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Potential biomarkers and immune
characteristics for polycythemia
vera-related atherosclerosis
using bulk RNA and single-cell
RNA datasets: a combined
comprehensive bioinformatics
and machine learning analysis
Ziqing Wang1† and Jixuan Zou2*†

1Beijing Friendship Hospital, Capital Medical University, Beijing, China, 2Graduate School, Beijing
University of Chinese Medicine, Beijing, China
Background: Polycythemia vera (PV) is a myeloproliferative disease characterized
by significantly higher hemoglobin levels and positivity for JAK2 mutation.
Thrombosis is the main risk event of this disease. Atherosclerosis (AS) can
markedly increase the risk of arterial thrombosis in patients with PV. The
objectives of our study were to identify potential biomarkers for PV-related AS
and to explore the molecular biological association between PV and AS.
Methods: We extracted microarray datasets from the Gene Expression Omnibus
(GEO) dataset for PV and AS. Common differentially expressed genes (CGs)
were identified by differential expression analysis. Functional enrichment and
protein-protein interaction (PPI) networks were constructed from the CG by
random forest models using LASSO regression to identify pathogenic genes and
their underlying processes in PV-related AS. The expression of potential
biomarkers was validated using an external dataset. A diagnostic nomogram was
constructed based on potential biomarkers to predict PV-related AS, and its
diagnostic performance was assessed using ROC, calibration, and decision
curve analyses. Subsequently, we used single-cell gene set enrichment analysis
(GSEA) to analyze the immune signaling pathways associated with potential
biomarkers. We also performed immune infiltration analysis of AS with
“CIBERSORT” and calculated Pearson’s correlation coefficients for potential
biomarkers and infiltrating immune cells. Finally, we observed the expression of
potential biomarkers in immune cells based on the single-cell RNA dataset.
Results: Fifty-two CGs were identified based on the intersection between up-
regulated and down-regulated genes in PV and AS. Most biological processes
associated with CGs were cytokines and factors associated with chemotaxis of
immune cells. The PPI analysis identified ten hub genes, and of these, CCR1
and MMP9 were selected as potential biomarkers with which to construct a
diagnostic model using machine learning methods and external dataset
validation. These biomarkers could regulate Toll-like signaling, NOD-like
signaling, and chemokine signaling pathways associated with AS. Finally, we
determined that these potential biomarkers had a strong correlation with
macrophage M0 infiltration. Further, the potential biomarkers were highly
expressed in macrophages from patients with AS.
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Conclusion: We identified two CGs (CCR1 and MMP9) as potential biomarkers for
PV-related AS and established a diagnostic model based on them. These results
may provide insight for future experimental studies for the diagnosis and
treatment of PV-related AS.
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1 Introduction

Polycythemia vera (PV) is a myeloproliferative disorder

characterized by significantly increased hemoglobin levels and

JAK2 gene mutation. PV is the most common myeloproliferative

neoplasm, with an incidence of 10.9 per million. It is often

accompanied by hematological features such as increased white

blood cell (WBC) and platelet (PLT) counts, and clinical

manifestations such as thrombosis, headache, gastrointestinal

ulcer, pulmonary hypertension, and splenomegaly (1–3).

Thrombosis is the main risk event for this disease, with an

incidence of approximately 46%, and arterial thrombosis occurs

2–3 times more frequently than venous thrombosis (4, 5).

Arterial thrombosis-related cardiovascular and cerebrovascular

disorders pose a major risk to patient safety and quality of life,

as well as an economic and public health burden to society.

Atherosclerosis (AS) can significantly increase the risk of arterial

thromboembolism in patients with PV, according to recent

research (6). To prevent and reduce the incidence of thrombosis

in patients with PV, it is crucial to evaluate the impact of AS in

these individuals.

Patients with PV have a higher risk of AS and plays a

significant role in arterial thrombosis in patients with PV. The

growth and rupture of an atherosclerotic plaque is frequently a

prerequisite for arterial thrombosis, acting as a prepathological

stage of the disease. Arterial thrombosis may result from JAK2

mutation-induced leukocytosis and immunological dysfunction

(7–9). Furthermore, the expression of cytokines by bone marrow

cells in patients with PV can interfere with endothelial system

homeostasis and further supports the potential that endothelial

damage in patients with PV leads to AS (10–12). Although

numerous studies have shown an intricate connection between

PV and AS, additional studies are required to fully understand

the implications and underlying biological processes between the

two diseases (13–15).

Our hypothesis was that the pathogenic mechanisms

underlying PV-related AS could be unraveled at the molecular

biological level by employing bulk-RNA and single-cell RNA

datasets and bioinformatics approach to thoroughly investigate

abnormally expressed genes of the two diseases. In this study, we

first explored the potential cellular and molecular pathways

involved and thoroughly analyzed the association between PV

and AS based on bulk-RNA and single-cell RNA datasets using

various bioinformatics tools. We used a variety of advanced

statistical algorithms to identify potential biomarkers of PV and

AS and assessed their interaction and infiltrating immune cells.

Additionally, the latent value of potential biomarkers in the
02
diagnosis of disease was evaluated and validated in different

cohorts (Figure 1).
2 Materials and methods

2.1 Data collection

Six human gene expression profile datasets were obtained from

the GEO databases (https://www.ncbi.nlm.nih.gov/geo/) (16). Bulk

transcriptome data of controls and patients with PV were

contributed by GSE26049 (whole blood from 41 PV individuals

and 21 control individuals), GSE61629 (whole blood from 21 PV

individuals and 21 control individuals), and GSE103237 (bone

marrow CD34 + cells from 21 PV individuals and 21 control

individuals). Bulk transcriptome data of the control and AS

patients was contributed by GSE100927 (35 control arteries and

69 atherosclerotic lesions) and GSE43292 (32 control arteries and

32 atherosclerotic lesions). Single-cell transcriptome data of AS

patients were extracted from GSE159677 (3 AS patients).
2.2 Analysis of differentially
expressed genes

Integrated PV expression data was obtained by the batch

correction of GSE26049 and GSE61629 based on the “SVA”

package (17) in R software (version 4.2.1), which contained 62

PV samples and 42 control samples. Gene symbol conversion,

background correction, and normalization were performed on

the integrated PV and the AS data sets (GSE100927).

Subsequently, the differentially expressed genes (DEGs) in the

PV and AS datasets were identified with the “Limma” package

(18) in R software. The DEGs were filtered with a fold change

≥1.5 and p.adjust <0.05. Next, DEGs were summarized as

volcano plots and heatmaps with the “ggplot2” and “pheatmap”

packages in R software. As a result, the up- and down-regulated

genes of PV and AS were intersected with the “dplyr” package in

R software to identify CG.
2.3 Enrichment analysis of CGs from
patients with AS and PV

Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes,

Genomes (KEGG) analyses were performed to identify possible

functions for the CGs from patients with AS and PV by
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FIGURE 1

Flow chart of this study design.

Wang and Zou 10.3389/fcvm.2024.1426278

Frontiers in Cardiovascular Medicine 03 frontiersin.org

https://doi.org/10.3389/fcvm.2024.1426278
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Wang and Zou 10.3389/fcvm.2024.1426278
“clusterProfiler” packages (19) in the R software. A P-value <0.05 was

considered a significant statistical difference in the GO and KEGG

analysis. Visualizations of GO and KEGG analysis were depicted with

bar plot and chord diagrams by “ggplot2” package in the R software.
2.4 Construction of a protein-protein
interaction network

To identify interactions among the CGs from patients with

AS and PV, a protein-protein interaction (PPI) network was

established on the basis of STRING data (https://www.string-

db.org) (20), with a medium confidence score of >0.4. Later,

the PPI network was visualized using Cytoscape software

(version 3.8.0). We also used the Cytoscape plug-in molecular

complex detection (MCODE) to detect the significant modules.

The CGs in the modules with the highest scores were chosen

for further analysis.
2.5 Machine learning

The least absolute shrinkage and selection operator (LASSO)

method was used to screen for possible biomarkers using the

“glmnet” package (21) in R software. Subsequently, the random

forest (RF) modelling was used to further refine potential

biomarkers using the “randomForest” package (22) in R software.

The overlapping genes from the LASSO model and the RF model

(MeanDecreaseGini >2) were defined as hub genes for the

establishment of a diagnostic model of PV-related AS.
2.6 Expression of hub genes and evaluation
of receiver operating characteristic

The expression patterns of the hub gene were first evaluated

in the GSE100927 and integrated PV datasets, and then

confirmed in the GSE103237 and GSE43292 datasets. The

Wilcoxon test was used for comparison with a significance level

of P < 0.05. ROC curves were produced to evaluate the

diagnostic value of the hub gene for the diagnosis of PV and

AS, respectively. AUC values >0.7 suggested a substantial

difference. The AUC values and their accompanying 95%

confidence intervals were calculated to separate the illness

group from the control group.
2.7 Nomogram creation and the potential
marker prediction model evaluation

The nomogram was created based on the hub genes using the

“rms” package in R software. The performance of each hub gene

and the nomogram in the diagnosis of AS was assessed by the

area under the ROC curve. Furthermore, the ROC curve analysis

was performed to assess the suitability of the nomogram-based

diagnosis of AS. Lastly, the prediction efficiency of nomograms
Frontiers in Cardiovascular Medicine 04
in PV-related AS was evaluated with calibration curves and

decision curve analysis (DCA).
2.8 Implementation of gene set enrichment
analysis (GSEA) for potential biomarkers

After acquiring potential biomarkers, we used the

“clusterProfiler” (23) program to perform single-gene gene set

enrichment analysis (GSEA) for every potential biomarker in AS

datasets. Our objective was to analyze the signaling pathways

regulated by the potential biomarkers in AS with GSEA. The

MSigDB (c5.go.bp.v7.5.1.entrez.gmt) was used to obtain gene

sets. A P-value < 0.05 was considered statistically significant. The

immunological pathways for every gene in the AS datasets were

represented using the “enrichplot” package in R software.
2.9 Immune infiltration analysis

The AS gene expression profile was used to determine the

amount of immune cell infiltration based on “CIBERSORT”

program (24). A bar plot representing the amount and

percentage of immune infiltration was displayed for every sample

with the “ggplot2” package. The proportions of 22 different

immune cell types in the calcified and control aortic valve

samples were compared using “kruskal-test”. A P-value < 0.05

was considered statistically significant, and the results were

displayed in a stacked histogram created with the “ggplot2”

software. Finally, the association between the expression of

potential biomarkers and the amount of immune cells infiltration

was then analyzed using the Pearson’s rank correlation

coefficient, with P < 0.05 regarded as statistically significant. A

coefficient of correlation >0.7 was considered a strong correlative.
2.10 Single-cell RNA analysis

We used the “Seurat” and “SingleR” packages (25) to analyze

AS single-cell RNA datasets. To preserve high-quality data, we

excluded cells with a mitochondrial gene percentage >5%, cell

counts <3, and cells expressing <300 and >5,000 genes. We used

the “NormalizeData” function to normalize the gene expression

of the included cells. Principal component analysis (PCA) was

used to extract the top 20 principal components (PC) based on

the top 2,000 highly variable genes. Finally, the

“FindVariableFeatures” function was used to save these PCs for

additional analysis. The “FindNeighbors”, “FindClusters”

(resolution = 0.6), and “RunUMAP” programs were used to

cluster cell subpopulations in an unsupervised and unbiased

manner. The marker genes for each cluster were screened using

the “FindAllMarkers” function with fold change ≥1.2 and

p.adjust <0.05. Lastly, the “SingleR” package annotated cell types.

Finally, “Featureplot” function was used to show the expression

of potential biomarkers in the type of cells in AS.
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3 Results

3.1 Identification of CGs in PV and AS
datasets

GSE26049 and GSE61629 were combated after batch correction

(Figures 2A,B), the differences between two data sets were

significantly decreased after batch effect removal. In the PV

datasets (GSE26049 and GSE61629), a total of 535 DEGs,

consisting of 319 upregulated DEGs and 216 downregulated

DEGs, were identified (Figure 2C). In the AS data set GSE100927,

a total of 1,687 DEGs, consisting of 1,067 upregulated DEGs and

620 downregulated DEGs, were identified (Figure 2D). The

heatmaps show the top 50 expression pattern of CGs in PV and

AS cohorts (Figures 2E,F). As shown in Figures 2G,H, there were

48 overlapping upregulated CGs and 4 overlapping downregulated

CGs between PV and AS cohorts.
3.2 Biological function and pathways of
identified CGs

The biological role of CGs was examined using GO and KEGG

enrichment analysis. The enriched biological processes (BPs) of

CGs included neutrophil migration, neutrophil chemotaxis, myeloid

leukocyte migration, leukocyte migration, leukocyte chemotaxis,

granulocyte chemotaxis, and cytokine-mediated signaling pathways,
FIGURE 2

Differential expression gene analysis. PCA of two original PV datasets (A) befo
expressed genes (DEGs) in the (C) PV and (D) AS datasets. The expression pat
upregulated and (H) downregulated CGs between PV and AS datasets.
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and cell chemotaxis (Figure 3A). The enriched molecular function

(MF) of CGs included receptor ligand activity, peroxidase activity,

oxidoreductase activity, acting on peroxide as acceptor, heme

binding, cytokine receptor binding, cytokine activity, CXCR

chemokine receptor binding, chemokine receptor binding,

chemokine activity, and antioxidant activity (Figure 3A). The

enriched cell component (CC) of CGs included the vesicle lumen,

vacuolar membrane, tertiary granule, secretory granule membrane,

secretory granule lumen, lytic vacuole membrane, lysosomal

membrane, and external side of plasma membrane (Figure 3A).

The immunological and inflammatory pathways in which CGs

were the most enriched were chemokine signaling, IL-17, Toll-like

receptor, and NOD-like receptor signaling pathways, and the

intestinal immune network for IgA production (Figure 3B).
3.3 Identification of optimal diagnostic
value CGs

To reveal the potential pathogenic genes and underlying

mechanisms in PV-related AS, the interaction of the key genes in

PV and AS was collected by the STRING database to identify

probable pathogenic genes and the underlying mechanism in PV-

related AS. The most important modules were identified through

MCODE, which included the 10 genes that have been recognized

as pathogenic genes in PV-related AS. (Figures 4A,B). Subsequently,

seven possible candidate genes among ten CG were identified
re and (B) after batch-effect correction. The volcano plots of differentially
tern for the top 50 CGs in the (E) PV and (F) AS datasets. Venn plots of (G)
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FIGURE 3

Enhanced function and pathway enrichment. (A) GO enrichment and (B) KEGG enrichment of CGs.

FIGURE 4

Identification of optimal diagnostic value CGs. (A) PPI network of CGs. (B) The most important modules in the PPI network of CGs. The minimum
values (C) and lambda values (D) of potential biomarkers were identified by the LASSO logistic regression algorithm. (E) The error in AS shown by
random forests (RF) survival algorithm. (F) RF algorithm that presents the MeanDecreaseGini of CGs in AS and biomarkers with the score >2.0
were selected. (G) Venn diagram displaying two common genes between the LASSO and RF algorithms, which were identified as the hub genes in
PV-related AS.
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with the LASSO regression algorithm, which had a significant

impact on the diagnosis of patients with PV who presented AS

(Figures 4C,D). Five CGs were retrieved using the RF machine
Frontiers in Cardiovascular Medicine 06
learning technique, which was also used to rank the ten CGs

according to the varying relevance of each gene to further narrow

the potential biomarkers (Figures 4E,F). Three potential biomarkers
frontiersin.org
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overlapped in both groups after superposing the seven candidate

genes from LASSO and the five probable genes from RF modelling,

including motif chemokine receptor 1 (CCR1), C-X-C motif

chemokine ligand 5 (CXCL5), and matrix metalloproteinase 9

(MMP9); all potential biomarkers were all up-regulated (Figure 4G).

Subsequently, we examined the expression of potential biomarkers

in patient groups from the AS dataset (GSE100927) and PV datasets

(combined of GSE26049 and GSE61629) and compared them

with control groups. The expression of potential biomarkers was

significantly different between the patient and control groups

(P < 0.05), and the ROC analysis supported the potential biomarkers

as the most promising diagnostic marker for this condition

(Figures 5A–D). Because the AUC of CXCL5 in GSE43292 was <0.7,

CXCL5 was not suitable as a biomarker. Furthermore, the results of

the external validation analysis demonstrated a significant difference

in the expression of CCR1 and MMP9 (P < 0.05) between the patient

and control groups (Figures 5E–H).
3.4 Construction and evaluation of a
diagnostic model in PV-related AS

A nomogram was created based on the two hub genes using

logistics regression analysis to predict the possibility of developing

AS in patients with PV (Figure 6A). The calibration curves revealed

that the probability of the diagnostic nomogram model was
FIGURE 5

Verification of CCR1, CXCL5, and MMP9 as hub genes. (A) Expression of poten
potential biomarkers in the combined GSE26049 and GSE61629 datasets. (C)
ROC curve for potential biomarkers in the GSE100927 dataset. (E) The expres
for potential biomarkers in the GSE103237 dataset. (G) The expression level o
biomarkers in the GSE43292 dataset. Statistical significance at the ns≥ 0.05,
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approximately the same as that of the ideal model (Figure 6B).

Furthermore, the DCA of the nomogram demonstrated that the

nomogram model could be advantageous for the diagnosis of PV-

related AS (Figure 6C). The nomogram had a high AUC value,

indicating that it could be a useful diagnostic tool for AS-related PV

(Figure 6D). Furthermore, the nomogram exhibited a great

predictive value in the GEO GSE43292 dataset (Figures 6E–G),

which means that the nomogram also had good predictive

performance in the external cohorts.
3.5 Connection between potential
biomarkers and inflammatory and immune
processes in AS

Based on the GO and KEGG analysis of CGs in the PV and

AS datasets, we found that CGs were closely associated with

inflammatory and immune processes. Therefore, we used single-

gene GSEA analysis of the two potential biomarkers in the AS

group to determine the regulatory status of potential

biomarkers for AS through immune pathways. CCR1 and

MMP9 were both involved in immune pathways such as

chemokine signaling, NOD-like receptor signaling, TOLL-like

receptor signaling, FcϵRI signaling, and in FCγR mediated

phagocytosis (Figures 7A,B).
tial biomarkers in the GSE26049 and GSE61629 datasets. (B) ROC curve for
The expression level of potential biomarkers in the GSE100927 dataset. (D)
sion level of potential biomarkers in the GSE103237 dataset. (F) ROC curve
f d potential biomarkers in GSE43292 dataset. (H) ROC curve for potential
* < 0.05, ** < 0.01, *** < 0.001, and **** < 0.0001 levels.
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FIGURE 6

Development of the diagnostic nomogram model and evaluation of efficacy. (A) The nomogram was constructed on the basis of the potential
biomarkers in PV-related AS. (B) The calibration curve of nomogram prediction model in the training dataset (GSE100927). (C) DCA for the
nomogram model in the training dataset (GSE100927). (D) ROC curve for the diagnostic performance of the nomogram model in the training
dataset (GSE100927). (E) Calibration curve for the nomogram prediction model using the validation dataset (GSE43292). (F) DCA for the
nomogram model in the validation dataset (GSE43292). (G) The ROC curve evaluating the diagnostic performance of the nomogram model in the
validation dataset (GSE43292).

FIGURE 7

GSEA for potential biomarkers. GSEA analysis for (A) CCR1 and (B) MMP9 in the AS group.
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3.6 Immune cell infiltration and correlation
analysis of potential biomarkers with
invading immune cells in AS

The potential biomarkers CCR1 and MMP9 showed a

close association with inflammatory and immune processes

in AS. Sequentially, the CIBERSORT algorithm was used to

determine the properties of immune cells and to investigate

the association between potential biomarkers and immune

cell type in AS. Unlike the control group, AS exhibited
Frontiers in Cardiovascular Medicine 08
higher proportions of macrophages M0, memory B-cells,

activated mast cells, naive CD4T cells, follicular helper T

cells, γδT cells, and regulatory T cells (Tregs), whereas

lower proportions of naive B cells, activated dendritic cells,

M1 macrophages, M2 macrophages, resting mast cells,

monocytes, plasma cells, and active memory CD4T cells,

and resting memory CD4T cells (Figures 8A,B).

Furthermore, the expression of two potential biomarkers

demonstrated a strong correlation with accumulation of M0

macrophages in AS (Figure 8C).
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FIGURE 8

Immune cell infiltration analysis in AS. (A) Stacked histogram displaying the immune cell type proportions between AS and control groups. (B) Box
plot showing the comparison of 22 immune cell types between AS and control groups. (C) The correlation map shows the association between
two potential biomarkers and differentially infiltrated immune cells with a P-value < 0.05. AS, calcific aortic valve disease. *P < 0.05; **P < 0.01;
***P < 0.001; ****P < 0.0001; ns, not significant.
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3.7 Expression of hub genes in single-cell
RNA-seq datasets

The gene expression profiles of 38,611 cells from three AS

samples were obtained from the GSE159677 dataset. We filtered

the data according to the depth of sequencing and the number of

genes found (Figures 9A,B), and normalized the data

(Figures 9C,D). For further examination, the top 2,000 highly

variable genes were chosen. The “RunPCA” function was used to

reduce dimensionality and a total of 19 clusters were identified

(Figure 9E). Subsequently, we annotated and visualized nine

different cell types (CD4+ T cell, NK cell, monocyte, MSC, B

cell, macrophage, endothelial cell, CMP, smooth muscle cells,

and T cell yō) with the “SingleR” function (Figure 9F). The top

five genes of every cell type validated the annotation using the

“SingleR” function (Figure 9G). Unlike other immune cell types,

we observed that hub genes were substantially expressed in

macrophages when we examined the location and expression of

CCR1 and MMP9 (Figure 9H).
4 Discussion

PV related to arterial thrombosis is a significant public health

concern and economic burden and is a major risk factor and event

for patients with PV. AS is a significant risk factor for arterial

thrombosis in patients with PV (6). Furthermore, acquired

alterations in immune cells are directly responsible for the

worsening of atherosclerotic plaque inflammation, which in turn

causes arterial thrombosis in patients with PV (7–9). Genes
Frontiers in Cardiovascular Medicine 09
associated with atherosclerosis have also been confirmed to be

highly dysregulated in MPNs (26). This study is the first to

integrate bulk RNA and single-cell RNA data and to apply

bioinformatics and machine learning methods to discover potential

biomarkers for PV-associated AS and to explore the association

between inflammation and immunity and PV-associated AS.

Our study identified 52 CGs from PV and AS datasets.

Subsequently, we constructed a PPI network of CGs using the

String database. Next, ten CGs were chosen using MCOD.

Finally, three core CGs (CCR1, CXCL5, and MMP9) were

obtained by combining the results of the LASSO regression and

RF algorithms. CCR1 and MMP9 were finally identified via

external data sets as core potential biomarkers for PV-associated

AS. We constructed the diagnosis model based on these two

potential biomarkers. CCR1 and MMP9 are both important

genes involved in inflammation and immunoreaction and have a

close connection with PV and AS. CCR1 is an important

leukocyte chemokine receptor for several ligands, including CCL3

and MIP-1α. A large increase in serum CCL3 expression has

been reported in patients with PV, and a significant increase in

CCR1 expression has been described in a study of the neutrophil

transcriptome of these patients (27). CCR1 is expressed in AS-

related cell types, such as T lymphocytes and monocytes/

macrophages, and mediates CCL5-dependent inhibition and

transepithelial infiltration (28, 29). MMP9 is a zinc-dependent

endopeptidase that is crucial for leukocyte motility and local

proteolysis of the extracellular matrix. Using an animal model,

bone marrow-derived JAK2-V617F mutant mice macrophages

had a noticeably higher level of MMP9 mRNA expression (30).

According to a different clinical study, the polymorphism of the
frontiersin.org
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FIGURE 9

Analysis of single-cell RNA datasets. (A) Gene counts per cell (nFeature_RNA), the number of unique molecular identifiers (UMIs) per cell
(nCount_RNA), and the proportion of mitochondrial genes per cell (percent.mt) of the data before the quality control. (B) nFeature_RNA,
nCount_RNA, and the percent.mt of the data after quality control. UMAP plot of the data (C) before and (D) after normalization. (E) Cells were
divided into 19 separate clusters. (F) Cells were clustered into 9 cell types. (G) Heatmap showing the expressions of the top 5 marker genes
among 9 cell types. (H) Feature plots showing the distribution of potential biomarkers in various cell types.
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MMP9 gene was associated with PV and may have a significant

role in the increase in the risk of thrombosis (31). MMP-9

controls cholesterol metabolism via the MMP-9-plasma secreted

phospholipase A2 axis, and MMP expression is markedly up-

regulated in regions where macrophages are concentrated

(around the lipid-rich core) (32, 33). The MMP9 of macrophages

is crucial for the formation of susceptible regions of the AS plaque.

According to our GO enrichment analysis of 52 CGs, immune

cell migration and chemotaxis were the primary biological

processes of PV and AS. According to the KEGG enrichment

analysis, CGs were enriched primarily in Toll-like receptors,

NOD-like receptors, and chemokine signaling pathways. With

single-gene GSEA, potential biomarkers included Toll-like

receptor signaling pathways, NOD-like receptor signaling

pathways, and chemokine signaling pathways in AS.

Toll-like receptors (TLRS) are membrane-bound receptors that

generate innate immune responses, and aberrant activation of

TLR3 is common in inflammatory or autoimmune diseases. Studies

have shown that TLR polymorphisms may be protective against

PV disease. Furthermore, the JAK2-Akt signaling pathway

contributes to the pathophysiology of AS and is involved in the

activation of monocyte chemoattractant protein-1 (MCP-1), which

is necessary for monocyte migration into blood arteries and is
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induced by TLR (34, 35). TLR3 up-regulates P-selectin and

vascular cell adhesion molecule-1 (VCAM-1) in injured endothelial

cells, facilitating leukocyte adherence (mostly lymphocytes and

monocytes) in blood and endothelial cell infiltration (36). TLR may

also exacerbate the inflammatory state of thrombosis by stimulating

the PLT and monocyte-macrophage system (37–39). NOD-like

receptors (NLRs) are a specific family of pattern recognition

receptors that are responsible for the generation of innate immune

responses and play a key role in the recognition of intracellular

ligands. NLRP3 is highly expressed in bone marrow cells from

MPN patients, and its increased expression is associated with the

JAK2V617F mutation, WBC counts and splenomegaly (40). In

advanced AS, the NLRP3 inflammasome can induce premature

macrophage death and massive lipid release, thus increasing plaque

susceptibility (41). Various chemokines can activate the JAK/STAT,

Ras, ERK, and Akt pathways through their receptors to induce

directional chemotaxis of immune cells. Chemokine levels (CCL2,

CCL5, CXCL8, CXCL12, CXCL10) were elevated in the bone

marrow of patients with PV, indicating a highly inflammatory

environment (42). Chemokines and their receptors may play a key

role in the pathogenesis of AS. Chemokine receptors such as

CCR1, CCR5, and CXCR2 can promote plaque development by

recruiting monocytes into the blood. Elevated CXCL10
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concentration is associated with an increased risk of vulnerable

plaque and atherothrombosis (43).

Additionally, our study observed a strong connection between

potential biomarkers and the infiltration of M0 macrophages in AS.

Potential biomarkers were predominantly expressed in

macrophages in AS plaque tissue, according to single-cell

annotation and tissue marker gene analysis. This suggests that

one of the primary mechanisms of PV-associated AS may be

macrophage infiltration. Peripheral blood from PV patients

contains considerably higher levels of inflammatory CD14 and

CD16 monocytes/macrophages in various studies (44, 45).

Macrophages are crucial at every stage of AS. During the

inflammatory phase of AS, injured endothelium cells emit

chemokines that attract circulating monocytes, which then

undergo macrophage differentiation in response to growth factors

and pro-inflammatory cytokines. These macrophages can quickly

identify oxidized LDL, phagocytose it, and transform into foam

cells, which form the first atherosclerotic lesions (46). The late

stage of AS is characterized by a progressive increase in M1

macrophage counts and an increase in the release of pro-

inflammatory factors, which increases the risk of plaque rupture

(47). Furthermore, M1 macrophages have the potential to release

MMPS, including MMP2 and MMP9, which cause the

extracellular matrix of plaques to degrade and eventually rupture,

increasing the risk of acute cardiovascular events (48).

However, our study has several limitations that should be

addressed. Firstly, our study was constructed using retrospective

data from public databases. Some bias may occur due to the

limited sample size and multiple data analyses. Therefore, data

from real-world studies are needed to verify the model’s clinical

applicability. In the future, we plan to collect blood samples from

patients with initial onset of disease to confirm the expression

and probable function of CGs.
5 Conclusions

This study identified two CGs (CCR1 and MMP9) as potential

biomarkers for PV-related AS and established a diagnostic model

based on these genes. Our results showed that Toll-like receptor

signaling, NOD-like receptor signaling, and chemokine signaling

may be closely associated connection with PV-related AS.

Macrophage infiltration may be one of the primary mechanisms

underlying PV-related AS. This study describes two potential

markers for assessing the risk of developing AS in patients with
Frontiers in Cardiovascular Medicine 11
PV and provides a new perspective on the common molecular

mechanisms underlying PV and AS, which may provide clues for

designing experimental studies, determining diagnosis, and

widening treatment options for PV-related AS.
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