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Development and evaluation
of a machine learning model for
post-surgical acute kidney injury
in active infective endocarditis
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1Department of Cardiac Surgery, Peking Union Medical College Hospital, Beijing, China, 2Department of
Nephrology, Peking Union Medical College Hospital, Beijing, China, 3Chief of Cardiac Surgery, Peking
Union Medical College Hospital, Beijing, China
Introduction: Acute kidney injury (AKI) is notably prevalent after cardiac surgery
for patients with active infective endocarditis. This study aims to create a
machine learning model to predict AKI in this high-risk group, improving upon
existing models by focusing specifically on endocarditis-related surgeries.
Methods: We analyzed medical records from 527 patients who underwent
cardiac surgery for active infective endocarditis from January 2012 to
December 2023. Feature selection was performed using LASSO regression.
These features informed the development of machine learning models,
including logistic regression, linear and radial basis function support vector
machines, XGBoost, decision trees, and random forests. The optimal model
was selected based on ROC curve AUC. Model performance was assessed
through discrimination, calibration, and clinical utility, with explanations
provided by SHAP values.
Results: Post-surgical AKI was observed in 261 patients (49.53%). LASSO
regression identified 25 significant features for the models. Among the six
algorithms tested, the radial basis function support vector machine (RBF-SVM)
had the highest AUC at 0.771. The 15 most critical features were valve
replacement, pre-operative hypertension, large vegetations, NYHA class,
alcoholism, age, post-operative low cardiac output syndrome, TyG index, pre-
operative creatinine clearance, cardiopulmonary bypass duration, intra-
operative red blood cell transfusion, intra-operative urine output, pre-operative
hemoglobin levels, and timing of surgery.
Conclusion: Compared to standard cardiac surgery, AKI occursmore frequently and
with a more complex etiology in surgeries for active infective endocarditis. Machine
learning models enable early prediction of post-surgical AKI, facilitating targeted
perioperative optimization and risk stratification in this distinct patient group.

KEYWORDS

active infective endocarditis, surgery, acute kidney injury, machine learning, clinical
prediction model
Abbreviations

AIE, Active infective endocarditis; AKI, Acute kidney injury; CI, Confidence interval; CSA-AKI, Cardiac
surgery associated—acute kidney injury; DCA, Decision curve analysis; DT, Decision tree; IE, Infective
endocarditis; IQR, Interquartile ranges; LASSO, Least absolute shrinkage and selection operator; LCOS,
Low cardiac output syndrome; LR, Logistic regression; L-SVM, Linear support vector machine; RBF-
SVM, Radial basis function support vector machine; RF, Random forest; SD, Standard deviations; SHAP,
Shapley additive explanations; TyG, Triglyceride-glucose index.
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GRAPHICAL ABSTRACT
Introduction

Acute kidney injury (AKI) is a common complication of

cardiac surgery, with an incidence rate between 5% and 42%.

Cardiac surgery-associated AKI (CSA-AKI) is linked to

increased mortality and higher medical costs (1). Several models

have been reported to predict the risk of CSA-AKI, including

the Continuous Improvement in Cardiac Surgery Study score

(2), the Cleveland Clinic Score (3), and the Mehta score (4).

These models were developed from studies with sample sizes

ranging from 30,000–50,000 patients and utilized the logistic

regression algorithm to predict the risk of renal failure

requiring dialysis after routine cardiac surgeries. In 2016, Birnie

et al. developed a logistic regression model to predict AKI, as

defined by KDIGO criteria, in 30,000 patients undergoing

routine cardiac surgery, achieving an AUC of 0.74 (CI 0.72–

0.76) (5). Recently in 2021, Jahan et al. generated machine

learning models using four different algorithms to predict CSA-

AKI and achieved AUCs outperforming the Cleveland Clinic

score (6). However, these models, generated from data on

patients undergoing CABG and/or valve surgeries, did not

specifically consider patients with active infective endocarditis,

which was not included as a feature in any previous models.

Notably, the incidence of AKI in patients with active infective

endocarditis (AIE-CSA-AKI) was reported to be as high as
Frontiers in Cardiovascular Medicine 02
59%–69%, approximately two to three times higher than that of

CSA-AKI, and was associated with greater mortality rates,

morbidity, and healthcare expenses (7, 8). The etiology of AIE-

CSA-AKI is more complex, making it challenging to predict

and resulting in worse outcomes. This underscores the necessity

of developing and validating a predictive model specifically

designed for AIE-CSA-AKI.
Population and data processing

Population

Between January 2012 and December 2023, a total of

544 patients underwent first-time cardiac surgery for active

infective endocarditis at our institution, reoperation patients

for prosthetic valve infective endocarditis (PVIE) were not

included. Of these, 17 patients were excluded due to pre-

operative renal failure requiring dialysis, leaving 527 patients

eligible for inclusion in the study database. This single-center,

retrospective, observational cohort study received approval

from the Institutional Review Board of Peking Union

Medical College Hospital (approval number: I-22PJ1016). All

participants provided informed consent and signed the

consent form.
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Data collection and preprocessing

Medical records were reviewed to collect 39 features for the

database. These features included general information (sex, age,

BMI, co-morbidities, alcohol and tobacco history), pre-operative

assays (serum creatinine, hemoglobin, albumin, blood cell counts,

fasting glucose, HDL, TG, CRP, PCT, and calculated indexes), pre-

operative clinical characteristics (NYHA class, infective shock,

vegetation size, peripheral embolisms, CNS complications), intra-

operative data (left heart endocarditis, valve replacement, red

blood cell transfusion, crystalloid infusion, urine volume,

cardiopulmonary bypass duration), and major post-operative

complications (LCOS, infective shock, re-exploration, atrial

fibrillation). Detailed definitions, units, and data types for each

feature are provided in Supplementary Table S1. For example, left

heart endocarditis is defined as infective endocarditis affecting any

left heart structure, large vegetation as any vegetation larger than

1 cm observed in pre-operative TTE, and post-operative LCOS as

a cardiac index of less than 2.2 L/min/m2 measured by PiCCO. In

addition, valve replacement refers to a situation where the defect

in the valve tissue, after debridement, is so extensive that one or

more valves are deemed unrepairable and must be replaced. This

may also occur following an unsuccessful attempt at repair. The

overall missing data rate among the 527 observations was 0.11%,

with missing values imputed using the average or median values

of the variables. Data processing, statistical analyses, and the

development and validation of the machine learning model were

conducted using R software (version 4.3.2).
Definition of acute kidney injury

The development of postoperative AKI is defined according to

the KDIGO criteria (9) within the first 7 days following surgery. It

is characterized by an increase in serum creatinine by at least 50%

within 7 days or an elevation of at least 0.3 mg/dl (equivalent to

approximately 26.5 µmol/L) within 48 h, compared to the

baseline serum creatinine level measured preoperatively.
FIGURE 1

(A) Coefficient path of the LASSO regression. (B) Cross-validation plot of the
value minimizing the mean squared error after 10-fold cross-validation.
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Statistical analysis

Feature selection

A positive outcome was observed in 261 patients, suggesting

that the number of features for model development should not

exceed 26 to avoid overfitting. Consequently, we employed the

Least Absolute Shrinkage and Selection Operator (LASSO)

regression analysis for feature selection, as illustrated in Figure 1.

After conducting 10-fold cross-validation, 25 features were

retained at the lambda value that minimized the mean squared

error. These features were deemed significant and utilized in the

development of our machine learning models.
Description and comparison

The dataset contained 527 observations, 25 features, and one

outcome. Features were firstly compared between patients with or

without CSA-AKI. Binary features were described in terms of

percentages and assessed using the Chi-square test. Numeric

features adhering to a normal distribution were summarized using

means and standard deviations (SD) and evaluated with the

independent t-test. Those not following a normal distribution were

summarized using medians and interquartile ranges (IQR) and

assessed with the Mann-Whitney U test. The dataset was then

divided into a training set and a validation set in a 7:3 ratio.

Descriptive statistics and intergroup comparisons were performed

to confirm statistical consistency across the split datasets.
Machine learning algorithms

We utilized different algorithms to develop predictive models

based on the training set data. Discrimination was assessed in

the validation set using the ROC curve. Six machine learning

algorithms were evaluated: logistic regression (LR), linear support

vector machine (L-SVM), radial basis function support vector
LASSO regression, showing that 25 features were retained at the lambda
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TABLE 1 Variables in AIE patients with or without CSA-AKI.

Features AKI group
(261)

N-AKI group
(266)

P
Value

Age 52 [19] 42 [22] 0.067

BMI 22.59 (3.67) 22.00 (3.94) 0.074

CBPtime 152.26 (59.75) 127.06 (42.70) <0.001

IntraOp_Crst 1,826.65 (593.37) 1,826.41 (475.32) 0.996

IntraOp_RBC 400 [600] 0 [400] 0.508
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machine (RBF-SVM), XGBoost, decision tree (DT), and random

forest (RF).

The XGBoost model was trained using the “xgboost” R

package, with the objective parameter set to “binary:logistic” and

the evaluation metric for validation data as “auc”. The number of

rounds was set to 100 with early stopping after 10 rounds.

Default package settings were applied for other parameters. The

DT model utilized the “rpart” R package, with the method set to

classification and parameters at default. For the RF model,

trained with the “randomForest” R package, “ntree” was set to

500. An automatic grid search determined the optimal

parameters, with “mtry” set to 3 and “nodesize” to 1.

Given the sensitivity of SVM algorithms to parameter scaling,

we performed maximum normalization on numeric and ordinal

categorical features before training the SVM models. After

normalization, the “e1071” R package was employed to train

both the L-SVM and RBF-SVM models. For the RBF-SVM

model, the “cost” parameter was set to 1 and “gamma” to 0.04.

For the L-SVM model, “cost” was set to 0.01. After developing

the models, we plotted the ROC curve for both training and

validation sets of all six models and compared their AUCs. The

model with the highest AUC and confidence interval (CI) was

selected for further evaluation.
IntraOp_Ur 757.36 (441.24) 913.82 (428.54) <0.001

LeftHeartIE 82.76% 83.83% 0.741

PostOp_Af 14.56% 9.77% 0.122

PostOp_IS 4.98% 0.75% 0.008

PostOp_LCOS 13.03% 3.00% <0.001

PostOp_Reexploration 5.36% 0.75% 0.005

PostOp_dialysis 10.34% 0.75% <0.001

PreOp_AISI 0.64 (1.24) 0.43 (0.56) 0.010

PreOp_Achl 28.35% 18.05% 0.005

PreOp_Alb 33.97 (6.27) 35.46 (5.90) 0.005

PreOp_CNSC 21.46% 24.44% 0.478

PreOp_CRP 46.13 (39.79) 37.57 (34.75) 0.009

PreOp_CTD 5.75% 2.26% 0.041

PreOp_Ccr 91.18 (39.81) 108.47 (33.20) <0.001

PreOp_DM 11.11% 6.39% 0.056

PreOp_Embolism 37.55% 37.97% 0.921
Evaluation and interpretation of the
best model

In addition to the ROC curve and AUC analysis, we employed

1,000 bootstrap samples to generate a bootstrap ROC curve,

calculating the mean AUC and its CI. A calibration curve was

plotted, and the Hosmer-Lemeshow test was performed to

evaluate the model’s calibration. The clinical utility was further

assessed using decision curve analysis (DCA). Shapley Additive

Explanations (SHAP) values for each feature in the validation set

were calculated to elucidate each feature’s contribution to the

prediction outcome.
PreOp_HTN 31.80% 15.79% <0.001

PreOp_Hgb 99.97 (20.02) 109.09 (19.84) <0.001

PreOp_IS 5.75% 0.75% 0.001

PreOp_KidneyEmbolism 1.92% 3.76% 0.312

PreOp_LHR 1.76 (1.14) 2.01 (1.21) 0.015

PreOp_LMR 3.47 (1.99) 4.08 (2.25) 0.001

PreOp_LargeVeg 61.30% 50% 0.009

PreOp_MHR 0.61 (0.48) 0.59 (0.45) 0.718

PreOp_NHR 8.70 (9.75) 8.06 (7.68) 0.398

PreOp_NLR 6.15 (6.54) 4.34 (3.53) <0.001

PreOp_NYHA 2 [1] 2 [0] 0.168

PreOp_SCr 89.94 (55.09) 72.02 (33.17) <0.001

PreOp_SII 1,229.61 (1,495.37) 968.70 (826.47) 0.014

PreOp_SIRI 3.21 (4.66) 2.03 (2.32) <0.001

PreOp_Smk 30.65% 25.56% 0.195

PreOp_TyG 8.55 (0.45) 8,40 (0.48) <0.001

Sex (Male) 72.41% 64.66% 0.055

SurgeryTiming 6 [5] 5 [4] 0.050

ValveReplacement 71.65% 54.14% <0.001

Detailed definitions, units, and data types for each feature are provided in Supplementary
Table S1.
Results

Overall population

Medical records of 527 patients, who underwent cardiac

surgery for active infective endocarditis at our institution, were

reviewed. Among them, the median age was 47 years, and 68.5%

were male. Hypertension was present in 23.7% of patients, while

23.1% had a history of alcoholism. Left heart infective

endocarditis (IE) was diagnosed in 83.3% of cases, and 55.6%

had large vegetations. The mean pre-operative TyG (triglyceride-

glucose index) was 8.48. Mean creatinine clearance was

99.91 ml/min. The most common New York Heart Association

(NYHA) class was class II (63.0%), followed by class III (21.8%).

Valve replacement was performed in 62.8% of patients. The

average cardiopulmonary bypass time was 139.5 min. Post-

operatively, 8.0% of patients developed low cardiac output
Frontiers in Cardiovascular Medicine 04
syndrome. AKI occurred in 261 patients (49.5%). Consequently,

the number of features for model development should not exceed

26 to avoid overfitting.
LASSO regression

As illustrated in Figure 1, we employed LASSO regression for

feature selection. Out of 39 features included from the database,

25 were retained based on the lambda value that minimized the

mean squared error, indicating their significance. All 25 features

were depicted and compared between AIE patients with or

without CSA-AKI (Table 1). These significant features were

subsequently utilized in the development of our machine
frontiersin.org
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TABLE 2 Consistency test between the training and validation sets.

Features Train set (368) Test set (159) P value
AKI 48.37% 52.20% 0.48

Age 48 [24] 47 [21.5] 0.08

BMI 22.21 (3.78) 22.49 (3.90) 0.44
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learning models, ensuring that the number of features was

appropriate for the sample size. Consequently, these 25

significant features were used to train machine learning models.

The coefficients of these significant features can be found in

Supplementary Table S2.
CPB time 140.95 (53.35) 136.27 (53.27) 0.36

IntraOp_Crst 1,838.06 (553.14) 1,799.84 (496.59) 0.43

IntraOp_RBC 400 [400] 0 [400] 0.78

IntraOp_Ur 858.54 (447.54) 784.91 (423.98) 0.07

LeftHeartIE 83.97% 81.76% 0.62

PostOp_Af 11.96% 12.58% 0.96

PostOp_IS 3.26% 1.89% 0.56

PostOp_LCOS 8.15% 7.55% 0.95

PostOp_Reexploration 2.45% 4.40% 0.35

PostOp_dialysis 6.52% 3.14% 0.18

PreOp_AISI 0.53 (0.80) 0.54 (1.27) 0.98

PreOp_Achl 23.10% 23.27% 1.00

PreOp_Alb 34.65 (5.88) 34.90 (6.68) 0.69

PreOp_CNSC 22.83% 23.27% 1.00

PreOp_CRP 40.74 (35.69) 44.30 (41.53) 0.35

PreOp_CTD 3.80% 4.40% 0.94

PreOp_Ccr 99.40 (36.24) 101.09 (40.66) 0.65

PreOp_DM 7.61% 11.23% 0.22

PreOp_Embolism 38.32% 36.48% 0.76

PreOp_HTN 22.28% 27.04% 0.29

PreOp_Hgb 104.95 (20.23) 103.70 (20.90) 0.53

PreOp_LargeVeg 56.25% 54.09% 0.72
Development of the models

The dataset, comprising 527 observations, 25 features, and 1

outcome, was split into training and validation sets at a 7:3 ratio.

The differences in these features between the two sets were tested

(Table 2), and none were found to be significant (P > 0.05),

indicating the consistency between the two sets.

Six machine learning algorithms were employed to develop

models using the training set. The sensitivity and specificity of

these six models are listed in Supplementary Table S3. The ROC

curves, AUC values, and CIs were compared, as shown in

Figure 2. The RBF-SVM algorithm exhibited the highest AUC

value and was, therefore, selected for further evaluation and

interpretation. The.rds file of the specific RBF-SVM model has

been uploaded as a supplementary file for further testing and

application in the R environment. For all 25 features in the

model, their definitions, units, and data types can be seen in

Supplementary Table S1.

PreOp_IS 2.99% 3.77% 0.84

PreOp_KidneyEmbolism 2.99% 2.52% 0.99

PreOp_LHR 1.91 (1.24) 1.82 (1.03) 0.46

PreOp_LMR 3.67 (1.86) 4.04 (2.67) 0.11

PreOp_MHR 0.61 (0.47) 0.58 (0.46) 0.61

PreOp_NHR 8.35 (8.71) 8.43 (8.91) 0.92

PreOp_NLR 5.15 (4.11) 5.44 (7.40) 0.64

PreOp_NYHA 2 [1] 2 [1] 0.29

PreOp_SCr 80.80 (45.72) 81.13 (47.46) 0.94

PreOp_SII 1,076.34 (949.80) 1,147.86 (1,668.26) 0.61

PreOp_SIRI 2.64 (3.47) 2.55 (4.26) 0.82

PreOp_Smk 29.08% 25.79% 0.51

PreOp_TyG 8.48 (0.47) 8.46 (0.49) 0.62

Sex(Male) 69.29% 66.67% 0.62

SurgeryTiming 6 [5] 6 [5] 0.45

ValveReplacement 63.86% 60.38% 0.51

Detailed definitions, units, and data types for each feature are provided in Supplementary
Table S1.
Model evaluation

To assess the model’s discrimination, we employed 1,000

bootstrap samples to generate a bootstrap ROC curve, which was

plotted alongside the apparent ROC curve (Figure 3A,B). The

apparent AUC was 0.771 (CI, 0.698–0.844), while the mean

bootstrap AUC was 0.772 (CI, 0.696–0.842), indicating that the

model’s discrimination is both good and robust. To evaluate the

model’s calibration, we used a calibration curve (Figure 3C,D).

Notably, the curve for the validation set slightly exceeded the

diagonal line, suggesting that the prediction probability was

marginally higher in the validation set. However, the Hosmer-

Lemeshow test yielded a P value of 0.21, the Brier score was

0.21, and the reliability index was 0.77, all of which suggest

satisfactory model calibration. The Decision Curve Analysis

(DCA) curve further indicated that the model possesses good

clinical practicability (Figure 3E,F).
Model interpretation

We calculated SHAP values for all features in the validation set.

Based on the mean SHAP values, we plotted a bar chart to

represent the top 15 important features (Figure 4). A SHAP

summary plot was also created to illustrate how specific features

influence the predicted outcome (Figure 5). Additionally,

univariate SHAP dependence plots were utilized to demonstrate

the cut-off value for each numeric or ordinal categorical feature

(Figure 6). The top 15 important features associated with
Frontiers in Cardiovascular Medicine 05
AIE-CSA-AKI include valve replacement, pre-operative

hypertension, large vegetations, NYHA class III or IV,

alcoholism, age > 46, post-operative LCOS, TyG index > 8.75,

Ccr < 90 ml/min, CPB time > 160 min, intra-operative red blood

cell transfusion > 300 ml, intra-operative urine output < 750 ml,

pre-operative hemoglobin < 97 g/L, a diagnosis-to-surgery gap of

over a week, and male sex.
Discussion

In this study, we trained and compared various machine

learning algorithms to predict AIE-CSA-AKI, using data from

527 patients with active infective endocarditis who underwent
frontiersin.org
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FIGURE 2

ROC curve for six machine learning algorithms developed from the (A) training and (B) validation sets. (C) Notably, the RBF-SVM model demonstrates
superior performance, as indicated by its highest AUC value, and is emphasized for further evaluation and interpretation.
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cardiac surgery at our institution. Among the six algorithms tested,

the RBF-SVM model demonstrated superior discrimination,

achieving the highest AUC of 0.771 (CI, 0.698–0.844), surpassing

both the Cleveland Clinic Score and the Mehta Score (10).

Analysis of the top 15 important features, based on mean SHAP

values, revealed that 10 are pre-operative, four are intra-

operative, and only one, LCOS, is post-operative. This

distribution suggests that, relying on this machine learning

model, it is possible to predict AIE-CSA-AKI pre-operatively

with reasonable accuracy. To our knowledge, this is the first

study to compare multiple machine learning algorithms and

develop a predictive model specifically tailored to AIE-CSA-AKI.

The advantage of our study lies in our institution’s extensive

database of patients with active infective endocarditis, which is

sufficiently large to train machine learning models incorporating a

significant number of features. Initially, 39 features were selected,

primarily based on previous studies focusing on CSA-AKI.

Additionally, we included features specifically associated with active

infective endocarditis, such as large vegetations, embolisms, and

infective shock, along with features indicative of the systemic

inflammatory level, such as CRP, SIRI, SII, etc. Most of these

features are pre-operative to avoid reverse causality, thereby

enhancing the interpretability and clinical applicability of the model.

The objective of feature selection was to ensure that the number of

included features did not exceed the limit imposed by the sample

size. In this process, the use of LASSO regression helped to prevent

the dilution of features with internal correlations (11).

RBF-SVM stood out among the six tested algorithms. By

employing the Radial Basis Function kernel, this algorithm
Frontiers in Cardiovascular Medicine 06
transforms the input space into a higher-dimensional space,

facilitating linear separation and proving especially effective for

non-linear data (12). However, its characteristic of non-linear

mapping, unlike logistic and tree models, renders the RBF-SVM

model more akin to a “black box” that is difficult to interpret

directly. To address this, we calculated SHAP values for all

features in the validation set to explain how feature values

impact the model’s predicted result. The feature value where

SHAP equals zero was used to represent the cut-off value for

numeric and ordinal categorical features.

Among the top 15 important features, “valve replacement” was

identified as the most significant. As defined in the “Methods”

section, “valve replacement” refers to the replacement of one or

more valves during surgery. In cases of AIE, we perform valve

replacement when the infected area has expanded, the defect

after debridement is large, and one or more valves are

unrepairable. This classification includes all complex surgical

approaches, such as double or triple valve replacement, aortic

root replacement, and commando operations. In conclusion,

“valve replacement” in this context indicates a more complex

surgical approach. Moreover, valve replacement often indicates a

more severe infective lesion, typically associated with a more

serious systemic infection. Thus, the feature “valve replacement”

not only reflects the complexity of the surgery but also the

severity of the systemic infection, justifying its status as the most

important feature.

Unlike CSA-AKI, the incidence of AIE-CSA-AKI is

additionally influenced by systemic infection and inflammatory

responses. This influence is evident in several key features of the
frontiersin.org
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FIGURE 3

Comprehensive Evaluation of the Predictive Model: (A,B) ROC curves for the training and validation sets. For the validation set, the apparent AUC is
0.771 (CI, 0.698–0.844), and the mean bootstrap AUC is 0.772 (CI, 0.696–0.842), indicating excellent and robust model discrimination. (C,D)
Calibration curves assess the model’s accuracy in probability predictions across different thresholds. The curve for the validation set is slightly
above the diagonal, suggesting marginally overestimated predictions. However, the model’s calibration is deemed satisfactory, supported by a
Hosmer-Lemeshow test P-value of 0.21, a Brier score of 0.21, and a reliability index of 0.77. (E,F) DCA evaluates the clinical practicability of the
model, demonstrating that the model provides substantial clinical benefit across a range of decision thresholds.

Liu et al. 10.3389/fcvm.2024.1425275
model, including large vegetations, pre-operative CRP, SII, and

SIRI. Notably, SII and SIRI are two recently identified

biomarkers derived from blood cell counts. Research has shown

that both SII and SIRI are effective in predicting adverse

outcomes in patients with cardiovascular diseases (13–15), as

well as in forecasting cardiovascular events and all-cause

mortality in the general population (16, 17).

Surgical timing was identified among the top 15 important

features of the model. The SHAP dependency plot showed that the

timing of surgery, when performed within 7 days of diagnosis,
Frontiers in Cardiovascular Medicine 07
altered the model’s prediction direction. Early surgery for AIE

patients turned out to be related to a lower prospective risk of

CSA-AKI. Previous CSA-AKI models, including the Cleveland

Clinic Score and the Simplified Renal Index (18), identified “non-

selective” and “emergent” surgeries as risk factors for CSA-AKI.

Our study appears to conclude the opposite. This contradiction is

directly related to the significant difference between active infective

endocarditis and non-infective structural cardiac diseases. In cases

of AIE, as an active infection, the earlier the infected tissue is

surgically removed, the lower the risk of post-operative mortality
frontiersin.org
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FIGURE 4

Bar chart displaying the top 15 important features influencing AIE-CSA-AKI, ranked by mean SHAP values. Features include valve replacement, pre-
operative hypertension, large vegetations, NYHA class, alcoholism, age, post-operative LCOS, TyG, Ccr, CPB time, intra-operative red blood cell
transfusion, intra-operative urine outputl, pre-operative hemoglobin, surgery timing, and sex.

FIGURE 5

SHAP summary plot depicting the influence of various features on the predicted outcome of AIE-CSA-AKI. Each point represents a SHAP value for a
feature and a specific observation, showing the distribution of the impacts each feature has on the model output. The color intensity indicates the
feature value (red-high, blue-low).
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FIGURE 6

Univariate SHAP dependence plots for numeric and ordinal categorical features. These plots illustrate the relationship between feature values and their
SHAP values. These plots reveal how specific feature values influence the model’s predictions, particularly identifying cut-off points where the impact
of a feature shifts from “protective” to “risk”. According to the plots, NYHA class III or IV (A), age > 46 (B), TyG index > 8.75 (C), Ccr < 90 ml/min (D), CPB
time > 160 min (E), intra-operative red blood cell transfusion > 300 ml (F), intra-operative urine output < 750 ml (G), pre-operative albumin < 97 g/L (H),
and diagnosisto-surgery gap over 7 days (I) were associated with high AKI risk.

Liu et al. 10.3389/fcvm.2024.1425275
or morbidity. This supports the recommendation that AIE should be

treated surgically as soon as possible.

Other important features in the model include NYHA class III

or IV, pre-operative hypertension, age over 46, post-operative

LCOS, pre-operative Ccr less than 90 ml/min, CPB time exceeding

160 min, intra-operative red blood cell transfusion greater than

300 ml, intra-operative urine output less than 750 ml, and pre-

operative hemoglobin below 97 g/L. These findings are largely

consistent with previously developed models for CSA-AKI (3–6).
Study limitations

This study has several limitations. Firstly, being a single-center,

retrospective study with a relatively small sample size, the

performance of our model may not be optimal when applied to

patient populations from different institutions or with varying

characteristics. Hence, external validation is necessary to ensure its

generalizability and to prevent overfitting. Secondly, the initial

database features were selected manually, which may have led to the

omission of some potentially important features. Thirdly, the limited

number of positive samples constrained the number of features that
Frontiers in Cardiovascular Medicine 09
could be included in the model. Consequently, the feature selection

process might have overlooked some significant features. In

conclusion, patients with AIE represent a unique subgroup among all

cardiac surgery patients. Future studies are required to further explore

the applicability of machine learning models to this specific group.
Conclusion

Compared to CSA-AKI, AIE-CSA-AKI presents a more

complex etiology, encompassing both the severity of local

infection and the level of systemic inflammation. Machine

learning models have shown efficacy in predicting AIE-CSA-AKI,

suggesting that their use could enhance risk stratification and

peri-operative management.
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