Therefore, it is crucial to optimize the parameters of smartwatch

algorithms to minimize false positives and prevent physician

overload. A study conducted among patients with known AF

who utilized wearables, demonstrated increased engagement in

follow-up healthcare, with no significant difference in pulse rates

compared to those not using wearables (61). Further research

into health outcomes will guide management for both patients

and providers.

Data management
Smartwatch data management poses an ongoing challenge.

The FDA does not classify smartwatches as medical devices;

rather they are considered wellness tools, subject to expedited

regulatory approval through the Digital Health Software

Precertification (Pre-Cert) Program (62). This regulatory

framework promotes the development of a large digital health

market and the generation of a substantial volume of digital

data (21). Despite this, smartwatch data have not yet been fully

integrated into clinical workflows. While meaningful integration

of smartwatch data into the existing Electronic Health Records

(EHRs) will eventually become necessary, the specific type

and volume of data to be shared with EHRs is yet to be

determined. Consequently, there is an ongoing effort to endorse

partnerships between startup organizations that specialize in

integrating such data into EHRs with healthcare systems and

insurance companies (63). It is also crucial to develop clear
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legislation regarding data ownership, ensure compliance with

HIPAA regulations and address patient confidentiality, privacy,

and security concerns (59, 64). Furthermore, attention is

required concerning physician reimbursement, including the

creation of standard documentation processes and billable

codes related to the integration of smartwatch data into clinical

workflows (65). With all these impending changes, it has been

suggested that a “digital health counselor” could provide

support and guide patients and providers throughout the

initial transition phase of digital data integration into

clinical workflows (59).
Conclusions and future directions

AI-empowered smartwatches have emerged as a potential

screening tool for AF, the most common arrhythmia with an

increasing prevalence. Potentially important advantages of this

strategy include purely non-invasive nature, easiness of use, early

detection of AF in high-risk asymptomatic individuals and

reduction in AF burden. However, there is no consensus among

pertinent societies regarding AF screening and the clinical impact

of this strategy using smartwatches remains to be proven.

Particular issues that have to be addressed are: identification of

populations that could benefit from AF screening using

smartwatches; optimization of AI algorithms to improve

diagnostic accuracy and reduce confirmatory tests; data

management of protected health care information including

infrastructure for processing of large amounts of data, and

clinical algorithms to assist with widespread application of AF

screening via smartwatches. Large trials to address these

questions are currently required and may expect the landscape of

AF in the near future.
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