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Introduction: Pulmonary arterial hypertension (PAH) is a severe cardiovascular
condition characterized by pulmonary vascular remodeling, increased
resistance to blood flow, and eventual right heart failure. Right heart
catheterization (RHC) is the gold standard diagnostic technique, but due to its
invasiveness, it poses risks such as vessel and valve injury. In recent years,
machine learning (ML) technologies have offered non-invasive alternatives
combined with ML for improving the diagnosis of PAH.
Objectives: The study aimed to evaluate the diagnostic performance of
various methods, such as electrocardiography (ECG), echocardiography,
blood biomarkers, microRNA, chest x-ray, clinical codes, computed
tomography (CT) scan, and magnetic resonance imaging (MRI), combined with
ML in diagnosing PAH.
Methods: The outcomes of interest included sensitivity, specificity, area under
the curve (AUC), positive likelihood ratio (PLR), negative likelihood ratio (NLR),
and diagnostic odds ratio (DOR). This study employed the Quality Assessment
of Diagnostic Accuracy Studies-2 (QUADAS-2) tool for quality appraisal and
STATA V.12.0 for the meta-analysis.
Results: A comprehensive search across six databases resulted in 26 articles for
examination. Twelve articles were categorized as low-risk, nine as moderate-
risk, and five as high-risk. The overall diagnostic performance analysis
demonstrated significant findings, with sensitivity at 81% (95% CI = 0.76–0.85,
p < 0.001), specificity at 84% (95% CI = 0.77–0.88, p < 0.001), and an AUC of
89% (95% CI = 0.85–0.91). In the subgroup analysis, echocardiography
displayed outstanding results, with a sensitivity value of 83% (95% CI = 0.72–
0.91), specificity value of 93% (95% CI = 0.89–0.96), PLR value of 12.4 (95%
CI = 6.8–22.9), and DOR value of 70 (95% CI = 23–231). ECG demonstrated
excellent accuracy performance, with a sensitivity of 82% (95% CI = 0.80–
0.84) and a specificity of 82% (95% CI = 0.78–0.84). Moreover, blood
biomarkers exhibited the highest NLR value of 0.50 (95% CI = 0.42–0.59).
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Conclusion: The implementation of echocardiography and ECG with ML for
diagnosing PAH presents a promising alternative to RHC. This approach shows
potential, as it achieves excellent diagnostic parameters, offering hope for more
accessible and less invasive diagnostic methods.

Systematic Review Registration: PROSPERO (CRD42024496569).

KEYWORDS

machine learning, pulmonary arterial hypertension, diagnostic method, area under the
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Introduction

Pulmonary Arterial Hypertension (PAH) is a severe

cardiovascular condition marked by increased blood pressure in

the pulmonary arteries, resulting in gradual harm and eventual

failure of the right side of the heart (1, 2). Traditional diagnostic

techniques, particularly right heart catheterization (RHC), have

been widely regarded as the most reliable method for evaluating

PAH. Although RHC offers precise hemodynamic measurements,

its invasive nature presents inherent risks to patients and may

hinder prompt diagnosis (3, 4).

The emergence of machine learning (ML) technologies in

recent years has brought about a significant change in medical

diagnostics, providing non-invasive alternatives that question the

existing practices (5). Machine learning techniques utilize

computational algorithms to analyze intricate datasets and extract

significant patterns, empowering clinicians to make accurate and

prompt diagnosis. This paper investigates the potential of non-

invasive machine learning (ML) methods to completely

transform the diagnosis of pulmonary arterial hypertension

(PAH) (6). These methods offer a safer and more patient-

friendly alternative to the conventional invasive approaches

currently used. The constraints of right heart catheterization

(RHC), which encompass the inherent procedural hazards and

discomfort, underscore the necessity for pioneering diagnostic

instruments. Non-invasive machine learning methodologies, such

as advanced analysis of images, processing of signals, and

recognition of patterns, offer a chance to overcome these

difficulties. ML models can achieve high accuracy in identifying

PAH by utilizing data from diverse sources such as medical

imaging, patient history, and physiological parameters to detect

subtle patterns (7).

This paper examines the current state of diagnosing pulmonary

arterial hypertension (PAH), highlighting the limitations of

invasive methods, and highlighting the potential of machine

learning (ML) as a revolutionary force. We explore the different

non-invasive machine learning methodologies used in PAH

research, examining their advantages, constraints, and future

potential. In addition, we emphasize the ethical and practical

factors related to the implementation of machine learning in

clinical practice, guaranteeing a thorough comprehension of the

consequences for patient care. This paper aims to shed light on

the path toward a new era in diagnosing pulmonary arterial

hypertension (PAH) by exploring the intersection of machine
02
learning and cardiovascular medicine. By adopting non-invasive

machine learning techniques, our goal is to not only question the

traditional approach of invasive procedures but also reshape the

field of cardiovascular diagnostics. This will ultimately improve

patient outcomes and enhance the overall management of

pulmonary arterial hypertension.
Methods

This meta-analysis was conducted based on the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) statement guidelines (8). This study was registered in

PROSPERO with registration number CRD42024496569.
Search strategy

The literature search was carried out on six databases, namely

PubMed, ScienceDirect, ProQuest, Taylor & Francis, Embase, and

EBSCO until December 2023. The literature search was carried

out with keywords using Boolean operators: (“machine learning”

OR “deep learning” OR “artificial intelligence”) AND

(“pulmonary hypertension”) AND (“sensitivity” OR “specificity”

OR “AUC” OR “ROC” OR “AUROC” OR “PPV” OR “NPV” OR

“TN” OR “FN” OR “TP” OR “FP”).
Study eligibility criteria

Study Inclusion and exclusion criteria were determined before

the literature search to make the results specific and homogenous.

The inclusion criteria were (1) data available or accessible in

English language, (2) studies that involve patients with PAH as

their sample, (3) studies that use right heart catheterization

(RHC) for making PAH diagnosis, and (4) studies that include at

least one diagnostic data to be analyzed in this study, namely:

true/false negative value, true/false positive value, specificity,

sensitivity, area under curve (AUC), area under receiver

operating characteristic (AUROC) curve, positive predictive value

(PPV), and negative predictive value (NPV). The exclusion

criteria were (1) non-human sampling studies and (2)

irretrievable articles or articles with incompatible language. Using

these inclusion and exclusion criteria, four authors independently
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assessed the eligibility of the papers, and any disagreements were

resolved through discussion.
Outcome measures

The primary outcome measures of this study are the sensitivity

and specificity of overall diagnostic performance. The secondary

outcomes are the sensitivity and specificity of subgroup

diagnostic performance, namely ECG, blood biomarkers,

echocardiography, miRNA, and other subgroups (chest x-ray,

clinical code, MRI, and CT scan). All authors independently

extracted the outcomes from the included papers to be used for

quantitative analysis and any disagreements were resolved

through discussion.
Quality assessment and statistical analysis

The risk of bias for each study will be independently assessed

by all reviewers as low, moderate, or high using the tool, Quality

Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) (9).

Diagnostic meta-analysis will be performed using STATA V.12.0

(10). The software will be used to test the heterogeneity, and the

pooled sensitivity, specificity, positive likelihood ratio, negative

likelihood ratio, diagnostic odds ratio, and other effect sizes to

generate the summary receiver operating characteristic (SROC)

curve for comprehensive evaluation. If high heterogeneity is

found, meta-regression analysis will be done to explore the

source of heterogeneity alongside subgroup analysis. The

competing diagnostic tests will be ranked by their superiority

index. Begg’s funnel plots will also be used to assess publication

bias in the meta-analysis of the diagnostic studies.
RESULTS

Study selection and identification

After removing duplicate studies and screening abstracts, a

thorough assessment was conducted on a total of 36 clinical trial

studies. Ultimately, 26 clinical trials were selected for inclusion in

the meta-analysis, as depicted in Figure 1. Two studies were

excluded because their data was unrelated to the focus of this

study, five were excluded due to insufficient details for a

comprehensive evaluation, and three were excluded as their

outcomes were irrelevant to the aim of this study. The selected

studies underwent evaluation for quality and were extracted for

subsequent analysis using statistical methods.
Demography and clinical characteristics of
the included studies

The demography and clinical characteristics of 26 included

studies were examined and listed in Supplementary Table S1.
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Quality appraisal

The final clinical trials included in the analysis underwent a

comprehensive quality evaluation using the QUADAS-2 tool

(Figure 2). The assessment revealed that 12 of the studies had a

low risk of bias across the four domains evaluated. However,

there were nine studies with a moderate risk of bias and five

with a high risk of bias. Notably, studies conducted by Diller

et al., 2022; Imai et al., 2023; Kanwar et al., 2020; Kiely et al.,

2019; Kusunose et al., 2022; Kwon et al., 2020; Leha et al., 2019;

Seidler et al., 2019; Suvon et al., 2022; and Zeng et al., 2021

(6, 7, 11–18) did not implement any randomization process in

their methodology, thus they were considered to have moderate

regarding bias in the patient selection domain. Furthermore,

studies conducted by Imai et al., 2023; Kogan et al., 2023;

Schuler et al., 2022; and Seidler et al., 2019 (12, 16, 19, 20) had

unclear pre-specified thresholds in their diagnostic method

standards, leading to a moderate risk of bias in the index test

domain. Additionally, the study by Seidler et al., 2019 (16) had

an incomplete reference standard for interpreting results,

resulting in a moderate risk of bias in the reference standard

domain. Lastly, studies conducted by Bauer et al., 2021; Schuler

et al., 2022; and Suvon et al., 2022 (17, 20, 21) had the notable

loss to follow-up samples, which raised a moderate risk of bias in

the flow & timing domain.
Overall diagnostic performance analysis

A total of twenty-six studies were included in the meta-analysis

for the overall diagnostic method, consisting of 6 studies for ECG,

6 studies for echocardiography, 4 studies for blood biomarkers,

5 studies for miRNA, and 6 studies for other diagnostic methods,

including chest x-ray, clinical code, MRI, and CT scan. These

parameters are analyzed with various thresholds with the number

of studies included and cases, their combined sensitivities, and

specificities shown in Table 1.

As shown in Figure 3, there was significantly high

heterogeneity in the pooled sensitivity [I2 = 93.27%, p < 0.001]

and specificity [I2 = 97.61%, p < 0.001] values. Therefore, the

random-effects model was used to analyze diagnostic parameters.

The forest diagram shows the value of machine learning in the

diagnosis of pulmonary hypertension; the pooled sensitivity was

significant with a value of 0.81 [95% CI = 0.76–0.85, p < 0.001]

and specificity was also significant with the value of 0.84 [95%

CI = 0.77–0.88, p < 0.001]. In addition, Figure 4 shows a

summary receiver operator characteristic (SROC) curve with an

AUC of 0.89 [95% CI = 0.85–0.91].

Figure 5 shows the construction of a bivariate boxplot, which

is a useful tool for detecting heterogeneity in each study. One

study did not occur in the boxplot, including study 13

meanwhile three studies presented as outliers, including

studies 10 (22), 12 (13), and 24 (12). Study 12 (23) involved

patients with PAH and other subtypes of PH, study 10

involved the use of Chest x-ray, study 24 involved the use of

ECG, meanwhile, study 12 involved the use of clinical code.
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FIGURE 1

Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flowchart for study identification and selection. The original database
search resulted in 1,809 studies from six databases searched, namely PubMed, ScienceDirect, ProQuest, Taylor & Francis, Embase, and EBSCO.
Through title and abstract screening, 1,762 articles were removed, and 47 articles were screened for duplication. Duplicate screening resulted in 11
removed articles. Thirty-six articles were further assessed for eligibility and ten articles were removed due to irrelevant data, evaluation, or
outcomes. The final step resulted in 26 clinical trials included in the qualitative synthesis.
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This implies that the type of diagnostic method conducted prior

to the machine learning algorithm could be the main cause

of heterogeneity.

This study also employed Deek’s funnel plot asymmetry test to

assess the potential of publication bias between included studies.

A value of P = 0.67 indicates a symmetric funnel shape,

suggesting the absence of publication bias within the dataset

under examination. This finding implies that the distribution of

studies across the range of effect sizes is balanced and unbiased,

contributing to the reliability and robustness of the analysis.
Subgroup diagnostic performance analysis

Then, subgroup analysis was performed based on the

diagnostic type of machine learning. Results are shown in

Table 1. Concerning the diagnostic type, miRNA studies

exhibited the highest sensitivity (0.87; 95% CI = 0.81–0.92;

p = 0.45), however, the result was not statistically significant.
Frontiers in Cardiovascular Medicine 04
Echocardiography followed with the second-highest sensitivity

and yielded statistically significant results (0.83; 95% CI = 0.72–

0.91; p < 0.001). The echocardiography also showed the highest

specificity (0.93; 95% CI = 0.89–0.96; p = <0.001). The highest

positive likelihood ratio (PLR) with a value of 12.4 (95%

CI = 6.8–22.9) is also shown by echocardiography and the highest

negative likelihood ratio (NLR) with a value of 0.50 (95%

CI = 0.42–0.59) was shown by blood biomarkers. Furthermore,

echocardiography also exhibited the highest diagnostic odds ratio

(DOR) with values of 70 (95% CI = 23–213).

Figure 6 shows the diagnostic subgroup analysis of ECG as

machine learning’s diagnostic method. There was significantly

high heterogeneity in the pooled sensitivity [I2 = 79.18%,

p < 0.001] and moderate heterogeneity in the pooled specificity

[I2 = 71.87%, p < 0.001] values. Therefore, the random-effects

model was used to analyze diagnostic parameters. The forest

diagram shows the value of machine learning in the diagnosis of

pulmonary hypertension; the pooled sensitivity was significant

with the values of 0.82 [95% CI = 0.80–0.84, p < 0.001] and
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FIGURE 2

Risk of bias summary using the QUADAS-2 tool for diagnostic studies. The green region represents studies with a low risk of bias, the yellow region
shows studies with a moderate risk of bias, and the red region shows studies with a high risk of bias.
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specificity was also significant with the values of 0.82 [95%

CI = 0.78–0.84, p < 0.001].

Figure 7 shows the diagnostic subgroup analysis of

echocardiography as machine learning’s diagnostic method.
Frontiers in Cardiovascular Medicine 05
There was significantly high heterogeneity in both the pooled

sensitivity [I2 = 89.98%, p < 0.001] and specificity [I2 = 95.63%,

p < 0.001]. Therefore, the random-effects model was used to

analyze diagnostic parameters. The forest diagram shows the
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value of machine learning in the diagnosis of pulmonary

hypertension; the pooled sensitivity was significant with values of

0.83 [95% CI = 0.72–0.91, p < 0.001] and specificity was also

significant with values of 0.93 [95% CI = 0.89–0.96, p < 0.001].

Figure 8 shows the diagnostic subgroup analysis of blood

biomarkers as machine learning’s diagnostic method. There was

no significant heterogeneity in the pooled sensitivity [I2 = 1.86%]

and significantly moderate heterogeneity in specificity

[I2 = 71.77%, p < 0.001] values. Therefore, the random-effects

model was used to analyze diagnostic parameters. The forest

diagram shows the value of machine learning in the diagnosis of

pulmonary hypertension; the pooled sensitivity was insignificant

with values of 0.60 [95% CI = 0.52–0.67, p = 0.38] and specificity

was significant with values of 0.82 [95% CI = 0.71–0.89, p = 0.01].

Figure 9 shows the diagnostic subgroup analysis of microRNA

as machine learning’s diagnostic method. There was nonsignificant

heterogeneity in both the pooled sensitivity [I2 = 0.00%] and

specificity [I2 = 0.00%] values. The forest diagram shows the

value of machine learning in the diagnosis of pulmonary

hypertension; the pooled sensitivity was insignificant with the

values of 0.87 [95% CI = 0.81–0.92, p = 0.45] and specificity

was also insignificant with the values of 0.66 [95% CI =

0.52–0.77, p = 0.99].

Figure 10 shows the diagnostic subgroup analysis of others,

including chest x-ray, CT scan, MRI, and clinical code, as

machine learning’s diagnostic method. There was a significantly

high heterogeneity in both the pooled sensitivity [I2 = 96.48%,

p < 0.001] and specificity [I2 = 99.23%, p < 0.001] values.

Therefore, the random-effects model was used to analyze

diagnostic parameters. The forest diagram shows the value of

machine learning in the diagnosis of pulmonary hypertension;

the pooled sensitivity was significant with values of 0.79 [95%

CI = 0.62–0.89, p < 0.001] and specificity was also significant with

values of 0.85 [95% CI = 0.62–0.95, p < 0.001].
Diagnostic precision properties analysis

A single-group meta-analysis was utilized to analyze the

diagnostic precision properties (Supplementary Table S2).

Among the twenty studies assessing sensitivity, the overall

estimated proportion was 77.98%, with a 95% CI ranging from

71.53% to 84.43% (Supplementary Figure S5). This suggests a

high prevalence of sensitivity across the studies included, with

the confidence interval indicating greater precision and statistical

significance. High and significant overall heterogeneity was

observed (I2 = 100%; P < 0.01).

For specificity, twenty studies were examined, revealing an

overall estimated proportion of 79.93%, with a 95% CI

between 73.66% and 85.01% (Supplementary Figure S6).

Similar to sensitivity, there was a high prevalence of

specificity, supported by a precise and statistically significant

confidence interval. Overall heterogeneity was also high and

significant (I2 = 100%; P < 0.01).

In the case of the AUC, fourteen studies contributed to an

overall estimated proportion of 87.94%, with a 95% CI from
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FIGURE 3

Forest plot showing overall sensitivity (left forest plot) and specificity (right forest plot) with corresponding heterogeneity statistics. The gray square and
solid lines represent the odds ratio with 95% confidence intervals. The rhombus indicates the pooled estimate with 95% confidence intervals.

FIGURE 4

Summary ROC curve with confidence and prediction regions around
mean operating sensitivity and specificity point.
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85.07% to 89.70% (Supplementary Figure S7). This indicates a high

prevalence of AUC, with a precise and statistically significant

confidence interval. Overall heterogeneity remained high and

significant (I2 = 97%; P < 0.01).

Regarding the ROC, six studies were analyzed, resulting in an

overall estimated proportion of 87.25%, with a 95% CI between

81.76% and 91.27% (Supplementary Figure S8). Again, a high

prevalence of ROC was observed, supported by a precise and

statistically significant confidence interval. Overall heterogeneity

was high and significant (I2 = 92%; P < 0.01).

For positive predictive value (PPV), ten studies were

considered, revealing an overall estimated proportion of 84.09%,

with a 95% CI ranging from 57.18% to 95.44% (Supplementary

Figure S9). A high prevalence of PPV was found, along with a

precise and statistically significant confidence interval. Overall

heterogeneity remained high and significant (I2 = 100%; P < 0.01).

Lastly, ten studies contributed to the analysis of negative

predictive value (NPV), resulting in an overall estimated

proportion of 93.78%, with a 95% CI from 81.17% to 98.14%

(Supplementary Figure S10). Similar to the other metrics, a high

prevalence of NPV was observed, supported by a precise and

statistically significant confidence interval. Overall heterogeneity

was once again high and significant (I2 = 100%; P < 0.01).
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FIGURE 5

Bivariate boxplot with most studies clustering within the median distribution with three outliers suggesting indirectly a lower degree of heterogeneity.

FIGURE 6

Funnel plot with superimposed regression line. The vertical axis displays the inverse of the square root of the effective sample size [1/root(ESS)]. The
horizontal axis displays the diagnostic odds ratio (DOR). This Deek’s funnel plot asymmetry test is a useful tool for assessing the potential publication
bias in studies.
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FIGURE 7

Forest plot showing echocardiography subgroup mean sensitivity (left forest plot) and specificity (right forest plot) with corresponding heterogeneity
statistics. The gray square and solid lines represent the odds ratio with 95% confidence intervals. The rhombus indicates the pooled estimate with 95%
confidence intervals.
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Discussion

Conventional method in diagnosing
pulmonary arterial hypertension

Pulmonary hypertension (PH) encompasses a spectrum of

conditions characterized by elevated blood pressure in the

pulmonary arteries, with pulmonary arterial hypertension (PAH)

being a distinct subgroup primarily affecting the small

pulmonary arterioles. PAH presents significant challenges in

diagnosis due to its multifaceted etiology and diverse clinical

manifestations (24) To accurately diagnose PAH and differentiate

it from other forms of PH, a comprehensive diagnostic approach

combining clinical assessment, imaging modalities, and invasive

procedures is necessary.

Clinical evaluation forms the cornerstone of PAH diagnosis,

involving a detailed medical history, physical examination, and

assessment of symptoms. Symptoms of PAH can vary widely,

ranging from early indicators such as exertional dyspnea and

fatigue to more advanced symptoms like exertional chest pain

and syncope. Recognizing these symptoms alongside physical

examination findings, such as an enlarged right ventricle or

abnormal heart murmurs, provides crucial initial insights into

the possibility of PAH (24, 25).
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Diagnostic imaging plays a pivotal role in identifying

structural and functional abnormalities associated with PAH.

Electrocardiography (ECG or EKG) provides valuable

information by detecting electrical abnormalities indicative of

right ventricular hypertrophy and strain, common features of

PAH. Transthoracic echocardiography (TTE) offers non-invasive

assessment of pulmonary artery pressures and right heart

function, aiding in the diagnosis and monitoring of PAH

progression. Chest x-rays complement these assessments by

visualizing cardiac and pulmonary structures, revealing

characteristic findings such as central pulmonary arterial

dilatation and signs of right heart enlargement (24).

While non-invasive tests provide valuable diagnostic

information, invasive procedures such as right heart

catheterization (RHC) remain the gold standard for confirming

PAH diagnosis. RHC enables direct measurement of pressures in

the heart and pulmonary arteries, including mean pulmonary

arterial pressure (mPAP) and pulmonary vascular resistance

(PVR). These hemodynamic parameters aid in distinguishing

between pre-capillary and post-capillary PH and guide

therapeutic decision-making. Post-capillary PH is defined by

hemodynamic measurements of mPAP greater than 20 mmHg

and pulmonary artery wedge pressure (PAWP) greater than

15 mmHg (25).
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FIGURE 8

Forest plot showing blood biomarkers subgroup mean sensitivity (left forest plot) and specificity (right forest plot) with corresponding heterogeneity
statistics. The gray square and solid lines represent the odds ratio with 95% confidence intervals. The rhombus indicates the pooled estimate with 95%
confidence intervals.
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Laboratory tests, including hematological assessments,

contribute additional diagnostic insights by identifying specific

biomarkers associated with PAH, such as brain natriuretic

peptide (BNP) or N-terminal pro-brain natriuretic peptide (NT-

proBNP). Elevated levels of these biomarkers may indicate

cardiac stress and provide prognostic information in PAH (26).

Despite advancements in diagnostic techniques, challenges

persist in optimizing early detection and improving

prognostication in PAH. Future directions in PAH diagnosis may

involve the integration of novel biomarkers, advanced

imaging technologies, and machine learning algorithms to

enhance diagnostic accuracy and tailor treatment strategies to

individual patient needs.
General mechanism of machine learning

ML forms the core of artificial intelligence (AI), enabling

computers to handle complex tasks using an array of advanced

methods (25, 27). ML harnesses algorithms that elucidate

relationships between variables to drive accurate predictions (28).

The fundamental premise of machine learning is to enable

computers to improve their performance on a specific task over

time as they are exposed to more data through training (29).
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The landscape of ML methods is diverse, but they broadly fall

into two categories: supervised and unsupervised learning (30).

Supervised learning involves training models on inputs linked with

known outcomes. For example, in medical diagnosis, models can

be trained on various patient characteristics to predict the onset of

diseases. Supervised algorithms are meticulously developed using

datasets containing multiple variables and relevant outcomes.

However, the risk of overfitting, where the model overly tailors

itself to the training data, necessitates careful validation through

techniques like splitting datasets into training and testing

segments. In each segment, there is a randomly chosen portion of

features along with their corresponding outcomes. This enables the

algorithm to link specific features or traits to outcomes, a process

known as algorithm training. Following training, the algorithm is

applied to the features in the testing dataset without their

corresponding outcomes. The predictions generated by the

algorithm are subsequently compared to the known outcomes of

the testing dataset to evaluate model performance. This step is

crucial for enhancing the algorithm’s ability to effectively

generalize to new data (28). On the other hand, unsupervised

learning ventures into uncharted territory, seeking patterns and

clusters within datasets without predefined outcomes. These

techniques, while exploratory, offer invaluable insights into

complex data structures (28, 31, 32).
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FIGURE 9

Forest plot showing microRNA subgroup mean sensitivity (left forest plot) and specificity (right forest plot) with corresponding heterogeneity statistics.
The gray square and solid lines represent the odds ratio with 95% confidence intervals. The rhombus indicates the pooled estimate with 95%
confidence intervals.
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In the domain of medical diagnosis, leveraging ML entails a

complex sequence of procedural steps. It commences with data

acquisition, encompassing diverse sources like clinical records,

imaging, and patient histories. Subsequently, data undergoes

processing, addressing issues such as missing values and noisy

data. Identification of target variables and predictors follows suit,

paving the way for model training. Once trained, these models

serve as powerful diagnostic tools, aiding healthcare professionals

in making informed decisions (5).

Essentially, the framework of machine learning surpasses mere

algorithms; it embodies a comprehensive approach that spans data

acquisition, processing, model training, and practical application.

As ML continues to develop, its integration into various domains

promises transformative outcomes, revolutionizing how complex

tasks are undertaken and decisions are made.
Current Use of machine learning in
medical fields

In recent years, artificial intelligence (AI) and machine learning

(ML) have emerged as potent tools across various domains,

promising transformative solutions to complex challenges (33).

Specifically, within medical field, ML-assisted diagnosis stands
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out as a potential game-changer, leveraging vast patient datasets

to deliver precise and personalized diagnoses. Despite

considerable research and commercial interest, diagnostic

algorithms helped to increase the diagnostic accuracy of human

doctors in scenarios involving multiple potential causes for a

patient’s symptoms.

Medical diagnosis is inherently intricate, with numerous factors

such as overlapping structures, distractions, fatigue, and limitations

of the human visual system contributing to potential misdiagnosis.

ML methods have been increasingly adopted to help clinicians in

overcoming these challenges, facilitating informed and accurate

decision-making in disease diagnosis (5). By employing

intelligent data analysis tools, ML helps unveil intricate

relationships within datasets, providing valuable second opinions

to clinicians and potentially improving patient outcomes while

reducing treatment costs.

ML techniques hold promise in two key areas within medical

practice: diagnosis and outcome prediction. These methods have

demonstrated success in tasks such as classifying skin cancer from

images and predicting the progression from pre-diabetes to type 2

diabetes using electronic health record data (28). Moreover, ML is

finding increasing application in cardiovascular disease diagnostics,

spanning modalities such as echocardiography, electrocardiography,

and non-invasive imaging (34, 35).
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FIGURE 10

Forest plot showing other subgroups’ mean sensitivity (left forest plot) and specificity (right forest plot) with corresponding heterogeneity statistics.
The gray square and solid lines represent the odds ratio with 95% confidence intervals. The rhombus indicates the pooled estimate with 95%
confidence intervals.
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In the realm of medical imaging, ML algorithms play a pivotal

role in enhancing the detection and diagnosis of conditions from

x-rays, CT scans, and MRIs, aiding in the identification of tumors,

fractures, and anomalies (34, 36). Additionally, ML is instrumental

in genomic data analysis, facilitating the detection of disease-

related patterns and mutations, thereby offering insights into

individual responses to treatments (Wu and Zhao, 2019).

Furthermore, ML contributes to drug discovery by elucidating

disease molecular mechanisms and predicting potential medication

candidates, thereby enhancing efficiency and quality in lead

synthesis pathways (31, 37). ML-driven decision support systems

analyze patient data extracted from electronic health records

(EHRs), aiding healthcare providers in identifying issues,

suggesting remedies, and assessing illness probabilities (5).

Beyond diagnosis and treatment, ML models analyze extensive

datasets to identify trends and patterns in disease occurrence,

informing preventive measures in public health (dos Santos et al.,

2019). Additionally, ML-based predictive models analyze

behavioral patterns and social media data to predict mental

health conditions, with ML-powered chatbots and virtual

therapists offering support and counseling (38).

However, integrating ML into healthcare necessitates careful

consideration of data privacy, model interpretability, and ethical

concerns despite its potential to revolutionize healthcare delivery

(39). As research and technological advancements continue, the
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field of ML in healthcare is expected for further advancement

and innovation.
Precision of machine learning in diagnosing
pulmonary arterial hypertension

Overall diagnostic performance analysis
This study assesses overall diagnostic performance machine

learning in diagnosing PAH using several methods (data source)

of PAH diagnostic, which are ECG, Echo, blood biomarkers,

miRNA, and other (unclassified) diagnostic methods (x-ray,

clinical code, MRI, and CT scan). The results of this study found

that although significant heterogeneity is found, the diagnostic

approach using machine learning is significant and specific with

an excellent value of SROC (0.8–0.9 is excellent, while more than

0.9 is outstanding). However, the heterogeneity is found due to

the variety of machine learning methods employed in the analysis.

By analyzing various data types such as medical images, patient

records, and biomarkers, machine learning algorithms can identify

patterns and correlations that may not be apparent to human

observers. Therefore, the usage of machine learning is remarkable

in increasing sensitivity and specificity compared to conventional

methods of diagnosis. However, it’s essential to recognize that

the performance of machine learning models depends on the
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quality and quantity of the data used for training. Due to the

heterogeneity of the data source, subgroup analysis is done to

compare the quantity and quality of the data itself.

In a study by Bauer et al. in 2020, it is stated that machine

learning demonstrated the potential of machine learning

algorithms in predicting outcomes in PH patients based on

variables such as demographic information, comorbidities, and

hemodynamic parameters (21). Another study by Swift et al.

(2021) shows the superiority of automatic detection and

segmentation of the ventricles using machine learning which

makes data derived from these approaches may reduce the need

for manual adjustments that are currently labour intensive,

especially for the right ventricle and therefore, increasing the

accuracy of the diagnostic method (40).

Machine learning algorithms excel at identifying patterns

within extensive datasets. Diagnosing pulmonary arterial

hypertension (PAH) involves assessing multiple clinical

parameters like echocardiography results, pulmonary function

tests, blood biomarkers, and patient history. ML models can

thoroughly analyze these diverse data points, detecting nuanced

patterns that traditional diagnostic approaches might miss

(6, 41). ML algorithms are proficient at integrating data from

various sources, including imaging studies, clinical assessments,

and laboratory tests. They excel at managing multimodal data,

enabling a comprehensive analysis that encompasses all pertinent

information for diagnosing PAH (7, 42).

Subgroup diagnostic performance analysis
Echocardiography showed outstanding results on sensitivity,

specificity, PLR, and DOR with statistically significant results

compared to other diagnostic methods. With 83% sensitivity and

93% specificity, echocardiography showed great precision in

diagnosing PAH. This finding is aligned with previous studies,

which stated that echocardiography is superior in diagnosing

PAH (11, 43, 44).

Blood biomarkers yielded the most favorable result for NLR

(0.50), indicating their capability to accurately identify patients as

negative for PH. However, blood biomarkers displayed moderate

sensitivity at 60%. A high negative likelihood ratio (LR-)

combined with low sensitivity suggests that while the test is

adept at correctly identifying individuals without the condition

(true negatives), it may be less effective at detecting those who

actually have the condition (false negatives). Essentially, although

the test excels in ruling out the presence of the condition in

healthy individuals, it may frequently miss detecting the

condition in those who are afflicted. This situation could be

attributed to various factors such as limitations of the test,

inherent variability in the condition being examined, or the

influence of confounding variables on the test outcomes (45, 46).

When 80% is set as a cutoff value of excellent sensitivity and

specificity, ECG is still considered a precise method to diagnose

PAH with 82% and 82%. This finding is aligned with previous

studies, which stated that ECG in combination with machine

learning is able to increase the diagnostic sensitivity and specificity,

even using fewer than 12 leads ECG. Since electrocardiograms

(ECGs) are widely available in clinical settings, it’s also feasible
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that this algorithm could be utilized in primary care or resource-

limited environments (47). According to a study by Kwon et al.

(2020), the dependable performance of an AI algorithm based on

a single-lead ECG suggests the potential for screening pulmonary

arterial hypertension (PAH) using both standard 12-lead ECGs

and simpler wearable or monitoring devices. The study also

highlights the significant diagnostic accuracy achieved by

combining ECG data with machine learning techniques (15). This

could potentially expedite echocardiographic assessments,

diagnoses, and referrals to specialists.

Although miRNA deployed excellent sensitivity (87%) and

moderate specificity (66%), both results are considered to be

statistically insignificant. This might develop from the minimal

number of studies and variations in machine learning software.

The “others” category demonstrated impressive sensitivity (79%)

and specificity (85%). However, it is important to highlight that

this category includes chest x-ray, clinical code, CT scan, and

MRI, making it impossible to analyze these diagnostic methods

separately. Future research should aim to individually assess these

diagnostic methods to thoroughly evaluate their diagnostic efficacy.
Non-Diagnostic (single-arm) meta-analysis
of diagnostic parameters analysis

This study assesses diagnostic parameters of the machine

learning performance using non-diagnostic (single-arm) meta-

analysis which is able to display each of the study’s proportions in

assessing the significance of a certain parameter. Each assessment

of a specific parameter’s efficacy is supplemented with a subgroup

examination aimed at elaborating the diagnostic technique utilized.

In sensitivity parameter, the study identified significant

findings with variations from high to low heterogeneity across

different categories, namely clinical codes, blood biomarkers,

ECG, and miRNA while the heterogeneity of chest x-ray and CT

scan cannot be assessed due to the minimal studies conducted

regarding this mode of diagnosis. miRNA displayed the lowest

heterogeneity (11%) due to the same gene sequence used with

the main difference in the type of software utilized (48). High

heterogeneity found in other studies might depict the variations

of patients’ baseline characteristics, different approaches in

conducting the main diagnostic method, or the variety of

machine learning software used. Similar results were found in

Figure 11 (specificity), Figure 6 (AUC), Figure 8 (PPV), and

Figure 9 (NPV). The random forest method was particularly

effective in pinpointing patients with pulmonary arterial

hypertension (PAH) with high sensitivity, although XGBoost also

yielded a similarly strong Area Under the Curve (AUC). One

specific microRNA, MiR-187, stood out in this study and was

notably upregulated in samples from endoarterial biopsies in a

porcine model. This suggests that MiR-187-5p and MiR-636,

identified as potential biomarkers, could be linked to the

progression of PAH. This validation underscores the relevance of

our machine learning approach in identifying microRNA

biomarkers, indicating their potential utility as personalized

prognostic indicators (48).
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FIGURE 11

Forest plot showing ECG subgroup mean sensitivity (left forest plot) and specificity (right forest plot) with corresponding heterogeneity statistics. The
gray square and solid lines represent the odds ratio with 95% confidence intervals. The rhombus indicates the pooled estimate with 95% confidence
intervals.
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However for the study depicted in Figure 7 (ROC), significant

findings were identified with lowest heterogeneity in blood

biomarkers method. The diagnostic characteristics of biomarkers

are deemed vital for enhancing accuracy, particularly in processes

like pulmonary vascular remodeling involving proteins such as

RAGE and MMP-2, angiogenesis, and cellular growth involving

collagen IV, endostatin, IGFBP-2, and neuropilin-1, as well as

cardiac dysfunction marked by NT-proBNP and IGFBP-7.

RAGE, among the highest-ranked proteins, holds significance in

accumulating extracellular matrix proteins, particularly

influencing vascular remodeling (49–51). However, the usage of

other methods are also significant considering its proportional

efficacy and significance in diagnosing PAH, especially due to its

personalized approach in diagnosing (3, 44).
Benefits and implications of implementing
machine learning-based diagnostic method
for diagnosing pulmonary arterial
hypertension

Machine learning plays a crucial role in early diagnostic

approaches for patients with pulmonary arterial hypertension

(PAH). By analyzing extensive datasets encompassing patient
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medical history, symptoms, and diagnostic tests, ML can discern

patterns suggestive of PAH (11). This early detection facilitates

timely intervention, ultimately improving patient outcomes (40).

Moreover, machine learning enhances the accuracy of diagnosing

pulmonary hypertension by scrutinizing intricate data from

diverse sources. Through this, it tailors treatment plans to

individual patients, constituting personalized medicine.

Consequently, treatment efficacy is potentially heightened, and

adverse effects are mitigated. Furthermore, machine learning

serves as a risk stratification tool by evaluating various factors to

gauge the likelihood of disease progression and complications in

pulmonary hypertension patients (2, 40). This empowers

healthcare providers to prioritize high-risk individuals for vigilant

monitoring and proactive intervention (21, 40).

In the realm of pulmonary hypertension, machine learning

algorithms exhibit the capability to forecast the condition with

remarkable precision by leveraging a wider array of

echocardiographic data, eliminating the need for estimated right

atrial pressure as a reliance factor (6). ML algorithms can effectively

predict pulmonary hypertension in patients with invasively

determined pulmonary artery pressure, potentially improving

decision-making in PAH treatment (6). Additionally, deep learning

algorithms demonstrate the capacity to precisely detect anomalies

suggesting pulmonary hypertension in chest radiographs, exhibiting
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both high accuracy and broad applicability. This presents a hopeful,

non-invasive, and easily accessible method for screening patients

(22). Machine learning algorithms trained on large datasets can

estimate prognosis and potentially guide therapy in adult congenital

heart disease (ACHD (11, 52). In the field of cardiology, machine

learning techniques can also enhance efficiency by optimizing

performance and extracting valuable data from both contrast-

enhanced cardiac CT angiography (CCTA) and non-contrast

enhanced cardiac CT scans. This improvement in diagnostic

accuracy also holds significant implications for prognosis (34).
Study strengths and limitations

This diagnostic meta-analysis provides a comprehensive

investigation into the diagnosis of PAH by employing the

combination of multiple non-invasive diagnostic techniques

augmented with ML algorithms, based upon the latest studies.

This study serves as the first diagnostic meta-analysis to evaluate

this progression, based on the availability of studies in scholarly

databases and the PROSPERO registry. Additionally, it delves into

the individual diagnostic performance of each method, aiding in

the identification of superior diagnostic approaches. Nonetheless,

the study is not without limitations; notably, there is an uneven

distribution of studies across different diagnostic methods, with a

predominant focus on ECG and echocardiography. Moreover, a

comparison of diagnostic performance with RHC considered the

gold standard, was precluded due to the unavailability of studies

directly comparing ML-based diagnostic methods with RHC in

diagnosing PAH. While echocardiography has shown some

encouraging results, further study comparing these results to RHC

outcomes and to readings from patients with a variety of heart

diseases is necessary. The diagnostic use of echocardiography for

PAH will be better understood with the aid of this more

comprehensive comparison of its sensitivity and specificity.

Another limitation is, there is no study including any Doppler

imaging modalities as its imaging modality due to lack of study.

Therefore, we only included secondary signs of it and recommend

further researchers to conduct primary research using machine

learning and Doppler imaging modality.
Conclusion

The integration of echocardiography and ECG with ML

techniques for the diagnosis of PAH shows a promising avenue

in non-invasive diagnostic strategies, potentially serving as a

viable alternative to RHC as the gold standard. This innovative

approach demonstrates considerable potential by yielding

outstanding diagnostic outcomes, thereby fostering the

development of more accessible and less invasive diagnostic

modalities. While ECG and echocardiography are advancing,

they do not replace RHC’s direct pressure measurements, despite

its limitations. Nonetheless, further primary research is
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imperative, particularly in comparing combination of ML-based

echocardiography and ECG with RHC in diagnosing PAH.
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