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Diabetic heart disease remains the leading cause of death in individuals with
type-2 diabetes mellitus (T2DM). Both insulin resistance and metabolic
derangement, hallmark features of T2DM, develop early and progressively impair
cardiovascular function. These factors result in altered cardiac metabolism
and energetics, as well as coronary vascular dysfunction, among other
consequences. Therefore, gaining a deeper understanding of the mechanisms
underlying the pathophysiology of diabetic heart disease is crucial for developing
novel therapies for T2DM-associated cardiovascular disease. Cardiomyocytes are
equipped with the cholinergic machinery, known as the non-neuronal cardiac
cholinergic system (NNCCS), for synthesizing and secreting acetylcholine (ACh)
as well as possessing muscarinic ACh receptor for ACh binding and initiating
signaling cascade. ACh from cardiomyocytes regulates glucose metabolism and
energetics, endothelial function, and among others, in an auto/paracrine
manner. Presently, there is only one preclinical animal model – diabetic db/db
mice with cardiac-specific overexpression of choline transferase (Chat) gene - to
study the effect of activated NNCCS in the diabetic heart. In this mini-review, we
discuss the physiological role of NNCCS, the connection between NNCCS
activation and cardiovascular function in T2DM and summarize the current
knowledge of S-Nitroso-NPivaloyl-D-Penicillamine (SNPiP), a novel inducer of
NNCCS, as a potential therapeutic strategy to modulate NNCCS activity for
diabetic heart disease.
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1 Introduction

Type-2 diabetes mellitus (T2DM), a chronic metabolic disorder characterized by

hyperglycemia and insulin resistance, continues to grow in incidence and prevalence

worldwide (1). Diabetic heart disease, referred to a collection of cardiovascular disease

such as coronary artery disease, myocardial infarction, diabetic cardiomyopathy, and

heart failure, is a major cause of mortality among individuals with T2DM [reviewed in

(2)]. While the pathophysiology of diabetic heart disease is complex and yet to be

clearly defined, insulin resistance and metabolic derangements contribute significantly

[reviewed in (3)]. Both factors impair cardiac glucose metabolism (4–7) and coronary

perfusion (8–11), as well as promotes myocardial fibrosis (12–14), contributing to

cardiovascular dysfunction in diabetic individuals.
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The parasympathetic nervous system exerts negative

chronotropic, inotropic, and dromotropic effects on the heart,

primarily mediated through acetylcholine (ACh) produced by

cholinergic neurons [reviewed in (15)]. Subsequent studies have

revealed that cardiomyocytes possess a cholinergic machinery

capable of synthesizing and secreting ACh. This machinery,

referred to as the non-neuronal cardiac cholinergic system

(NNCCS), is crucial for auto/paracrine regulation of the heart

[reviewed in (16)]. The presence of NNCCS is considered

complementary to the parasympathetic nervous system,

given the sparse cholinergic innervation in the ventricular

myocardium (17–21). In the heart, other non-neuronal cardiac

cells such as endothelial cells similarly possess this cholinergic

machinery (22, 23), while smooth muscle cells, pericytes and

fibroblasts have not been characterized or shown to possess

cholinergic machinery (24). The primary source of non-

neuronal ACh in the heart is likely cardiomyocytes, given their

prevalence among cardiac cells (25).

NNCCS comprises key components such as the ACh-

synthesizing enzyme (choline acetyltransferase, ChAT), vesicular

ACh transporter (VAChT), choline transporter 1 (CHT1) and

ACh-degrading enzyme (acetylcholinesterase, AChE). Furthermore,

cardiomyocytes express multiple isoforms of muscarinic ACh

receptor (MAChR), with the type-2 isoform (M2AChR) being

predominantly expressed (26), enabling ACh binding and

initiation of signaling transduction. The current understanding of

the role of NNCCS in the heart includes the regulation of glucose

metabolism, induction of angiogenesis, regulation of heart rate,

anti-hypertrophy, and immunomodulation (27–33).

Dysregulation of NNCCS has previously been demonstrated in

the left ventricle of patients with non-ischemic dilated

cardiomyopathy (33) and diabetic heart disease (34). In this

mini-review, we specially focus on the role of NNCCS in the

diabetic heart in T2DM. We first discuss the physiological role of

NNCCS and evidence of NNCCS dysregulation in the diabetic

heart, followed by a discussion about the effect of activated

NNCCS on the cardiac and vascular function demonstrated in

diabetic db/db mice with cardiac-specific overexpression of Chat

gene. Lastly, we discuss the therapeutic potential of S-Nitroso-

NPivaloyl-D-Penicillamine (SNPiP), a novel nitric oxide donor

and an inducer of NNCCS, to modulate NNCCS activity for

treating diabetic heart.
2 Role of NNCCS in regulating normal
physiology of the heart

The NNCCS maintains efficient energy metabolism in

cardiomyocytes by promoting glucose-dependent metabolism and

suppressing mitochondrial oxygen consumption and activity (28,

29, 35–37). Previous studies have shown that this energy regulatory

role is mediated by the pro-survival phosphatidylinositol-3-kinase

(PI3K)/protein kinase B (Akt)/hypoxia-inducible factor 1 (HIF)-α

non-hypoxic signaling cascade induced by ACh, which results in

an upregulation of glucose transporter (GLUT)-4 to enhance

glucose uptake (28, 29, 38). GLUT-4 is noted as the predominantly
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expressed isoform of GLUT in the adult heart [reviewed in (39)].

Although cardiomyocytes primarily utilize free fatty acid for energy

production, glucose is more energy-efficient, requiring few oxygen

molecules for oxidation (phosphate/oxygen ratio = 2.58) compared

to free fatty acid (phosphate/oxygen ratio = 2.33) [reviewed in (40)].

Furthermore, NNCCS regulates angiogenesis and maintains

coronary vasculature in the heart. This role is similarly mediated

by HIF-1α non-hypoxic signaling, leading to the upregulation of

pro-angiogenic vascular endothelial growth factor (VEGF) in

cardiomyocytes (27–29, 38). The secreted VEGF induces an

angiogenic response in endothelial cells in a paracrine manner.

Additionally, NNCCS plays a crucial physiological role in

modulating heart rate and contraction force by counteracting

sympathetic stimulation (31, 33). While the underlying

mechanism remains to be clearly elucidated, it is proposed that

ACh released from cholinergic neurons (parasympathetic nervous

system) stimulates ACh synthesis in cardiomyocytes through a

positive feedback mechanism (35). The cardiac-derived ACh then

acts on neighboring cardiomyocytes and other cardiac cells such

as sinoatrial and atrioventricular node cells, facilitating the

propagation of the neuronal cholinergic effect despite the sparse

cholinergic innervation in the ventricular myocardium. Moreover,

NNCCS is known to counteract sympathetic-induced cardiac

hypertrophy and remodeling in response to stress (31–33, 41).

Multiple studies have demonstrated that NNCCS, similar to

vagal nerve stimulation (42), helps maintain gap junctions by

regulating the expression and localization of connexin 43 and

β-catenin in cardiomyocytes (28, 37). Functional gap junctions

are crucial for cell-cell communication and, most importantly,

for propagation of action potential in the heart (43). This

suggests that NNCCS is essential for maintaining the

electrophysiological function of the heart. However, the precise

mechanism by which NNCCS regulates connexin 43 and

β-catenin has not yet been demonstrated.

The immunomodulatory role of NNCCS is a newly discovered

physiological function. NNCCS decreases the expression of pro-

inflammatory mediators, including c-c motif chemokine ligand

(CCL)-2 and -7, thereby preventing the influx of

proinflammatory c-c motif chemokine receptor (CCR)-2-positive

monocytes to the site of injury in the heart (32). This suggests

that cardiomyocytes, at least in part, modulates local

inflammatory responses through NNCCS and mediates paracrine

interactions with inflammatory cells. However, the precise

mechanisms by which NNCCS regulates expression of pro-

inflammatory mediators remain unclear and warrant further

investigation. A schematic illustration of the role of NNCCS in

regulating normal physiology of heart is shown in Figure 1.
3 NNCCS in T2DM

A time-course study using diabetic db/db mice of different ages

was conducted to assess the putative role of NNCCS during disease

progression (34). In early stage of T2DM, characterized by

hyperglycemia and insulin resistance in db/db mice (12–16 weeks

old) (44), cardiac ACh levels (i.e., measured in the left
frontiersin.org
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FIGURE 1

The physiological role of NNCCS in the healthy heart. Acetylcholine (ACh) released from cardiomyocytes initiates pro-survival PI3K/Akt/HIF-1α non-
hypoxic signalling in an auto/paracrine manner, inducing the expression of glucose transporter (GLUT)-4 and the pro-angiogenic vascular endothelial
growth factor (VEGF)-A. GLUT-4 promotes glucose uptake/utilization, leading to efficient energy metabolism, while VEGF-A induces angiogenic
activity in endothelial cells. ACh from cardiomyocytes helps amplify neuronal cholinergic effects to modulate heart rate and contraction force, as
well as to counteract sympathetic-induced cardiac hypertrophy and remodelling. ACh from cardiomyocytes maintains functional gap junctions by
regulating the expression and localization of connexin 43 and β-catenin. Additionally, it also modulates the local inflammatory response by
regulating the expression of pro-inflammatory mediators.
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ventricular lysate) remained unchanged despite decreased ChAT

protein expression in the diabetic heart. In established (20–24

weeks old) and progressed stages of T2DM (28–32 weeks old)

with deteriorating cardiovascular function (11, 45), cardiac ACh

levels decreased along with reduced ChAT protein expression in

the diabetic heart. This suggests that NNCCS dysregulation may

play a role in the pathogenesis of cardiovascular dysfunction in

diabetic hearts.

Interestingly, additional evidence suggested a compensatory

effect in response to reduced cardiac ACh levels, as demonstrated

by decreased AChE protein expression and increased CHT1

protein expression in the diabetic heart, specifically in progressed

stage of T2DM (34). M2AChR protein expression was

consistently reduced in the diabetic heart across early,

established, and progressed stages of T2DM, indicating likely

diminished NNCCS-mediated signaling.

Moreover, reduced cardiac ACh levels were accompanied by

decreased cardiac glucose contents and GLUT-4 protein

expression in the heart of db/db mice in established and

progressed stages (34). This suggests that changes in cardiac ACh

levels and/or NNCCS activity is associated with impaired glucose

metabolism and may contribute to the development of

cardiovascular dysfunction in T2DM. Besides these changes in

db/db mice, reduced ChAT and CHT1 protein expressions were

observed in the left ventricle biopsies from patients with T2DM

(34), underscoring the putative clinical significance of NNCCS in

T2DM-related cardiovascular disease.
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While the mechanism behind NNCCS dysregulation in T2DM

remains to be fully elucidated, in vitro studies showed that insulin

upregulates ChAT expression in cultured human cardiomyocytes.

Interestingly, this effect was abolished in cardiomyocytes exposed

to palmitate to induce insulin-resistance [data published in

supplemental results by Saw et al. (34)]. This study was the first

to demonstrate insulin’s effect on ChAT expression in

cardiomyocytes, as was previously known only in neuronal cells

(46–48). Further, these findings also suggest a potential link

between hyperlipidemia and NNCCS dysregulation in T2DM, as

hyperlipidemia can lead to excessive intracellular lipid

accumulation and subsequently lipotoxicity, which is detrimental

to cardiovascular function (49).
4 NNCCS and cardiac function in
T2DM

In T2DM, cardiac dysfunction often remains asymptomatic

and undetected in the early stage, marked by left ventricular

(LV) hypertrophy and diastolic dysfunction [review in (3)]. As

the disease progresses, cardiac dysfunction deteriorates further,

leading to LV dilation and systolic dysfunction. This progression

is accompanied by significant alterations in cardiac energy

metabolism (4–7) and accelerated myocardial fibrosis (12–14) in

diabetic hearts, contributing to cardiac dysfunction. Activation of

NNCCS in diabetic hearts, as demonstrated in unique diabetic
frontiersin.org
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FIGURE 2

Auto/paracrine function of NNCCS in the diabetic heart. Reduced NNCCS activity is associated with diabetes mellitus-induced cardiovascular
dysfunction. NNCCS activity in diabetic heart can be induced through gene therapy (cardiac-specific overexpression of the Chat gene) or
pharmacological agents such as SNPiP and donepezil. Activated NNCCS leads to elevated acetylcholine (ACh) levels in diabetic cardiomyocytes,
inducing the expression of glucose transporter (GLUT)-4, pro-angiogenic vascular endothelial growth factor (VEGF)-A, while diminishing the
expression of pro-fibrotic transforming growth factor (TGF)-β1. In diabetic cardiomyocytes with activated NNCCS, GLUT-4 promotes glucose
uptake/utilization, improving cardiac efficiency. Diabetic cardiomyocytes mediate paracrine signalling in endothelial cells through VEGF-A and ACh
to enhance endothelial function and promote angiogenesis of coronary vessels and capillaries. Similarly, diabetic cardiomyocytes mediate
paracrine signalling through ACh to attenuate the fibrotic activity of cardiac fibroblasts. Reduced TGF-β1 levels also diminish fibrotic activity in the
diabetic heart.
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db/db mice with cardiac-specific overexpression of Chat gene (db/

db-ChAT-tg mice), has been shown to improve cardiac function by

mitigating alterations in cardiac energy metabolism and myocardial

fibrosis (Figure 2) (34). This improvement is associated with

augmented cardiac ACh levels as well as activation of ACh-mediated

pro-survival PI3K/Akt/HIF-α non-hypoxic signaling cascade

through MAChR in the heart of db/db-ChAT-tg mice (28, 29, 38).

Insulin resistance and metabolic derangement lead to a shift in

substrate supply and utilization in cardiomyocytes, thereby altering

cardiac energy metabolism in diabetic conditions. Increased fatty

acid and decreased glucose metabolism were previously

described, which may predispose the heart to the development of

diastolic and systolic dysfunction (4–7). These metabolic changes

occur early in T2DM (50), suggesting that early rectification of

cardiac metabolism may prevent the development of diabetes-

associated cardiac dysfunction (51, 52). In the heart of db/db-

ChAT-tg mice and cultured human cardiomyocytes with

overexpression of CHAT gene, activated NNCCS increased

glucose contents, GLUT-4 protein expression and membrane

translocation (34). This indicates a shift towards glucose

utilization in diabetic cardiomyocytes, leading to greater cardiac

efficiency (i.e., cardiac work/O2 consumed) and improved energy

status (53). Upregulation of GLUT-4 protein expression is

mediated by HIF1 transcription factor, as PI3K/Akt signaling

prevents degradation of HIF-α, allowing it to dimerize with HIF-

β to form HIF1 under normoxic conditions.

Accelerated myocardial fibrosis increases ventricular wall

stiffness, contributing to diastolic dysfunction in the diabetic
Frontiers in Cardiovascular Medicine 04
heart (12–14). Cardiac fibroblasts are the key extracellular matrix

(ECM)-producing cells responsible for myocardial fibrosis (54).

Their fibrotic activity can be activated by neighboring cells

including cardiomyocytes, immune cells, endothelial cells, and

others, through fibrogenic growth factors in the heart [reviewed

in (55, 56)]. Activated NNCCS led to a reduction in pro-fibrotic

transforming growth factor (TGF)-β1 protein expression and

fibrotic area in heart of db/db-ChAT-tg mice (34). While various

cell types can produce TGF-β1 (57), cardiomyocytes are likely

the major source under pathological condition (58). However,

ACh may also directly act on cardiac fibroblasts since these cells

express MAChR and nicotinic ACh receptor (NAChR) (59), and

a previous study showed that activation of M3AChR in cardiac

fibroblasts led to anti-fibrotic effect through microRNA-29b/beta-

site app cleaving enzyme 1 pathway (60).
5 NNCCS and vascular function
in T2DM

In diabetic hearts, impaired endothelium-dependent

vasodilation and capillary rarefaction disrupt coronary

microcirculation, limiting the delivery of oxygen and nutrients to

cardiomyocytes (8–11). Cardiac endothelial cells regulate vascular

tone by producing the potent vasodilator nitric oxide (NO) in

response to ACh binding on MAChR and NAChR (23, 61).

Their proliferative activity can be mediated by pro-angiogenic
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factors including VEGF-A, which is essential for angiogenesis

[reviewed in (62)].

Activation of NNCCS resulted in preserved endothelial

function as well as an increase in the number of second order

coronary vessels and capillary density, along with a concurrent

increase in VEGF-A protein expression in the heart of db/db-

ChAT-tg mice (Figure 2) (34). Elevated ACh levels from

cardiomyocytes stimulate the synthesis of vasoactive factors in

endothelial cells, including NO, that trigger vasodilation (23, 61),

and also induce endothelial cell migration, a key event in

angiogenesis, through NAChR (63). Upregulation of VEGF-A is

induced by HIF1 transcription factor through ACh-mediated

PI3K/Akt signalling cascade in cardiomyocytes. Notably, VEGF-

A serves a dual role in angiogenesis induction and enhanced NO

production by upregulating endothelial NO synthase (eNOS)

expression in endothelial cells (64, 65). Moreover, since

endothelial cells also possess cholinergic machinery like

cardiomyocytes (22, 23), it is plausible that ACh from

cardiomyocytes further stimulate endothelial cells to synthesize

ACh in a positive feedback mechanism (35), thereby contributing

to improved vascular function in the diabetic heart.
6 Targeting NNCCS as a possible
therapy for diabetic heart disease

Despite emerging evidence demonstrating the beneficial

effects of ACh against cardiovascular disease, there is currently

no clinical therapy available to deliver or augment cardiac ACh

levels in the heart. This makes NNCCS as a potential

therapeutic target to achieve this goal. Possible approaches, such

as vagal nerve stimulation, stem cell therapy, AChE inhibitors,

gene therapy and microRNA therapy, have been summarized

previously [reviewed in (16)].

Indirect evidence linking NNCCS with cardioprotection in

clinical settings was previously demonstrated (66–69). These

studies reported that patients with Alzheimer’s disease treated

with AChE inhibitors, including donepezil, experienced an

improved survival rate, prognosis, and a reduced risk in

cardiovascular events. Donepezil, an AChE inhibitor, was

demonstrated to augment ACh synthesis in cultured primary rat

cardiomyocytes (35), suggesting that donepezil can play a role in

inducing NNCCS activation. Based on these basic and clinical

results, donepezil may protect the heart from cardiovascular

diseases, partly through NNCCS activation.

S-Nitroso-NPivaloyl-D-Penicillamine (SNPiP), a novel

NNCCS inducer and also a NO donor (patent number is

JP7338877 and available from FUJIFILM Wako Chemicals

Corporation as product code 197-19151), has previously been

shown to induce NNCCS activity in cellular models and mice

(70). SNPiP activated NNCCS through NO/cyclic guanosine

monophosphate (cGMP) signalling, leading to increased ChAT

protein expression and cardiac ACh levels in the heart (70, 71).

This resulted in enhanced cardiac output and diastolic function

in healthy mice. A recent transcriptome analysis revealed that

SNIPiP also activated various signalling pathways, namely
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hypoxic response pathway, cGMP pathway, and oxytocin

signalling (71), and further, upregulated atrial natriuretic peptide

and modulated calcium handling, known to have a

cardioprotective effect [reviewed in (72)].

In diabetic db/db mice, SNPiP administration acutely improved

diastolic and systolic function with no significant effect in heart rate

after a single dose injection for five consecutive days (73). This

indicates that SNPiP does not work like inotropic agents but

directly improves cardiac relaxation and contraction through the

Frank-Starling mechanism (71). However, thorough investigations

are needed to evaluate the long-term safety and efficacy of SNPiP.

While SNPiP has only been tested in db/db mice, it could

potentially protect the heart against other cardiovascular diseases

such as myocardial infarction, which is linked to decreased energy

metabolism (28, 74), arrhythmia that is linked to electrical

remodelling due to decreased connexin 43 (42, 75), thereby

potentially slowing the progression of heart failure.
7 Conclusions

Activation of NNCCS offers significant advantages for the

diabetic heart. It facilitates auto/paracrine communication among

cardiomyocytes, cardiac fibroblasts, and endothelial cells within

the diabetic heart, thereby improving cardiac metabolism,

mitigating myocardial fibrosis, and preventing vascular

rarefaction and endothelial dysfunction (Figure 1). Further

research is warranted to delve deeper into these mechanisms and

explore their potential therapeutic applications.
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