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Jiangxi, China, 3Department of Traditional Chinese Medicine, Shangrao Municipal Hospital, Shangrao,
Jiangxi, China, 4National Pharmaceutical Engineering Center, Jiangxi University of Chinese Medicine,
Nanchang, Jiangxi, China
Background: Prior research has established a correlation between immune cell
activity and heart failure (HF), but the causal nature of this relationship remains
unclear. Furthermore, the potential influence of metabolite levels on this
interaction has not been comprehensively explored. To address these gaps, we
employed a bidirectional Mendelian randomization (MR) approach in two
stages to examine whether metabolite levels can mediate the causal
relationship between immune cells and HF.
Methods: Genetic information was extracted from summary data of genome-
wide association studies. By applying a two-sample, two-step MR approach,
we investigated the causal relationships among immune cells, metabolite
levels, and HF, with a specific focus on the mediating effects of metabolites.
Sensitivity analysis techniques were implemented to ensure the robustness of
our findings.
Results: MR analysis revealed significant causal associations between HF
and eight specific immune cells and five metabolites. Mediation analysis
further identified three mediated relationships. Particularly, hexadecenedioate
(C16:1-DC) mediated the influence of both the CD28- CD127- CD25++
CD8br%CD8br (mediation proportion: 19.2%) and CD28+ CD45RA +CD8br%T
cells (mediation proportion: 11.9%) on HF. Additionally, the relationship
between IgD +CD38br AC cells and HF appeared to be mediated by
the phosphate to alanine ratio (mediation proportion: 16.3%). Sensitivity
analyses validated that the used instrumental variables were free from
pleiotropy and heterogeneity.
Conclusion: This study provides evidence that certain immune cell levels are
associated with the risk of HF and that metabolite levels may mediate these
relationships. However, to strengthen these findings, further validation using
MR analyses with larger sample sizes is essential.
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1 Introduction

Heart failure (HF) is a clinical syndrome resulting from
impaired cardiac structure or function, representing the severe
and final stages of various heart diseases. It carries a high
prevalence, mortality, and significant economic burden, making
it one of the foremost cardiovascular conditions of the 21st
century (1). Studies in epidemiology have revealed that there are
currently 64.3 million individuals with HF worldwide, with
approximately 3 million new cases annually (2). In China, over
12.1 million individuals aged 25 and older are affected by HF
(3). A meta-analysis of 1.5 million patients with chronic HF
revealed survival rates of 87%, 73%, 57%, and 35% at 1, 2, 5, and
10 years, respectively (4). HF severely affects the health and
quality of life of patients, positioning it as a global priority in
chronic disease prevention and research.

As the understanding of the pathophysiological mechanisms

underlying HF advances, there is growing evidence supporting

the involvement of immune activation in the disease

development (5, 6). Both innate (monocytes and macrophages)

and adaptive (T lymphocytes) immune responses can intensify

HF progression by releasing pro-inflammatory factors.

Macrophages, the predominant immune cells in the myocardium,

are integral in mediating inflammatory responses, maintaining

cardiac stability, and promoting tissue repair (7). During the

initial stages of HF, macrophages can polarize into the M1

phenotype, exacerbating myocardial damage through the

secretion of pro-inflammatory cytokines and chemokines (8).

Furthermore, various triggers associated with cardiac injury can

activate effector T cells, which infiltrate the vascular walls. The

diverse cytokines released by different T cell subsets can then

accelerate vascular aging, degrade the elastic lamina, and

promote myocardial fibrosis, ultimately altering cardiovascular

structure and function (9).

Emerging in the post-genomic era, metabolomics offers a novel

perspective by examining the links between metabolites or metabolic

pathways and physiological as well as pathological changes, thereby

providing new insights into disease mechanisms (10). Compelling

evidence indicates that metabolites and metabolic pathways are
FIGURE 1

Study design: a two-step MR study of immune cells on HF mediated by pla
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intricately linked with HF. For example, a targeted serum

metabolomic study has identified several metabolites, including

octadecanoic acid, tyrosine, and catecholamines, which are

significantly associated with HF severity (11). Additionally,

metabolites found in plasma, such as ketone bodies and branched-

chain amino acids, might play a mediating role in the interaction

between immune cells and HF (12, 13).

Although prior research has established links among immune

cells, metabolomics, and HF, the precise causal relationships and

the mediating effects of plasma metabolites have yet to be

clarified. Utilizing Mendel’s Second Law, or the Law of

Independent Assortment, Mendelian randomization (MR) is an

innovative genetic statistical technique that uses genetic variants

linked to exposure factors as instrumental variables (IVs) for

determining causal links between exposures and outcomes. This

method, which relies on the random allocation determined by

DNA genotypes, significantly reduces external influences on these

causal relationships (14, 15). Mediation analysis further aids in

evaluating how exposure affects outcomes through mediators

(16). Thus, utilizing publicly available summary data from

genome-wide association studies (GWAS), we executed MR

analysis to evaluate the causal relationships among immune cells,

plasma metabolites, and HF and to elucidate the mediating role

of plasma metabolites.
2 Research methods and materials

2.1 Study design

Initially, we accessed genome-wide data on immune cells,

plasma metabolites, and HF from publicly available GWAS

summary datasets. A two-sample MR analysis was conducted to

investigate the causal interactions among immune cells, plasma

metabolites, and HF. Subsequently, a two-step MR analysis was

undertaken to determine the mediating influence of plasma

metabolites on the interaction between immune cells and HF.

Figure 1 depicts the schematic representation of the overall

design of our study.
sma metabolome. HF, heart failure; IVs, instrumental variables.
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2.2 Data sources

Summary statistics for immune cells were extracted from the

GWAS summary dataset hosted at https://www.ebi.ac.uk/gwas/,

encompassing study access numbers GCST90001391 to

GCST90002121. This dataset included data on 731 immune

phenotypes derived from 3,757 European individuals, covering a

wide range of cell types such as T, B, and natural killer cells

(TBNK), B cells, CDC, Treg, monocytes, various T cell maturation

stages, and a bone marrow cell panel, including absolute cell counts

(118), relative counts (192), median fluorescence intensities of

surface antigens (389), and morphological parameters (32) (17, 18).

For plasma metabolomics, summary statistics were sourced

from the same database, with study access numbers

GCST90199621 to GCST90201020. This dataset comprised 1,091

plasma metabolites and 309 metabolite ratios from 8,299

European individuals, spanning categories such as 395 types of

lipids, 210 types of amino acids, 22 types of carbohydrates, 33

types of nucleotides, 31 types of vitamins, 21 types of peptides, 8

types of energies, 21 types of characteristic molecules, and 220

types of unknown metabolites, etc. (19).

HF GWAS data were obtained from https://gwas.mrcieu.ac.uk/,

under the data ID “ebi-a-GCST009541,” involving a cohort of

977,323 participants, which includes 47,309 HF patients and

930,014 controls. HF GWAS data from 26 cohort studies, with cases

including subjects clinically diagnosed with HF of any etiology (20).
2.3 Selection of IVs

The selection of IVs must adhere to three core assumptions

(16): (1) Single nucleotide polymorphisms (SNPs) utilized as IVs

should exhibit a strong association with the exposure factor; (2)

SNPs used as IVs must be independent of any confounding

factors; (3) SNPs should solely influence the outcome through

the exposure factor. To ensure the accuracy and efficacy of the

causal links among immune cells, plasma metabolites, and HF

risk, we used a genome-wide significance threshold for exposure-

related SNPs of P < 1 × 10−5, following guidelines from earlier

MR studies (21, 22). To circumvent bias from linkage

disequilibrium within SNPs, we used the PLINK clumping

method (r2 < 0.001, kb = 10,000) based on data from the 1,000

Genomes Project for Europeans to isolate independent SNPs. We

then calculated the F-statistics for each SNP, discarding those

with F < 10 to prevent weak IVs from influencing our results.
2.4 MR analysis

2.4.1 Primary analysis
To evaluate the causal impact of immune cells and plasma

metabolites on HF, we implemented several MR techniques,

encompassing the inverse variance weighted (IVW), MR-Egger

regression, weighted median, weighted mode, and simple mode

methods. The IVW method is widely acknowledged for its
Frontiers in Cardiovascular Medicine 03
robustness in MR studies for estimating the causal effects of

exposure factors on outcomes (23). Consequently, IVW served as

the primary analytical tool in our research. The additional

methodologies—MR-Egger regression, weighted median, weighted

mode, and simple mode—were used to corroborate the primary

findings and evaluate the stability of the results.
2.4.2 Mediation analysis
We used a two-step MR approach for mediation analysis to

investigate whether plasma metabolites serve as mediators in the

disease pathway between immune cells and HF. The total effect

was parsed into direct effects (the influence of immune cells

on HF) and mediating effects. The causal relationship between

immune cells and plasma metabolites was evaluated using the

two-sample MR approach, yielding β (A); β (B) was derived from

plasma metabolites causally linked to HF. The mediation analysis

employed the following formula: Mediating Effect = β (A) × β (B),

with the Mediation Proportion calculated as (Mediating Effect/

Total Effect) × 100%. The delta method was used to determine

the 95% confidence intervals (CI) for both the mediating effect

and the mediation proportion.
2.5 Sensitivity analysis

We conducted sensitivity analyses using three distinct

approaches, namely the MR-Egger intercept, Cochran’s Q test,

and the leave-one-out method, to determine the potential effects

of heterogeneity and horizontal pleiotropy on our findings.

Heterogeneity among the SNPs was assessed using Cochran’s

Q test, where P < 0.05 was considered indicative of significant

heterogeneity. Horizontal pleiotropy was globally evaluated

using the MR-Egger intercept, with P < 0.05 suggesting the

presence of this effect. Additionally, the leave-one-out method

involved sequentially excluding each SNP to observe any

resultant variations in the analysis, thereby assessing the

robustness of our data.
2.6 Statistical analysis

All MR analyses were conducted using R software (version

4.3.1). For estimating causal effects and identifying outliers, we

used the “TwoSampleMR” (version 0.5.8) and “MR-PRESSO”

(version 1.0) packages. The results are presented as odds ratios

(OR) with 95% CI for each standard deviation. Statistical

significance for the MR outcomes was set at P < 0.05. Finally,

multiple testing correction was used to eliminate the increase in

Type I error caused by multiple testing, where a resultant false

discovery rate (FDR) <0.05 was considered causally related; FDR

>0.05 but a P value < 0.05 suggests a potential causal relationship;

and a P value > 0.05 was considered no causal relationship. Using

the online power calculation tool (mRnd) (https://cnsgenomics.

com/shiny/mRnd/) to calculate the statistical power of the causal

effect estimation (24).
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3 Results

3.1 MR analysis of immune cells and HF

Our analysis revealed that among 731 immune cell phenotypes,

8 demonstrate a significant causal relationship with HF (P < 0.01).

The IVW results for these immune cells are as follows: IgD +

CD38br AC [P = 0.001; FDR = 0.028; OR 95% CI = 1.03 (1.01,

1.05)], CD39+ CD8br%CD8br [P = 0.004; FDR = 0.030; OR 95%

CI = 1.03 (1.01, 1.05)], CD28- CD127- CD25++ CD8br% T cell

[P = 0.004; FDR = 0.022; OR 95% CI = 1.04 (1.01, 1.07)], CD28-

CD127- CD25++ CD8br%CD8br [P = 0.004; FDR = 0.025;

OR 95% CI = 1.04 (1.01, 1.06)], CD28+ CD45RA + CD8br%

T cell [P = 0.001; FDR = 0.015; OR 95% CI = 1.01 (1.00, 1.01)],

and CD28+ CD45RA + CD8br AC [P = 0.007; FDR = 0.023; OR

95% CI = 1.01 (1.00, 1.01)], CD27 on IgD- CD38- [P = 0.007;

FDR = 0.026; OR 95% CI = 1.03 (1.01, 1.05)], and CD45 on

lymphocytes [P = 0.006; FDR = 0.026; OR 95% CI = 1.04 (1.01,

1.07)]. Each phenotype showed a positive correlation with HF

risk (Figure 2). Sensitivity analyses using the MR-Egger intercept

and Cochran’s Q test yielded P-values greater than 0.05,

suggesting no evidence of horizontal pleiotropy or heterogeneity

among the IVs. The leave-one-out analysis indicated no

significant outliers, validating the stability and reliability of the

MR findings. Detailed results of the MR analysis of immune cells

and HF are available in Supplementary Tables S3, S4 and

Supplementary Figures 1–3.
FIGURE 2

Forest plot for the Mendelian randomization analysis between immune cell

FIGURE 3

Forest plot for the Mendelian randomization analysis between plasma meta
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3.2 MR analysis of plasmametabolites andHF

The findings indicated that among 1,400 plasma metabolites,

5 exhibited a significant causal relationship with HF (P < 0.01).

The IVW results for these metabolites were as follows:

N-acetylglycine levels [P = 0.006; FDR = 0.045; OR 95% CI = 1.18

(1.05, 1.32)], N-acetylalliin levels [P < 0.001; FDR = 0.003; OR 95%

CI = 0.82 (0.74, 0.90)], hexadecenedioate (C16:1-DC) levels

[P = 0.005; FDR = 0.041; OR 95% CI = 1.15 (1.04, 1.26)], phosphate

to alanine ratio [P = 0.007; FDR = 0.047; OR 95% CI = 0.86

(0.76, 0.96)], and bilirubin (Z,Z) to glucuronate ratio [P = 0.003;

FDR = 0.036; OR 95% CI = 0.82 (0.72, 0.94)]. N-acetylglycine and

hexadecenedioate (C16:1-DC) levels positively correlated with HF

risk, whereas N-acetylalliin levels, phosphate to alanine ratio, and

bilirubin (Z,Z) to glucuronate ratio negatively correlated with HF

risk (Figure 3). The MR-Egger intercept and Cochran’s Q tests

revealed no significant horizontal pleiotropy or heterogeneity.

Leave-one-out analysis showed no biased SNPs, indicating robust

results. A detailed discussion of the MR analysis of plasma

metabolites and HF is provided in Supplementary Tables S5, S6

and Supplementary Figures S4–S6.
3.3 Mediation analysis results

To explore the potential mechanisms driving the onset and

progression of HF, we conducted a mediation analysis to identify
s and heart failure.

bolites and heart failure.
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the causal pathways mediated by plasma metabolites from immune

cells to HF. Initially, the causal relationships between immune cells

and plasma metabolites were evaluated using two-sample MR. The

IVW results showed positive correlations of CD28+ CD45RA +

CD8br%T [P = 0.049; OR 95% CI = 1.01 (1.00, 1.01)] and CD28-

CD127- CD25++ CD8br%CD8br cells [P = 0.014; OR 95%

CI = 1.05 (1.01, 1.10)] with hexadecenedioate (C16:1-DC) levels.

In contrast, IgD + CD38br AC cells [P = 0.003; OR 95% CI = 0.97

(0.95, 0.99)] were negatively correlated with the phosphate to

alanine ratio (Figure 4). Subsequent mediation analysis revealed

that hexadecenedioate (C16:1-DC) mediated the pathways from

CD28+ CD45RA + CD8br%T and CD28- CD127- CD25++

CD8br%CD8br cells to HF, with mediation proportions of 11.9%

and 19.2%, respectively. Additionally, the phosphate to alanine

ratio was found to mediate the link between IgD + CD38br AC

cells and HF, with a mediation proportion of 16.3% (Table 1).

Further details are provided in Supplementary Table S7 and

Supplementary Figures S7–S9.
4 Discussion

In this study, we utilized a two-sample MR analysis to

investigate the causal relationships among immune cells, plasma

metabolites, and HF. Our findings demonstrate that IgD +

CD38br AC, CD39+ CD8br%CD8br, CD28- CD127- CD25++

CD8br%T, CD28- CD127- CD25++ CD8br%CD8br, CD28+

CD45RA + CD8br%T, and CD28+ CD45RA + CD8br AC cells,

CD27 on IgD- CD38- cells, and CD45 on lymphocytes

contribute to an increased risk of HF. Similarly, elevated levels of

N-acetylglycine and hexadecenedioate (C16:1-DC) are associated

with a higher risk of HF, whereas lower risks are linked to

N-acetylalliin levels, phosphate to alanine ratio, and bilirubin

(Z,Z) to glucuronate ratio. Further analysis reveals that the

increased HF risk associated with CD28+ CD45RA + CD8br%T
FIGURE 4

Forest plot for the Mendelian randomization analysis between immune cell

TABLE 1 Mediation effect of immune cells on heart failure via plasma metab

Exposure Mediator Outcom

CD28 + CD45RA + CD8br%T cell Hexadecenedioate (C16:1-DC) Heart failu

CD28-CD127- CD25++CD8br%CD8br Hexadecenedioate (C16:1-DC) Heart failu

IgD + CD38br AC Phosphate to alanine ratio Heart failu
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and CD28- CD127- CD25++ CD8br%CD8br cells is mediated by

hexadecenedioate (C16:1-DC). Moreover, the heightened HF risk

linked to IgD + CD38br AC cells is mediated by the phosphate to

alanine ratio.

CD28+ CD45RA + CD8br%T and CD28- CD127- CD25++

CD8br%CD8br cells are classified under the Treg panel,

whereas IgD + CD38br AC cells fall under the B cell panel. T

lymphocytes, the pivotal immune cells in the development

and progression of HF, are categorized into CD4 + and CD8 +

subgroups based on surface markers. Once activated, CD4 +

cells can differentiate into regulatory and effector T cell

subgroups, which include Th1, Th2, Th17, and Tregs (25).

Tregs, comprising approximately 5%–10% of all peripheral

CD4+ T cells, play a pivotal role in maintaining internal

equilibrium, immune homeostasis, and peripheral immune

tolerance through the production of anti-inflammatory

cytokines such as transforming growth factor β and interleukin

10. These cytokines inhibit the activity of other immune cells,

including antigen-presenting cells like macrophages and CD8 +

effector T cells, thereby reducing inflammation and preventing

hyperactive immune responses (26, 27). Emerging research

suggests that a decrease in circulating Treg numbers is

associated with an increased risk of cardiovascular diseases.

Moreover, Treg counts may serve as valuable biomarkers for

predicting exacerbations of HF and the likelihood of

rehospitalization (28, 29). In the early stages of cardiac injury,

Tregs can mitigate inflammatory responses, generate repair-

associated molecules, and directly facilitate repair. However, as

HF progresses, Tregs may alter their phenotype and

functionality, exacerbating HF (30, 31). CD28, a co-stimulatory

molecule expressed on T lymphocytes, is crucial for T cell

activation. Lack of CD28 can diminish systemic and cardiac

inflammation, suppress T cell activation, and slow the

progression of HF (32). In contrast, B cells produce pro-

inflammatory factors early in the injury process, recruit
s and plasma metabolites.

olites.

e Mediated effect
(95% CI)

P-value Mediated proportion
(95% CI)

re 0.000707 (3.08e-06, 0.00141) 0.049 11.9% (0.0518%, 23.7%)

re 0.00721 (0.00108, 0.0133) 0.021 19.2% (2.89%, 35.6%)

re 0.00533 (0.00179, 0.00887) 0.003 16.3% (5.47%, 27.1%)
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monocytes to the heart, and aggravate acute cardiac injury (31).

CD38 is a type II transmembrane glycoprotein vital for

maintaining intracellular NAD levels. Evidence suggests that a

deficiency in CD38 significantly boosts intracellular

nicotinamide adenine dinucleotide (NAD) levels across various

tissues, curtails oxidative stress pathways, and ameliorates

cardiac hypertrophy and myocardial fibrosis (33).

Hexadecenedioate (C16:1-DC), as a lipid, plays a pivotal role

in fatty acid metabolism (34). Research indicates that elevated

plasma free fatty acid levels can enhance myocardial free fatty

acid uptake, thereby augmenting intramyocardial lipid storage

and contributing to left ventricular dysfunction (35). Alanine,

classified as a non-essential amino acid, is predominantly

synthesized through glycolysis and other metabolic pathways

(36). Metabolomic studies have demonstrated reductions in

alanine levels in the serum of HF models induced by oxidative

stress (37). Strong evidence indicates that alterations in energy

metabolism exacerbate the severity of HF. Stimulating glucose

metabolism or inhibiting fatty acid oxidation can alleviate the

effects of decreased mitochondrial oxidative capacity and

improve cardiac function (38). Phosphate, a constituent of

phospholipids, is crucial for cellular energy metabolism and

participates in glycolysis, ammoniagenesis, and oxidative

phosphorylation. Persistently high levels of plasma phosphate

can elicit inflammatory responses and vascularization, thereby

increasing cardiovascular disease morbidity and mortality

(39, 40). Thus, for HF patients, monitoring hexadecenedioate

(C16:1-DC), alanine, and phosphate levels can aid in disease

prevention and early diagnosis, reducing the risk of developing

HF. Furthermore, previous research has shown that cellular

metabolism regulates immune cell function and differentiation,

influencing outcomes in adaptive and innate immune

responses. Effector T and Th17 cells rely on aerobic glycolysis,

whereas memory T cells and Tregs primarily depend on fatty

acid oxidation for energy (41). Our findings affirm the

mediating roles of hexadecenedioate (C16:1-DC) and the

phosphate to alanine ratio in the associations of CD28+

CD45RA + CD8br%T, CD28- CD127- CD25++ CD8br%CD8br,

and IgD + CD38br AC cells with HF. Our mediation analysis

indicated that hexadecenedioate (C16:1-DC) contributed to

11.9% and 19.2% of the mediation in the effects of CD28+

CD45RA + CD8br%T and CD28- CD127- CD25++ CD8br%

CD8br cells on HF, respectively. The phosphate to alanine

ratio mediated 16.3% of the effect of IgD + CD38br AC cells

on HF.

Our research boasts several strengths. First, utilizing a two-

sample, two-step MR analysis, we examined the causal links and

mediating roles of plasma metabolites between immune cells and

HF. Second, our study relied on a comprehensive population

genetic database, enhancing the reliability of our findings.

Additionally, extensive sensitivity analyses were conducted to

bolster the robustness of our MR outcomes. Despite these

strengths, our study has certain limitations. The data originates

from a European cohort, and there may be interactions between

diet, genes, and the environment (42), which could constrain the

relevance of our findings to other demographic groups.
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Furthermore, the impact of age varies across the exposure and

outcome variables studied. Although HF demonstrates a stronger

correlation with age, our data lacks age-specific screening. Future

research obtaining age-specific GWAS data could further refine

these results through more targeted MR analyses.
5 Conclusion

Our MR study has established causal connections between

eight specific immune cells, five metabolites, and HF.

Additionally, findings from mediation analysis suggest that

hexadecenedioate (C16:1-DC) influences HF regulation through

CD28+ CD45RA + CD8br%T and CD28- CD127- CD25++

CD8br%CD8br cells. Similarly, the phosphate to alanine ratio

affects HF regulation through IgD + CD38br AC cells. These

identified immune cells and plasma metabolites can act as

valuable biomarkers for diagnosing and treating HF and help in

understanding its pathophysiological mechanisms.
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