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Myocardial infarction (MI) stands at top global causes of death in developed
countries, owing mostly to atherosclerotic plaque growth and endothelial
injury-induced reduction in coronary blood flow. While early reperfusion
techniques have improved outcomes, long-term treatment continues to be
difficult. The function of lncRNAs extends to regulating gene expression in
various conditions, both physiological and pathological, such as cardiovascular
diseases. The objective of this research is to extensively evaluate the
significance of the lncRNA called Metastasis associated lung adenocarcinoma
transcript 1 (MALAT1) in the development and management of MI. According
to research, MALAT1 is implicated in processes such as autophagy, apoptosis,
cell proliferation, and inflammation in the cardiovascular system. This
investigation examines recent research examining the effects of MALAT1 on
heart function and its potential as a mean of diagnosis and treatment for
post- MI complications and ischemic reperfusion injury.
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1 Introduction

A considerable reduction in the blood flow to the coronary arteries causes an abrupt

heart attack, known as acute MI (AMI), which is considered the foremost cause of

mortality in industrialized countries. The main behind-the-scene mechanisms are

atherosclerotic plaque formation and endothelial injury lipid accumulation (1). In this

situation, plaque rupture by forming thrombosis restrains blood flow. Nonetheless,

coronary artery embolism, coronary dissection, cocaine abuse, and coronary vasospasm

are other non-common causes of AMI (2, 3). The duration and the magnitude of

occlusion- the reduction rate of blood flow- significantly affect the post-MI myocardial

function; hence, rapid reperfusion is vital. Beyond the rapid reperfusion managements

including percutaneous coronary intervention (PCI), fibrinolysis, and surgery, the long-

term approach is fundamentally focused on bicellular supports including lipid-lowering

therapy, antithrombotic therapy, and β-blocker treatment (4). However, in spite of all
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recent progresses in multiple novel therapies, we could not lessen the

complications and morbidities (5). In this regard, besides preventing

interventions like improving life style, we need to develop new

strategies to decrease the post-infract conditions.

Long non-coding RNAs (lncRNAs) are a type of transcripts

that are made up of more than 200 nucleotides (6). LncRNAs

play a crucial role in the regulation of gene expression. This is

achieved through their influence on mRNA stability, along with

their involvement in post-translational modification.

Additionally, lncRNAs also function as competitive endogenous

RNAs, further contributing to their regulatory capabilities (7).

Considering the importance of proteins in various diseases, a

considerable number of investigations on lncRNAs have been

performed that have demonstrated associations between

lncRNAs and prostate cancer, gastric cancer, lung cancer, and

cardiovascular diseases (8–10). Moreover, different studies

showed the lncRNAs influences on not only development, but

also progression of MI, and indicated diagnostic or therapeutic

potentials of lncRNAs in MI (11–13).

One of the most thoroughly researched lncRNAs in the field

is called MALAT1. This particular lncRNA has been primarily

found in relation to lung metastasis and is used as a means of

predicting prognosis (14). Later, its profound expression in

endothelial cells (ECs) and cardiomyocytes experiencing

high glucose, hypoxic situation, and oxidative stress drew

the attentions to the MALAT1 potentials in MI management

(15–18). Therefore, in this comprehensive review, we compile

the forefront findings pertaining to the functions and

underlying mechanistic insights into the MALAT1 in the

context of MI.
FIGURE 1

Some mechanisms that are targeted by MALAT1 in MI. MALAT1-mediated m
after MI via the miR-26b-5p/Mfn1 axis.
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2 MALAT1 and MI

In a study conducted in a medical setting, it has been found that

the lncRNA referred to as lnc-MALAT1 is linked to a higher

likelihood of developing coronary artery disease (CAD) and a

larger size of stenosis in the coronary arteries (19, 20). The initial

stage of healing a heart injury begins with the inflammatory

process that occurs after an acute MI. The procedure involves

activating the body’s natural defense mechanism and drawing in

infection-fighting white blood cells to remove deceased cells from

the site of injury. This process requires the participation of

reactive oxygen species, the complement system, and the activation

of various chemokines (21). Furthermore, a multitude of different

cells, such as lymphocytes, macrophages, other types of immune

cells, fibroblasts, and endothelial cells, become activated and have

a part in the progression of healing (22). Figure 1 shows some

mechanisms that can be targeted by MALAT 1 in MI. Table 1

lists different studies on MALAT1 and MI.
2.1 MALAT1 and angiogenesis in MI

Visualize the creation of novel blood vessels from preexisting ones

as the intricate process of angiogenesis. This complex sequence

commences with the generation of endothelial cells (ECs), which

then bind together and forge bonds with the surrounding

extracellular matrix (ECM) (48). ECs can be divided into three

primary groups: tip, stalk, and phalanx cells. Those situated at the

distal end of blood vessels, namely the stalk and tip cells, have the

ability to produce various pro-angiogenic substances, such as
itochondrial homeostasis enhanced cardiac microcirculation resistance
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TABLE 1 Studies on the role of MALAT1 in MI.

Disease
model

Model MI model method: Expression in
disease

Sample ex:
PBS, heart
tissue

Implication Mechanism and
target

Ref

MI In vitro
(NRCMs)

In vitro: hypoxic
condition which
consisted of 94% N2, 5%
CO2, and 1% O2

Increased Induced autophagy to block
hypoxia-induced cell injury

ULK1 (23)

MI In vivo/In vitro In vivo: LAD ligation Knockdown Heart tissue MALAT1 knockdown inhibited
proliferation and reduced scar size 1
week and 3 weeks after MI

hnRNP U (24)

MI In vivo (617
patients)

– Not evaluated Peripheral venous
blood samples

The MALAT1 rs3200401 CT + TT
genotypes could be a risk factor for
MACCEs in MI patients

– (25)

MI
receiving
PCI

In vivo (198
STEMI patient)

– Increased Serum MALAT1 functioned effectively as a
biomarker of no-reflow
phenomenon in STEMI patients
receiving pPCI.

miR-30e, miR-155,
miR-126, CRP, EDN1,
and HPSE.

(26)

MI In vivo (male
C57BL/6J mice)/
in vitro (CMECs)

In vivo: LAD ligation Inhibited serum and cardiac
tissues

Malat1 knockdown severely
exacerbated cardiac remodeling and
dysfunction, and increased fibrosis
deposition area. It also regulated
angiogenesis and endothelium-
derived vasodilatation after MI

miR-26b-5p/Mfn1,
Mcl-1, Bax, caspase 3
Bcl-2,, and Bcl-xL w

(27)

MI In vivo (C57BL/
6J mice)/in vitro

In vivo: LAD ligation Increased myocardial tissue Inhibited angiogenesis and
myocardial regeneration

miR-25-3p, CDC42,
MEK/ERK pathway

(28)

MI In vitro (H9c2) H9c2 cells were cultured
in a hypoxic incubator
with 3% O2

concentration for 24 h

Increased – Alleviated hypoxia induced H9c2
cell injury, promoted cell migration,
viability, and invasion but inhibited
cell apoptosis

miR217, Sirt1, PI3K/
AKT, and Notch
pathways

(29)

MI In vitro (H9C2) OGD and Reoxygenation
(OGD/R)

Increased – Restored OGD/R-induced H9C2 cell
Autophagy

miR-20b and beclin1 (30)

MI In vivo (Male
C57BL/6 mice)/
in vitro

LAD ligation Increased Heart tissue Promoted fibroblast proliferation,
collagen exacerbated AngII-induced
cell proliferation, and myofibroblast
trans differentiation

TGF-β1 and miR-145 (31)

MI In vivo (male
Sprague
Dawley)/in vitro

In vivo: LAD ligation Induced and
suppressed

heart tissues and
PBS

Increased apoptosis and
inflammatory factors IL-8, IL-1β,
and IL-6

Caspase3, Bcl-2,
MAPK, and ERK2

(32)

MI In vivo (male
Wistar rats)/In
vitro (H9C2)

In vitro and in vivo: ISO-
induced MI

Increased – Protected cardiomyocytes from
apoptosis, decreased mitochondrial
ROS levels, and conferred protective
influences against MI via promoting
autophagy and decreased apoptosis

miR-558, ULK1
mRNA, and Atg1

(33)

AMI In vivo (72 male
C57BL)/In vitro

In vivo: LAD ligation
without chest opening
and ventilation

Increased Heart tissue Deteriorated collagen deposition
and inflammation

EZH2 and H3K27 (34)

AMI In vivo (132
patientss with
AMI)

Patients Increased blood sample MALAT1 might be practical
diagnostic biomarker for AMI and
was negatively associated with
NYHA and genisini score

– (35)

AMI In vivo (60
patients)/in vitro
(HUVECs)

– Increased Blood samples Regulated cell proliferation,
apoptosis, migration, invasion, and
angiogenesis. MALAT1 was shown
to be potential novel biomarkers for
diagnosis

BCL-2, BAX, caspase-
3, PI3K/AKT

(36)

AMI In vivo (160
patient)

– Increased Blood samples
(PBMC)

lnc-MALAT1 increased
atherosclerosis, inflammation, and
myocardial damage, which directly
increased the risk of MACE

nuclear factor-kappa
B and Wnt/β-catenin

(37)

AMI In vivo (32 adult
male Sprague-
Dawley rats)/in
vitro (HL-1)

In vivo: LAD ligation and
reperfusion by cutting the
knot in the ligature,
30 min after ligation.

knockdown Heart tissue Induced apoptosis miR-125b-5p, NLRC5 (38)

AMI In vivo (Wistar
male rats)/in
vitro

LAD ligation Increased after 1 day
and decreased at 14
and 28 says post-MI.

Left ventricular
tissue

Increased angiogenesis miR-92a, KLF2, and
CD31

(39)

(Continued)
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TABLE 1 Continued

Disease
model

Model MI model method: Expression in
disease

Sample ex:
PBS, heart
tissue

Implication Mechanism and
target

Ref

STEMI In vivo (50
patients)/in vitro
(HUVECs)

– Increased Plasma Promoted cell proliferation and
migration of stem cells in hypoxic
conditions and regulated
intermittent hypoxia-induced injury
of HUVECs. MALAT1
independently predicted MACE

miR-142-3p and miR-
155-5p

(40)

Hypoxia
model

In vitro (CPCs) In vitro: applied CoCl2 Induced/suppressed – Enhanced the proliferation and
migration potentials of CPCs under
hypoxic conditions

JMJD6 and miR-125. (41)

MIRI In vivo/in vitro
(H9c2 and HL-1)

In vivo: LAD ligation/in
vitro: cells were treated by
hypoxia/reoxygenation
(HR)

Increased Myocardial tissues Expressed a pro apoptotic effect in
myocardial injury

miR-133a-3p, IGF1R,
PI3K/Akt/eNOS

(42)

MIRI In vivo (120
Sprague-Dawley
rats)/In vitro
(H9c2 cells)

LAD ligation and after
40 min the ligature was
loosened

Increased Neonatal rat
cardiomyocytes

Reduced the cell viability, increased
apoptosis, and enhanced the
autophagy

MiR-206 and ATG3. (43)

MIRI In vivo (12 male
Sprague-Dawley
rats)/in vitro
(H9c2 cells)

LAD ligation and
removal 30 min after
ischemia and reperfusion
was allowed for 60 min.

Increased Cardiac tissue Increased cell autophagy level and
reduced cell apoptosis

miR-30a and BECN1 (44)

MIRI In vivo (40
patients and
male mice)/in
vitro (HL-1)

Animal model: LAD
ligation for 30 min and
removal

Increased Mice heart tissue
and human PBS

Enhanced the H/R-induced cell
apoptosis. MALAT1 showed
diagnostic potentials

miR-144-3p, (45)

MIRI In vivo (12 male
Sprague-Dawley
rats)/in vitro

LAD ligation for 30 min
and removal for 24 h.

Increased Heart tissue Increased myocardial apoptosis miR-320 and Pten (46)

MIRI In vivo (Male
C57BL/6 mice)/
in vitro (HL-1)

LAD ligation for 45 min
and removal

Increased Heart tissue Increased LDH release and cell
apoptosis

miR-145 and Bnip3 (47)
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platelet-derived growth factor, vascular endothelial growth factor

(VEGF), and fibroblast growth factor (49, 50).

To treat ischemic heart disease, angiogenesis holds an essential

position (51). On the other hand, particular research has shown a

direct connection between angiogenesis and the onset of

atherosclerosis, as well as a higher likelihood of plaque rupture

(52). ECs can be prompted to angiogenesis in response to

hypoxia, owing to the activation of VEGF signaling. In addition,

hypoxia can induce the synthesis of MALAT1. Suppression of

MALAT1 results in a notable drop in VEGF expression, which in

turn reduces the capacity of ECs to generate fresh blood vessels

(53–55). One way this procedure takes place is by inhibiting 15-

lipoxygenase 1 and stimulating signal transducers and activators

of transcription 3 via the addition of a phosphate group (56).

The miR-26 family is extensively researched specially,

examined the function of miR-26b-5p in different disease

processes such as cellular proliferation, angiogenesis, and

immunity. As an example, it was discovered that miR-26b-5p is a

molecule that inhibits cellular growth and enhances cellular

apoptosis in cases of liver cancer (57). Specifically by inhibiting

the PDGF receptor-β, miR-26b-5p effectively obstructed the

generation of fresh blood vessels and restricted the production of

fibers in the livers of mice (58).. The process of stopping

angiogenesis is achieved by reducing the concentrations of

MMP2, snail, and VE-cadherin (57). The pathway consisting of
Frontiers in Cardiovascular Medicine 04
lncMalat1, miR-26b-5p, and ULK2 that has an important effect

in regulating autophagy and promoting cell survival in brain

microvascular endothelial cells during episodes of oxygen-glucose

deprivation and the subsequent recovery period (59). A screening

process for miRNAs based on physical traits uncovers evidence

that miR-26b-5p promotes the ability of ECs to survive and grow

following a sudden shortage of oxygen (60).

In this context, Chen and colleagues investigated the extent of

tissue injury in the cardiac muscles of mice and discovered a link

between Malat1 and miR-26. This work demonstrated that the

specifically reduced expression rate of Malat1 in ECs had a

detrimental effect on oxidative stress, microvascular perfusion,

angiogenesis, and ultimately cardiac function in MI models.

Subsequently, suppressed Malat1 has been shown to significantly

impede the growth, movement, and production of tubes in CMEC

cells. This effect was partially caused by disrupted mitochondrial

mediated apoptosis and dynamics. Moreover, through the

utilization of bioinformatic investigations, luciferase assays, and

pull-down assays, it was concluded that Malat1 operates as a

competing endogenous RNA (ceRNA) for miR-26b-5p.

Furthermore, it was found that Malat1employs Mfn1-mediated

pathway to regulate endothelial function by means of modulating

mitochondrial dynamics. Increased expression of Mfn1

significantly rectified the impaired function of small blood vessels

and damage to CMEC cells that were worsened by suppressing
frontiersin.org
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Malat1, by inhibiting the excessive formation of fragmented

mitochondria and apoptosis. They concluded that the Malat1

influences are likely due to its ability to inhibit the miR-26b-5p/

Mfn1 pathway, which takes the responsibility for controlling

mitochondrial dynamics and subsequent apoptosis (27).

The regulation of the MEK/ERK pathway, through therapeutic

approaches such as insulin-like growth factor, statins, or post-

ischemic conditioning, is widely acknowledged as a traditional

method for treating myocardial ischemia injury (61). In contrast

to MEK/ERK, the primary emphasis of studies on miR-25-3p have

been conducted on its association with cancer. The presence of

MiR-25-3p in human malignant cells stimulates angiogenesis via

increasing the growth and movement of ECs. Consequently, this

causes a raise in the movement and penetration of malignant cells

(62). Chen et al. (28) the impact of M1-BMMs-EVs on the

expression of CDC42 and the activation of the MEK/ERK pathway

was thoroughly explored. This stimulation is a result of lncRNA

MALAT1 being transferred and binding to miR-25-3p, resulting in

a decrease in both angiogenesis and the ability of the heart to

regenerate after a heart attack. MALAT1 was discovered to have

increased levels in both MI mice, cells, and extracellular vehicles

(EVs). MALAT1 and miR-25-3p were implemented in order to

analyze the influence of extracellular vesicles on cells exposed to

oxygen-glucose deprivation (OGD). In mice who experienced a

MI, the administration of EV therapy had a negative impact on

both the heart attack itself and the processes of angiogenesis and

heart tissue regeneration. Utilizing EV treatment on cells subjected

to oxygen-glucose deprivation causes a decline in the survival rate

of cells, hindering their ability to reproduce and develop new

blood vessels. The abundance of MALAT1 was notably amplified

in MI mice, microvascular endothelial cells exposed to lack of

oxygen and glucose, M1 macrophage derived from the bone

marrow that displayed heightened inflammatory characteristics,

and external vesicles released by these cells. Reducing the levels of

MALAT1 decreased the ability of extracellular vesicle therapy to

suppress the negative impact of oxygen-glucose deprivation on

cells. The presence of MALAT1 acted as a sponge for miR-25-3p,

leading to a rise in the expression of CDC42. Furthermore,

increased levels of miR-25-3p resulted in enhanced cell survival,

growth, and development of new blood vessels in cells subjected to

oxygen-glucose deprivation. The use of EV therapy led to a

significant rise in the functioning of the MEK/ERK pathway. The

collaborative effect of M1-BMMs-derived EVs inhibited the

formation of new blood vessels and hindered the repair of

damaged heart tissue following a heart attack, through the

influence of the MALAT1/miR-25-3p/CDC42 axis and the MEK/

ERK pathway (28).

KLF-2 is a subgroup of zinc-finger transcription factors (63)

that have significant involvement in vascular functioning (64)

and are prominently presented in ECs (65). Shear stress induces

the expression of KLF-2 (66), while certain lesions, comprising

those resulted from proinflammatory substances or ischemic

stroke, can block its expression (65, 67). KLF-2 functions as a

transcription factor and specifically promotes S1P1 expression.

On the other hand, KLF-4 controls several pathways, comprising

the NF-κB pathway. An upregulation of Klf2 gene and protein
Frontiers in Cardiovascular Medicine 05
expression in lung tissue and HLMVECs has been seen in

response to HO, indicating a potential stress response (68).

Interestingly, an elevation in KLF-2 is associated with a decrease

in angiogenesis produced by HO.

To examine the changes of MALAT1 expression in myocardial

generated exosomes in interaction with hyperbaric oxygenation

(HBO), Shyu et al. have conducted an experimental study and

put cultured cardiac myocytes in HBO at a pressure of 2.5

atmosphere. Exosomes originated from the growth medium. The

researchers created an animal model to mimic acute MI by

clamping the left anterior descending artery (LAD). HBO

therapy significantly increased the amount of MALAT1 in heart

muscle cells according to their findings. In addition, MALAT1

and exosomes induced by HBO significantly decreased the levels

of miR-92a after MI. The expression rates of KLF2 and CD31

was markedly reduced following ligation, and the administration

of HBO-induced exosomes effectively restored the expression.

The expression rates of KLF2 and CD31 proteins were drastically

reduced post-infarction using HBO-induced exosomes when

MALAT1 was silenced using MALAT1-locked nucleic acid

GapmeR. Exosomes generated by HBO therapy also considerably

reduced the extent of the infarction. Exosomes derived from

cardiac myocytes, stimulated by HBO, increased the expression

of MALAT1. This led to the suppressed miR-92a expression and

counteracted its inhibitory influence on CD31 and KLF2

expression in the myocardium of left ventricle (LV) after a heart

attack. As a result, neovascularization was enhanced (39).
2.2 MALAT1 and apoptosis in MI

Programmed cell death occurs through the activation of distinct

signaling pathways that ultimately result in the annihilation of cells

(69). It is a crucial factor in different physiological processes,

comprising homeostasis and the aging process (70–72). Apoptosis

also significantly affects myocardial tissue following a sudden heart

attack and leads to the LV remodeling and heart failure (73).

Apoptosis holds a significant function in ischemic heart disease. It

has a crucial activity in the death of myocytes during AMI and is

mostly concentrated in the peri-infarcted zone (74, 75). During

the middle stage of MI, a considerable number of cells die, which

is believed to be linked to indications of ongoing changes to the

structure of the left ventricle (76). Furthermore, patients, who

experienced symptoms of heart failure just after AMI, exhibited a

notable rise in apoptosis rates (77). Therefore, apoptosis is shown

to have a substantial impact on acute MI.

In mouse models of cardiac ischemia/reperfusion (I/R), it was

established that miR-320 acts as a prominent inducer of apoptosis.

Results from experimental studies indicated that miR-320 facilitates

programmed cell death in cardiac cells. In contrast, the suppression

of miR-320 resulted in a decrease size in the infarcted area

following I/R in vivo (78). This regulation is achieved by

specifically targeting a protein called AKIP1 and activating the

pathway that leads to cell death in the mitochondria (79).

In addition, emerging data indicates that the suppression of

endogenous Pten leads to heart dysfunction and hypertrophy by
frontiersin.org
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deactivating the Pten-inducible kinase 1 (Pink1)/AMPK signaling

pathway (80). PTEN is a genetic component that restrains tumor

development and has the ability to impede the PI3K/Akt

pathway, which is participating in the increase, endurance, and

development of blood vessels (81). PTEN also controls the

expression of other genes that involve in both the external and

internal pathways of programmed cell death, including Bcl-2,

Bid, Bax, caspases, and Sox-1 (82).

In this analysis, Hu and colleagues conducted a practical

investigation on the modulatory function of miR-320 and Pten in

the involvement of MALAT1 in acute MI (AMI). They employed

qRT-PC and western blotting to evaluate the expression of these

variables. The interrelationships between these factors were

further confirmed by luciferase reporter examination. They

demonstrated highly expression of MALAT1 and Pten but a least

miR-320 expression in mice following AMI. In this relationship,

MALAT1 sponges miR-320 to increase the expression of Pten.

They concluded that suppressing MALAT1 expression can

alleviate myocardial apoptosis via inhibiting Pten (46).

NOD-like receptors (NLRs) play various functions in the

natural defense mechanisms within the body (83). The

investigation of NLRC5 has largely concentrated on its function

in controlling the display of antigens by altering the expression

of major histocompatibility complex class I genes (84). NLRC5 is

associated with blocking the production of type I interferons

(85). Research has proven that NLRC5 involves substantially in

the process of malignant cells changing and invading other

tissues (86, 87). Furthermore, a growing body of studies has

discovered a connection between NLRC5 and non-

immunological disorders. MiR-125b-5p has been known as a

well-established controller of apoptosis in several cell types (88–

90). Furthermore, NLRC5 has recently been found to possess a

cardioprotective impact against heart disease (91).

The survival and proliferation rates are influenced by the PI3K/

Akt and Notch signaling pathways (92, 93). The activated of the

PI3K/Akt has been demonstrated to vascular formation and

remodeling. Li et al. proved that the PI3K/AKT pathway can

facilitate the migratory and reproductive actions of endothelial

progenitor cells by activating Sirt1 (93). Moreover, MiR-217 is

abundantly expressed in the plasma of individuals with

atherosclerosis. Reducing the expression of miR-217 can

ameliorate the development of atherosclerosis by specifically

targeting sirtuin 1 and preventing macrophage cell death and

inflammatory response. Furthermore, miR-217 has the ability to

suppress the apoptosis of ECs (94).

Yao et al. treated H9c2 cells with hypoxic conditions and

evaluated migration, proliferation, apoptosis, and invasion. The

connection between miR-217 and both Malat1 and Sirt1 was

investigated through a dual luciferase reporter experiment and

qRT-PCR analysis. This research demonstrated that exposing

H9c2 cells to low oxygen levels results in harm, as it limits their

ability to grow, move, and spread, and instead triggers

programmed cell death. The presence of hypoxia resulted in a

significant rise in Malat1 levels. The RNA molecule Malat1

established a robust relationship with miR-217, subsequently

resulting in the discovery of Sirt1 as a targeted entity for
Frontiers in Cardiovascular Medicine 06
miR-217. Enhancing Malat1 suppression further worsened the

negative effects of hypoxia on H9c2 cells, as miR-217 levels were

heightened. However, promoting Sirt1 expression alleviated H9c2

cell damage by activating the PI3K/AKT and Notch pathways.

Their reported data indicate that Malat1 has a significant role in

causing damage to heart muscle cells under low oxygen

conditions via controlling the miR-217-mediated Sirt1 and

subsequent signaling pathways: Notch and PI3K/AKT (29).

The ability of miR-558 to selectively attach to and inhibit the

creation of MyD88, a protein responsible for activating the NF-

κB pathway, a signaling process connected to inflammation and

cell survival. Through the inhibition of MyD88, miR-558 can

diminish the inflammatory response and facilitate the

programmed cell death of cardiac cells (95). In addition, miR-

558 has the ability to attach to and inhibit the synthesis of

ULK1, leading to the hindrance of autophagy and the increase of

cancer cell death through apoptosis (96, 97). In this line, ULK1

has the ability to control the function of mitochondria, which

holds a crucial role in regulating apoptosis. ULK1 has also the

ability to trigger the division of mitochondria into smaller

fragments, a process known as mitochondrial fission.

Additionally, ULK1 may initiate the breakdown of damaged

mitochondria, called mitophagy. Through its actions, ULK1 can

stop cytochrome c from releasing, which would otherwise set off

the caspase cascade and cause apoptosis (98, 99).

Disrupting the expression of MALAT1 led to a considerable

reduction in cellular survival and an elevated occurrence of cell

death in H9C2 cells exposed to isoproterenol (ISO). Furthermore,

they conducted a thorough examination of the potential target

and determined that miR-558 is directly targeted by MALAT1, as

confirmed by the dual luciferase reporter test. They suggested

that MALAT1 acts as a decoy, effectively absorbing miR-558.

Cells which were transfected by miR-558 mimic showed higher

apoptosis. Their findings also showed that miR-558 inhibited

ISO-induced protective autophagy and downregulated ULK1

expression. In the end, they utilized a mouse model with

knocked-out MALAT1 to confirm that MALAT1 serves as a

protective agent for cardiomyocytes against apoptosis and slightly

improves cardiac function after ISO treatment. Therefore, they

recommended that targeting MALAT1 could potentially be a

technique to protect cardiomyocytes during MI (33).

When the body experiences OGD and oxidative stress, ERK is

capable of triggering cell death by altering the MFN 1 through

phosphorylation. This change causes the MFN1 to bind more

tightly to Bak, a protein from the Bcl-2 family that is responsible

for triggering programmed cell death (100). Triggering a MAPK

signaling pathway can result in both promoting cell survival and

inducing cell death through apoptosis. One potential solution to

understanding this paradox is to thoroughly examine the key

aspects of MAPK signaling networks. The heightened sensitivity

of MAPKs and the presence of activation thresholds can help

clarify why extended or vigorous stimulation of MAPKs results

in cellular demise, whereas short-lived or moderate stimulation

provides a protective effect against cell death (101).

Fan et al. created Sprague-Dawley (SD) rat model of MI. In the

MALAT1 group (n = 10), the pcDNA-MALAT1 plasmids
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upregulated lncRNA MALAT1, while in the siMALAT1 group, its

expression was suppressed. An additional group, referred to as the

Sham group, was established with a sample size of 10. They

disclosed that the lnc-MALAT1 levels were markedly elevated in

the MALAT1 group, while being significantly reduced in the

siMALAT1 group (p < 0.05), showing successful transfection. The

experimental group, in which MALAT1 was inhibited,

demonstrated a notable improvement in ejection fraction and left

ventricular function (with a significance level of p < 0.05). This

suggests that blocking MALAT1 has the ability to increase cardiac

function after an acute MI. The findings of both the HE staining

and TUNEL assay demonstrated that the group administered with

siMALAT1 displayed a reduced level of damage in cardiac

function and a decline in cell death, in contrast to the group

treated with MALAT1. In contrast, the mRNA levels of Collagen I

and III, ERK2, Caspase3, and MAPK were considerably soared in

the MALAT1 group, whereas the mRNA level of Bcl-2 was

notably diminished (p < 0.05). The previously mentioned phrases

displayed opposite behaviors within the siMALAT1 group.

Furthermore, there was a significant elevation in the levels of

ERK2 and MAPK protein expressions within the MALAT1 group

(p < 0.05). Their results demonstrate that the ERK/MAPK pathway

is suppressed as a result of reduced levels of lncRNA MALAT1 in

Sprague-Dawley rats, leading to a significant improvement in heart

function after MI (32).
2.3 MALAT1 and proliferation in MI

Mice, in contrast to other animals, are unable to heal from cardiac

injury because they quickly lose their capability to promote injury-

related CM proliferation shortly after birth (102). Humans also

have a similar difficulty to promote the growth of CMs following

injury, particularly after the age of 20 (103). Nonetheless, several

articles in recent years have demonstrated that it may be feasible to

induce CM proliferation and facilitate functional regeneration

following myocardial damage. Researchers have examined the

involvement of macrophages and monocytes in the proliferative

and inflammatory stages of cardiac repair following MI (104).

These immune cells can impact the development of cardiomyocytes

by releasing growth factors, cytokines, and ECM components (104).

In addition, MALAT1 has been identified as a regulator of various

pathological processes, comprising proliferation, autophagy,

apoptosis, and pyroptosis in ECs (ECs) or cardiomyocytes (15,

105). MALAT1 expression was increased under hypoxic conditions,

which facilitated the proliferation and migratory capabilities of

cardiac stem and progenitor cells by sponging miR-125 or miR-155,

respectively (41, 105).

TGF-β is an important proliferative pathway in many situations

including inflammation, fibrosis, and cancer (106). The activation of

TGF-β begins with ligand release. The ligands are produced in

numerous body cells, not just the myocardium. Before binding to

target receptors, they are secreted inactive and need proteolytic

cleavage (107). Different types of cells, such as fibroblasts and

smooth muscle cells, have the ability to increase in number simply

by producing these activating proteins. However, for certain cell
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types like ECs, the presence of TGF-β can actually hinder the

process of cell proliferation. The extent of this influence may

depend on the concentration of the TGF-β growth factor (108).

Although TGF-β ligands are not unique to the myocardium and

are expressed in various cell types, they undergo significant

alterations in expression following myocardial damage (109).

Huang et al. developed a MI model through artificial closure of

the coronary artery in mice. Protein expression level was analyzed by

means of Western blot analysis, whereas RNA expression was

calculated using RT-qPCR. Echocardiography was employed to

access cardiac function. Masson’s trichrome staining allowed for

the visualization of the fibrotic area in hearts affected by MI. In

both heart infarctions and cardiac fibroblasts treated with

angiotensin II (AngII), the expression of MALAT1 was

determined higher, while the expression of miR-145 was reduced.

Furthermore, the decrease in miR-145 levels was restored upon

depletion of MALAT1. Silencing the MALAT1 gene resulted in

enhanced cardiac function and suppressed fibroblast growth,

collagen production, and α-SMA levels induced by AngII in

cardiac cells. MiR-145 had a vital function in controlling the

expression levels of MALAT1 and manipulating the functioning of

TGF-β1. Inhibiting the expression of MALAT1 effectively blocked

the stimulation of TGF-β1 caused by AngII in heart fibroblasts.

The results of their research suggested that MALAT1 increases the

severity of heart fibrosis and negatively impacts the functioning of

the heart after a heart attack. This is achieved by regulating the

TGF-β1 activity through the presence of miR-145 (31).

MiR-125 specifically bind to and prevent the expression of p53, a

gene that involves in suppressing tumor growth by triggering

programmed cell death and interrupting the cell cycle. Moreover,

miR-125 can shield cardiomyocytes against ischemia-reperfusion

damage by suppressing p53 activity (110). MiR-125 binds to and

block the activity of JMJD6, leading to the suppression of the

producing pro-inflammatory and pro-apoptotic genes, comprising

TNF-α, IL-6, and Bax (111). JMJD6 has the ability to control the

production of HIF-1α, which induces angiogenic genes expression

in limited oxygen environments (112). Additionally, JMJD6 can

also modulate the expression of miR-21, a microRNA that exhibits

an opposite pattern to miR-125. MiR-21 has the capacity to

specifically bind to and limit the activity of PTEN, a gene that

suppresses the PI3K/AKT pathway. This system involves in

regulating cell survival, proliferation, and the angiogenesis.

Through the inhibition of PTEN, miR-21 has the ability to

suppress apoptosis and inflammation in cardiomyocytes (113).

Li et al. showed that the use of CoCl2 to induce hypoxia can

significantly increase the growth and movement capabilities of

cardiac progenitor cells (CPCs). Furthermore, the hypoxia-

induced CPCs model treated with CoCl2 showed a remarkable

increase in the level of MALAT1 expression. When exposed to

limited oxygen levels, the cessation of MALAT1 function

hindered the reproduction and movement of CPCs. Furthermore,

MALAT1 functioned as a reservoir for miR-125. Once miR-125

was suppressed and MALAT1 levels were decreased in a low

oxygen environment, the ability of CPCs to grow and move was

restored. The expression of JMJD6 was directly affected by miR-

125, as miR-125 was responsible for suppressing its levels.
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Inhibiting the expression of JMJD6 led to the prevention of the

protective effect of the miR-125 inhibitor on CPC activity when

exposed to hypoxic conditions. Overall, their research

demonstrated that MALAT1 is capable of controlling the growth

and movement potential of CPCs by means of the miR-125/

JMJD6 pathway in hypoxic environments (41).
3 MALAT1 and prognosis of MI

In addition to the potentials of lncRNAs in prevention and

treatment of MI, which can be performed through modulating

the downstream miRNAs expression (114), They can serve as

indicators for the early detection and prognosis of MI by

identifying the intensity and scope of heart muscle injury, the

level of cardiac impairment, and the development of sequelae

(115, 116). The objective is to assess the predictive value of the

MALAT1 genetic variation in major adverse cardiac and

cerebrovascular events (MACCEs). Zhang et al. have conducted a

study on 617 individuals with MI and 1,125 control participants.

The MALAT1 rs3200401 genotype was detected using

SNPscanTM typing tests. The research utilized graphical plots and

statistical analysis to examine the connection between variations

in the MALAT1 gene and the occurrence of major adverse

cardiac and cerebrovascular events (MACCEs). They found

significantly higher frequencies of CT + TT and T allele in

MACCES. Considering the patients with MI compared to the

total population of the study, the T allele frequencies were 15.3%

vs. 19.5% (P = 0.047) and 14.1% vs. 20.7% (P = 0.014),

respectively. On the other hand, The CT + TT genotypes

frequencies were 28.1% vs. 37.4% (P = 0.013) and 25.8% vs.

39.5% (P = 0.003), respectively. Nevertheless, among the control

participants, there was no significant increase in the frequencies

of the T allele (P = 0.860) or CT + TT genotypes (P = 0.760) in

individuals with MACCEs compared to those without MACCEs.

Furthermore, the Kaplan-Meier curve examination indicated that

individuals possessing the rs3200401 CT + TT genetic variations,

both in the overall group and in individuals with MI, had a

higher incidence of MACCEs in comparison to those with the

CC genotype (with a significance of P = 0.015 and P = 0.001,

respectively). Nonetheless, the control subjects did not show

comparable outcomes (P = 0.790). The multivariate Cox

regression analysis results indicated that individuals with the CT

+ TT genotypes had a 1.554 times greater chance of experiencing

major adverse cardiac and cerebrovascular events (MACCE) than

those with the CC genotype. This research also showed that the

presence of the CT + TT genotypes of the MALAT1 rs3200401

gene may elevate the risk of MACCEs in patients with MI. This

indicates that the MALAT1 gene has the ability to be used in

predicting a negative prognosis in MI patients (25).

In another research, Li et al. examined the association between

MALAT1 and the risk, characteristics, cytokines, and prognosis of

patients with AMI. They recruited a total of 160 patients who

were recently determined to have AMI, as well as 50 control

individuals who had angina pectoris. Peripheral blood

mononuclear cells (PBMCs) were collected in order to quantify
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MALAT1 using RT-qPCR. The presence of serum cytokines in

AMI patients was determined using ELISA. Furthermore, patients

with AMI were monitored to assess their risk of experiencing

major adverse cardiovascular events (MACE). They demonstrated

elevated expression of Lnc-MALAT1 in patients with AMI

compared to the control group (median: 2.245 vs. 0.996,

p = 0.004). Additionally, MALAT1 strongly distinguished between

AMI patients and controls, as indicated by an area under the

curve of 0.823. Moreover, MALAT1 had a significant positive

correlation with LDL cholesterol, CRP, cardiac troponin I, and

infarct size in patients with AMI. However, there was no

significant association observed with other biochemical markers.

Concurrently, the results indicate that the MALAT1 is closely

associated with high levels of inflammatory cytokines TNF-alpha,

IL-17A, and IL-6, as well as intercellular adhesion molecule-1 and

vascular cell adhesion molecule-1, in individuals diagnosed with

AMI. Significantly, following categorization, there was a

considerable association between high levels of MALAT1

(compared to the low levels) and an increased rate of MACE

accumulation (p < 0.05). Concluding from this study, MALAT1

can be used for assessing the risk of AMI, determining the severity

of the infarct, evaluating inflammatory levels, and predicting

prognosis (37). MALAT1 sponges miR-126, miR-155, and miR-

30e. Plasma level of miR-30e serves as an indicator for the

likelihood of experiencing no-reflow during primary PCI, while

miR-126 could potentially serve as a predictive indicator for

coronary slow flow. In this regard, Yang et al. assessed the ability

of the mentioned genes to accurately predict the likelihood of

experiencing the no-reflow phenomenon in patients with ST-

segment elevation MI (STEMI) who have undergone primary

percutaneous coronary intervention (PCI). The performance of

ROC analysis revealed that the quantities of MALAT1, miR-126,

miR-30e, and CRP have the potential to function as indicators for

discriminating between the outcomes of normal reflow and no-

reflow in individuals who have undergone primary PCI. According

to the research findings, MALAT1 plays a role in suppressing the

production of three miRNAs – miR-30e, miR-126, and miR-155.

Furthermore, miR-126 and miR-155 have a specific effect on

inhibiting the expression of their target genes, HPSE and EDN1

respectively. Results also showed that miR-30e, miR-126, and miR-

155 directly interact with and negatively regulate the activity of

CRP, HPSE, and EDN1. Besides, MALAT1 has the potential to

serve as a reliable biomarker for the no-reflow phenomena in

patients with STEMI who have primary PCI (26).
4 MALAT1 as diagnostic biomarker
for MI

Cardiotropin I (cTnI) and troponin T (cTnT) are the most

preferred diagnostic biomarkers for AMI at the present time

(117). Circulating cTnI and cTnT have been widely regarded as

the most reliable method for diagnosing AMI for more than two

decades. This is because they can be found in the bloodstream

within 2–4 h post AMI (118, 119). The amount of circulating

cTnI and cTnT show their highest levels 24–48 h after an AMI
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and remain elevated for even more than a week (120). Recently,

high-sensitive cTnI and cTnT have been created to enhance the

sensitivity and precision of diagnosing (121, 122). Nevertheless,

there are instances where individuals with chronic kidney

illnesses, heart failure, and sepsis, particularly older patients, may

experience false positive results with increased cTn levels (123–

126). Furthermore, due to the prolonged presence of cTn in the

bloodstream for more than 7 days, it is doubtful that tiny

repeated heart attacks occurring after a massive heart attack may

be detected. Thus, it is crucial to find accurate biomarkers that

can diagnose STEMI at a very early stage, as well as particular

biomarkers that can track the complete disease progression of

AMI. Researchers in the United Kingdom (127), the United

States (128), and China (129) came to the same conclusion in

2008: circulating miRNAs are sensitive cancer and illness

biomarkers. Groundbreaking studies showed that miRNAs have

significant promise as biomarkers for AMI (130, 131).

Wang et al. evaluated the diagnostic potentials of lncRNAs

obtained from PBMCs. They studied the expression levels of 10

distinct lncRNAs known to be connected with cardiovascular

disease in PBMCs taken from 132 AMI patients and 104 unaffected

individuals. Employing quantitative RT-PCR analysis, the

researchers collected blood samples from the AMI patients after

their heart attack. Results showed heightened levels of lncRNAs

H19, MALAT1, and MIAT in the AMI patients compared to the

control group, among the 10 lncRNAs studied. The ROC analysis

demonstrated that peripheral blood mononuclear cell-derived H19

had substantial diagnostic utility for acute MI (ROC, 0.753; 95%

confidence interval, 0.689–0.817). Their results also showed that the

AUC of MALAT1, as an indicator for diagnosis, was 0.636 (95%CI:

0.561˜0.712) with a cut-off point of 1.79, specificity of 0.75, and

sensitivity of 0.555. Therefore, the potentials of the increased levels

of H19, MIAT, and MALAT1 generated from PBMCs should be

regarded as diagnostic biomarkers for acute MI (35). In another

study on 160 patients who were recently diagnosed with AMI and

50 control patients with angina pectoris, Li et al. demonstrated that

MALAT1 expression level was substantially elevated in AMI group,

indicating the MALAT1 ability to distinguish between AMI and

control individuals. In this regard, the AUC of MALAT1 was 0.823.

In addition, its level was straightforwardly correlated with infarct

size, cardiac troponin I, LDL cholesterol, and CRP in a positive

way. Following categorization, there was a notable association

between high levels of lnc-MALAT1 (compared to low levels) and

an increased rate of MACE accumulation (p = 0.035). These

findings indicate that Lnc-MALAT1 has the potential to be utilized

in evaluating the susceptibility to AMI as a biomarker, determine

the extent of the infarct, evaluate inflammatory levels, and predict

prognosis (37).

Barbalata et al. examined the potentials of plasma MALAT1 to

differentiate between individuals with unstable CAD and those

with stable CAD. A number of 23 individuals with stable angina

(SA), 21 individuals with unstable angina (UA), and 50 patients

with STEMI were included in the study. ROC analysis

demonstrated a positive correlation between elevated levels

MALAT1 with the presence of UA. In addition, MALAT1 was

also correlated with the occurrence of MACE in patients with
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STEMI. The accuracy of this forecast was improved by

incorporating the degree of miR-142-3p in the comprehensive

statistical model. They suggested MALAT1 as a valuable

diagnostic indicator for identifying vulnerable CAD (40).
5 Conclusion

Recent pieces of evidence have revealed that MALAT1 holds a

substantial significance in the growth, progress and management

of cardiovascular diseases, especially in cases of myocardial

ischemia and reperfusion damage. According to research,

MALAT1 is implicated in processes such as autophagy, apoptosis,

cell proliferation, and inflammation in the cardiovascular system.

In investigations involving postconditioning models and acute MI,

for example, there was an increase in MALAT1 expression,

showing a direct relationship with disease severity. The research

performed on individuals with ST-elevation MI validates this

finding, as it has shown that higher levels of MALAT1 can be

indicative of significant negative outcomes related to the heart.

Interestingly, interventions, such as lowering MALAT1 levels in vivo

and in vitro, demonstrated anti-injury effects by suppressing cell

death and boosting cell survival. This evidence emphasizes the

potentiality of targeting MALAT1 as a therapeutic strategy.

Furthermore, the association of MALAT1 with miRNAs such as

miR 155 5p, miR 142 3p, and miR 30e emphasizes its role in gene

expression relevant to cardiovascular diseases. These interactions

have an effect on processes such as collagen formation,

inflammation, and cell damage. This underscores the significance

of MALAT1 in these situations. To conclusion, MALAT1’s diverse

role in myocardial ischemia and damage disorders places it not

only as an important biomarker for disease development and

prognosis, but also as a viable target for therapeutic approaches.

Currently, the intricate three-dimensional structure of lncRNAs,

which allows them to interact with various RNA and protein

partners, as well as their multifaceted mode of action, have

hindered the acquisition of knowledge on lncRNA functions in

both normal and pathological situations. However, cutting-edge

biochemical methods for studying lncRNAs are continuously being

developed, which may uncover previously unknown functions of

these molecules, including MALAT1. This could shed more light

on their diverse biological activities and their precise role in

disease pathobiology. Moreover, significant progress has been

made in finding therapeutic agents to target oncogenic lncRNAs

in cancer cells, and researchers are now exploring new avenues to

design and produce small molecules that can bind to lncRNAs in

their three-dimensional conformations. Through targeted genetic

deletion of MALAT1 using zinc finger nucleases, as well as

MALAT1 therapeutic targeting using synthetic oligonucleotides

such as siRNAs and the newly developed LNA gapmeR ASOs, the

oncogenic role of this lncRNA and its potential as a target for

therapeutic purposes has been established. While further studies

utilizing advanced and physiologically relevant in vivo models that

replicate certain types of cancer are necessary, the current evidence

suggests that MALAT1 may hold promise as a primary candidate

for future clinically applicable lncRNA-based therapies against MI.
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