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cell-derived antibody secreting
cells does not attenuate
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hypertension or vascular
compliance
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Introduction: Marginal zone and follicular B cells are known to contribute to the
development of angiotensin II-induced hypertension in mice, but the effector
function(s) mediating this effect (e.g., antigen presentation, antibody secretion
and/or cytokine production) are unknown. B cell differentiation into antibody
secreting cells (ASCs) requires the transcription factor Blimp-1. Here, we
studied mice with a Blimp-1 deficiency in follicular B cells to evaluate whether
antibody secretion underlies the pro-hypertensive action of B cells.
Methods: 10- to 14-week-old male follicular B cell Blimp-1 knockout (FoB-
Blimp-1-KO) and floxed control mice were subcutaneously infused with
angiotensin II (0.7 mg/kg/d) or vehicle (0.1% acetic acid in saline) for 28 days.
BP was measured by tail-cuff plethysmography or radiotelemetry. Pulse wave
velocity was measured by ultrasound. Aortic collagen was quantified by
Masson’s trichrome staining. Cell types and serum antibodies were quantified
by flow cytometry and a bead-based multiplex assay, respectively.
Results: In control mice, angiotensin II modestly increased serum IgG3 levels
and markedly increased BP, cardiac hypertrophy, aortic stiffening and fibrosis.
FoB-Blimp-1-KO mice exhibited impaired IgG1, IgG2a and IgG3 production
despite having comparable numbers of B cells and ASCs to control mice.
Nevertheless, FoB-Blimp-1-KO mice still developed hypertension, cardiac
hypertrophy, aortic stiffening and fibrosis following angiotensin II infusion.
Conclusions: Inhibition of follicular B cell differentiation into ASCs did not
protect against angiotensin II-induced hypertension or vascular compliance.
Follicular B cell functions independent of their differentiation into ASCs and
ability to produce high-affinity antibodies, or other B cell subtypes, are likely
to be involved in angiotensin II-induced hypertension.
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1 Introduction

Hypertension is a major risk factor for cardiovascular disease

and has been identified by the World Health Organisation as the

leading risk factor for the global burden of disease, accounting

for 10.8 million deaths annually (1). Hypertension is a

multifactorial condition due to dysregulation of one or more of

the body’s blood pressure-regulating systems. These include: the

heart, where increased sympathetic activity leads to an increase

in cardiac output; the vascular system where vasoconstriction

and reduced arterial compliance lead to increased pulse pressure

and peripheral vascular resistance; and altered salt/fluid handling

by the kidneys can increase plasma volume (2). While therapies

targeting these “classical” mechanisms of hypertension are

effective at reducing blood pressure, they fail to lower blood

pressure to target levels for patients with uncontrolled (∼50% of

hypertensive patients) (3) or resistant hypertension (∼10% of

hypertensive patients on 3 or more therapies concurrently) (4),

thus suggesting the involvement of other pathological mechanisms.

There is strong evidence for an involvement of the immune

system in hypertension (2, 5). In the early 1970s, it was

established that hypertensive patients have elevated serum

antibody titres (6–9) and inflammatory biomarkers (10–12).

Moreover, IgG antibodies are known to accumulate in the

vasculature and kidneys during hypertension (13–15) and IgG

autoantibodies against α1-adrenoceptors and β1-adrenoceptors

have also been identified in hypertensive patients (16–20). Given

that antibodies are produced exclusively by B cells, these clinical

observations point to a potential role for B cells in the

development of hypertension. In support of this, preclinical

studies have shown that angiotensin II-induced hypertension in

mice is associated with B cell activation, increased serum IgG

titres (21), as well as the formation of germinal centre B cells

(22) and memory B cells (23). The depletion of marginal

zone and follicular B cells, either genetically or pharmacologically

with an anti-CD20 monoclonal antibody, blunts the

pressor response to angiotensin II (21). Furthermore, the

pharmacological neutralisation or genetic depletion of

interleukin-21, produced by T follicular helper cells to stimulate

the formation of germinal centre reactions, reduced blood

pressure, endothelial dysfunction and vascular inflammation in

angiotensin II-infused mice (22).

Despite such direct evidence for a pro-hypertensive role for B

cells, it remains unknown whether increased IgG antibody

production during hypertension is required for these effects or is

merely a marker of increased B cell activity. Indeed, antibody

production is only one of several mechanisms by which B cells

can influence immunity and inflammation. Other mechanisms

including antigen presentation and cytokine production (24)

could therefore also contribute to pro-hypertensive actions of B

cells. In other diseases, the presentation of antigens by B cells

has been shown to promote systemic lupus erythematosus (SLE)

(25) and atherosclerosis (26). Similarly, B cell secretion of

tumour necrosis factor-alpha (TNF-α) (27) promoted

atherosclerosis, while interleukin-6 and interferon-gamma (IFN-

γ) secretion induced T cell proliferation, Th17 polarisation and
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reductions in regulatory T cells in autoimmune encephalomyelitis

(28) and proteoglycan-induced arthritis (29).

High-affinity IgG antibodies are mainly produced by follicular

B cells following their activation within secondary lymphoid organs

and commitment to an antibody secreting cell (ASC) fate (30). The

terminal differentiation of B cells into ASCs requires the

transcriptional repression of B cell-specific transcription factors

(Pax5, Bach2 and Bcl6) (31) and the de-repression of the

B lymphocyte-induced maturation protein-1 (Blimp-1)

transcription factor, encoded by the Prdm1 gene (32, 33). While

Pax5 drives the expression of genes associated with antigen

processing and presentation, Blimp-1 drives the expression of

genes required for the high rate of antibody secretion that is

characteristic of ASCs (31). In the present study, we used an

established Cre-Lox animal model to selectively inhibit Prdm1

gene activity in follicular B cells (26) (hereafter referred to as

FoB-Blimp-1-KO mice). This model was previously shown to

prevent follicular B cell differentiation into ASCs and reduce

total plasma IgG (26). Thus, this approach allows us to

investigate the effect of follicular B cell-derived antibody

depletion, without disrupting other B cell functions, on the

development of hypertension, vascular and cardiac complications

in response to angiotensin II. Here, we showed a reduction in

serum IgG1, IgG2a and IgG3 levels that is consistent with the

functional impairment of follicular B cell differentiation into

ASCs. Nevertheless, FoB-Blimp-1-KO mice showed comparable

hypertension, cardiac hypertrophy and vascular fibrosis to

control mice when both were infused with angiotensin II. Hence,

our findings suggest that the previously reported pro-

hypertensive actions of B cells occur independently of the

differentiation of follicular B cells into ASCs and the subsequent

production of IgG antibodies. Hence, it would seem that other B

cells processes such as antigen presentation (25, 26) and/or

cytokine production (27–29, 34–38), or alternatively antibody

production from other B cell subsets, may instead contribute

to the development of hypertension in response to

angiotensin II infusion.
2 Materials and methods

2.1 Animals and ethics

The animals and procedures were approved by the La Trobe

University Animal Ethics Committee (AEC 16-93), the Monash

University Animal Research Platform Ethics Committee (MARP/

2016/077) and Institutional Biosafety Committee (GM16-25). All

animal experiments were performed in accordance with the

Australian Code for the Care and Use of Animals for Scientific

Purposes 8th Edition 2013 (updated 2021).

To generate mice with a deficiency in follicular-derived ASCs,

Cre recombinase under the control of the CD23 (Fcer2a) promoter

that is expressed in follicular B cells (39) was used to truncate the

Blimp-1 (Prdm1) transcription factor (26). Control (Prdm1fl/fl) and

FoB-Blimp-1-KO (Fcer2a-Cre+/−Prdm1fl/fl) mice on a C57BL6

background were bred at the La Trobe Animal Research and
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Teaching Facility (Bundoora, Australia) and the Animal Research

laboratories (Clayton, Australia). Mice were housed in

temperature (22 ± 2 °C) and humidity (55 ± 15%) controlled

rooms with 12-hour light/dark cycles in individually ventilated

cages with access to food and water ad libitum. To build upon

our previous study (21) showing the global pharmacological and

genetic depletion of B cells in male mice blunted the pressor

response of angiotensin II, the present follow up study used 10-

to 14-week-old male controls and FoB-Blimp-1-KO mice, with

initial weights of 27.5 ± 0.4 g (mean ± S.E.M).
2.2 Genotyping

B cells were isolated from spleens of untreated FoB-Blimp-1-

KO and control mice using a B cell isolation kit (Miltenyi Biotec,

Australia). The Wizard® SV Genomic DNA purification system

(Promega, USA) was used to purify genomic DNA from B cell

samples. Genomic DNA was amplified by PCR using primers

specific for Blimp-1 or Cre recombinase using a thermal cycler

(My CyclerTM, Biorad, USA). PCR products and the DNA

standard, HyperladderTM 100 bp (Bioline, Australia) were added

into wells of a 2% agarose gel in Tris/Borate/EDTA (TBE) buffer

solution with 0.01% SYBR® Safe (Thermo Fisher Scientific,

USA). Images were acquired using a ChemiDocTM MP Imaging

system (Biorad, USA), as shown in Supplementary Figure S1.

The expected sizes of the bands for Blimp-1 for each mouse

genotype were: 765 bp for the floxed allele and 646 bp for exon

6-deleted (truncated) allele (40). The expected bands for Cre

recombinase-expressing mice were: 750 bp for heterozygous Cre-

positive/wild-type and N/A for wild-type (non Cre-expressing).
2.3 Blinding, randomisation and sample
sizes

The primary investigator was blinded to the genotype and

treatment of the animals for the duration of the experimental

protocol and data analysis. Treatment allocations were

randomised using an electronic coin flip. Power calculations

indicated that a sample of size of n = 9 was necessary to identify

a 25% mean effect change in systolic blood pressure (SBP) with

80% power and 10% standard deviation (P < 0.05). All

experimental groups had sample sizes of 9–10 animals.
TABLE 1 Surface and intracellular target markers used for flow cytometry.

Target Clone Fluorophore Dilution
anti-CD38 90 PE-Cy7 1:500

anti-CD23 B3B4 FITC 1:500

anti-CXCR4 2B11 PE-610 1:500

anti-Sca-1 D7 BV605 1:500

anti-CD138 281-2 BV650 1:500

anti-CD98 RL388 A647 1:500

anti-CD19 6D5 A700 1:500

anti-B220 RA3-6B2 BV421 1:500

anti-Blimp-1 (intracellular) 5E7 PE 1:1,000
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2.4 Induction of hypertension

Mice, randomly allocated to the hypertensive group, were

infused with angiotensin II (0.7 mg/kg/d, s.c.) for 28 days, while

those allocated to the normotensive group were infused with a

vehicle solution containing 0.1% acetic acid in saline. This was

achieved by surgically implanting pre-filled osmotic minipumps

(Alzet Model 2004, USA) dorsally between the scapulae under

isoflurane anaesthesia (2%–3% at 0.2–0.5 L/min (41). Mice

received three doses of an analgesic (5 mg/kg carprofen, s.c.) at 0,

24 and 48 h post-surgery.
2.5 Blood pressure measurement

BP measurements were acquired via tail-cuff plethysmography

using the MC4000 Multichannel system (Hatteras Instruments,

USA) or via radiotelemetry using a telemeter probe (Model

TA11PA-C10, Data Sciences International, USA). For tail-cuff

measurements, mice were allowed to acclimatise to the procedure

for 1 week prior to the acquisition of baseline and post-surgery

systolic BP measurements (42). For telemetric monitoring, mice

were allowed at least 10 days of recovery following probe

implantation (43) prior to measurement of baseline BP and

induction of hypertension.
2.6 Tissue harvesting

At day 28, mice were euthanised by CO2 asphyxiation followed

by diaphragmatic puncture. Blood samples were collected by left

ventricular cardiac puncture and placed immediately on ice until

further processing. Mice were then perfused with PBS and their

spleen and bone marrow were harvested and transferred to 1.5 ml

tubes filled with ice cold PBS for subsequent flow cytometric analysis.
2.7 Flow cytometry

Spleen and bone marrow samples were prepared into single cell

suspensions (13, 41, 42). Briefly, tissue samples were mechanically

digested and incubated with a red blood cell lysis buffer (0.15 M

NH4Cl, 0.01 M KHCO3, 6.0 mM EDTA, dH2O) for 5 min. The

samples were then pelleted by centrifugation and resuspended in

PBS at 1:1 for automated cell counting using trypan blue and a

CountessTM Automated Cell Counter (Invitrogen). The samples

were then diluted to obtain a final live cell concentration of 107

single cells per ml of FACS buffer [0.5% bovine serum albumin

(BSA; Sigma-Aldrich, USA) in PBS].

Approximately 2 × 106 live cells per sample were loaded into

96-well microplates and incubated with a cocktail of fluorescently

labelled antibodies against various immune and B cell surface

markers (Table 1). The cells were then permeabilised and further

stained with an intracellular anti-Blimp-1 fluorescently-labelled

antibody, prior to being fixed in 1% formalin in FACS buffer

(42). Stained samples were then run on a BC CytoFLEX S flow
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cytometer (Beckman Coulter, USA) where up to ∼106 live

leukocytes were counted. Data were analysed using FlowJo

Software (version 10.8.1 Tree Star Inc., USA).
2.8 Gating strategy

Spleen and bone marrow ASCs were quantified using a modified

gating strategy adopted from Wilmore et al. (44), where ASCs were

identified as CD138hiSca-1hiBlimp-1+ cells and then further

subdivided into plasmablasts (CD138hiSca-1hiBlimp-1+B220+) and

plasma cells (CD138hiSca-1hiBlimp-1+B220−) (42) (Supplementary

Figure S2). Innate-like B-1 (CD19+B220−), CD23+ and CD23−

conventional B-2 (CD19+B220+) B cells were additionally quantified

to identify potential changes to the B cell compartment in Blimp-1

knockout mice vs. controls as shown in Supplementary Figure S2.
2.9 Quantification of serum antibody titres

Blood samples were allowed to clot at room temperature and

then centrifuged at 2,000×g for 10 min at 4 °C. The supernatant

was collected and stored in 1.5 ml tubes at −80 °C for further

analysis. Frozen serum samples were thawed and their

immunoglobulin isotypes were analysed using a fluorescent bead-

based assay panel (LEGENDplexTM Mouse Immunoglobulin

Isotyping Panel; BioLegend, USA). Briefly, serum samples were

diluted (1:50,000), combined with the bead and assay buffer

mixture, and incubated in V-bottom 96-well microplates for 2 h.

Biotinylated detection antibodies were then added to all microplate

wells and allowed to incubate for 1 h before the addition of

streptavidin-phycoerythrin (SA-PE). The samples were read on a

flow cytometer (BC CytoFLEX S flow cytometer; Beckman

Coulter, USA) and serum IgG1, IgG2a, IgG2b, IgG3, IgA and IgM

concentrations were inferred from corresponding 7-point standard

curves using the LEGENDplexTM Data Analysis Software Suite.
2.10 Histochemical staining

Freshly isolated aortas were immersed in Tissue-Tek® O.C.T

(Sakura Finetek, Japan), snap frozen and cut into 10 μm sections

using a cryostat (CM1850, Leica Microsystems, Germany).

Sections were stained with Masson’s trichrome and imaged by an

Aperio Scanscope AT Turbo scanner (Leica Biosystems,

Australia). Analyses were performed blinded to the treatment

group using the Aperio Imagescope software (Leica Biosystems,

Australia). Aortic collagen deposition was quantified as the

average total adventitial area positively stained for Masson’s

trichrome in two non-serial sections per animal.
2.11 Measurement of vessel stiffness

Pulse wave velocity (PWV, a measure of aortic stiffness) was

measured using high-resolution ultrasound imaging (Vevo 2100,
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FUJIFILM Visualsonics Inc., Canada) (21). Briefly, mice were

anaesthetised with 1.5% isoflurane and placed on a heated

platform. Fur was removed from the abdomen with Nair® and

the exposed skin was coated with ultrasound transmission gel

(Aquasonic, USA). Pulsed-wave doppler images and EKVTM

retrospective acquired B-Mode images were obtained from

longitudinal sections of abdominal aortas (suprarenal) using a

MS-400 ultrasound transducer. Data were analysed using the

VevoLab and VevoVasc software (FUJIFILM Visualsonics Inc.,

Canada) and the ln(D)-V loop method was used to obtain

measures of aortic PWV (45).
2.12 Statistical analyses

The D’Agostino & Pearson test was used to check data

distribution and a ROUT test set to a False Discovery rate of 1%

was used to identify outliers. All analyses were performed with

GraphPad Prism 9.4.0 software (GraphPad Software, San Diego,

California, USA) and hypothesis tests with an alpha probability

of less than 5% (P < 0.05) were considered statistically significant.

Tail-cuff BP datasets were analysed using a mixed effects model

with Geisser-Greenhouse correction, followed by Tukey’s

multiple comparisons test, while flow cytometry datasets were

analysed using a two-way ANOVA followed by Tukey’s multiple

comparisons test. Radiotelemetry data were analysed using a

repeated measures two-way ANOVA with Bonferroni’s multiple

comparisons test. PWV and Masson’s trichrome data were

analysed using Student’s unpaired t-tests. Data are presented as

the mean ± S.E.M. (Standard Error of the Mean).
3 Results

3.1 FoB-Blimp-1-KO mice were protected
from angiotensin II-induced increases in
serum IgG3 without changes in ASC
numbers

Serum IgG3 concentrations were approximately 2.4-fold higher

in control mice infused with angiotensin II than in those infused

with vehicle solutions (Figure 1A). By contrast, angiotensin II

reduced IgG1, IgG2a and IgA in control mice (Figures 1B–D).

FoB-Blimp-1-KO mice had lower basal levels of serum IgG1 and

IgG2a but did not show a change in basal IgG3 levels or

following angiotensin II infusion (Figures 1A–C). Serum IgG2b

and IgM were unaffected by angiotensin II infusion and follicular

Blimp-1 truncation (Figures 1E,F).

Changes in serum antibody isotypes in FoB-Blimp-1-KO mice

occurred independently of B cell commitment to an ASC fate in the

spleen or bone marrow, as shown by the absence of change in total

ASC numbers (Figure 2). Angiotensin II infusion also did not affect

the total number of B cells committed to an ASC fate in either

organ (Figure 2), nor the number of plasmablasts and plasma

cells (Figure 3). As expected, neither Blimp-1 truncation nor

angiotensin II infusion affected the B cell compartment in the
frontiersin.org
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FIGURE 1

Effect of follicular B cell Blimp-1 truncation on serum antibody levels in response to angiotensin II. Serum samples were acquired from control and
FoB-Blimp-1-KO mice for the simultaneous quantification of mouse IgG3 (A), IgG1 (B), IgG2a (C), IgA (D), IgG2b (E) and IgM (F) immunoglobulin
isotypes using a multiplex bead-based assay. Data are represented as the mean ± standard error of the mean. *P value <0.05. **P value <0.01.
***P value <0.001. Treatment effects are indicated at the top of the graphs.

Figueiredo Galvao et al. 10.3389/fcvm.2024.1419958
spleen or bone marrow of control or FoB-Blimp-1-KO mice

(Supplementary Figures S3 and S4).
3.2 FoB-Blimp-1-KO and control mice
developed similar hypertension, cardiac
hypertrophy, fibrosis and aortic stiffening in
response to angiotensin II infusion

Tail-cuff plethysmography revealed that in vehicle-infused

mice, systolic BP remained constant throughout the 28-day study

period (Figure 4A). By contrast, angiotensin II infusion increased

systolic BP within 7 days, reaching a plateau between days 14–21,

and remaining at this heightened level for the remainder of the

28-day study period (Figure 4A). Blimp-1 truncation did not

impact baseline systolic BP in vehicle-infused mice, nor did it

influence the ability of angiotensin II to increase systolic BP at

any of the timepoints post-surgery (Figure 4A). Similar findings

were obtained by radiotelemetry whereby angiotensin II-induced

increases in systolic, diastolic and mean arterial BP did not differ

between control and FoB-Blimp-1-KO mice infused with

angiotensin II (Figure 4B). Thus, the loss of Blimp-1 function in

follicular B cells did not blunt angiotensin II-induced

hypertension. This is in line with heart weight to body weight

ratio (HW:BW) data which revealed FoB-Blimp-1-KO mice to

exhibit similar development of cardiac hypertrophy as control

mice infused with angiotensin II (Figure 4C). Furthermore, the
Frontiers in Cardiovascular Medicine 05
truncation did not affect aortic stiffening as measured by pulse-

wave velocity (Figure 4D) or fibrosis as measured by adventitial

collagen staining (Figure 4E).
4 Discussion

In this study we sought to investigate whether the pro-

hypertensive actions of B cells can be attributed to the

commitment of follicular B cells to an ASC fate. For this, we

used a mouse model with a selective Blimp-1 inactivating

truncation driven by the CD23 expression of Cre recombinase

(FoB-Blimp-1-KO mice). We showed that while the total number

of B cells committed to an ASC fate were not altered in FoB-

Blimp-1-KO mice, the truncation did reduce basal serum IgG1

and IgG2a levels, and prevented the increase in serum IgG3

following angiotensin II infusion, findings consistent with an

impairment in the differentiation of follicular B cells into ASCs.

Nevertheless, FoB-Blimp-1-KO and control mice infused with

angiotensin II displayed similar increases in BP and cardiac

hypertrophy. Moreover, after infusion with angiotensin II FoB-

Blimp-1-KO and control mice exhibited similar aortic collagen

deposition and vascular compliance. As FoB-Blimp-1-KO mice

were still ASC sufficient, it is possible that other B cell subtypes

may have compensated for the developmental block in follicular

B cell-derived ASCs. Unfortunately, as ASCs downregulate the
frontiersin.org
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FIGURE 2

FoB-Blimp-1-KO mice have a similar number of B cells committed to an ASC fate as control mice in the spleen and bone marrow. Representative flow
cytometry plots and bar graphs showing ASC numbers in control and FoB-Blimp-1-KO mice infused with either angiotensin II (0.7 mg/kg/day) or
vehicle (0.5% NaCl, 0.1% acetic acid) solutions for 28 days. ASCs were identified as Sca-1hiCD138hiBlimp-1+ cells, gated from all live splenocytes or
all live bone marrow-derived cells. Data are represented as the mean ± standard error of the mean of the total cell counts per spleen or per
femur. Treatment effects are indicated at the top of the graphs.

Figueiredo Galvao et al. 10.3389/fcvm.2024.1419958
expression of virtually all B cell surface markers (46) it is difficult to

establish whether other subtypes contributed to the remaining ASC

pool. Thus, other B cell subtypes and/or antibody-independent

functions (25–29, 34–38) of B cells may be responsible for the

pro-hypertensive actions of these cells reported in previous

studies (13–15, 21–23).

Studies using the FoB-Blimp-1-KO model have reported

reductions in ASCs and total plasma IgG (26, 47). In the present

study, baseline reductions in serum IgG1 and IgG2a were

consistent with those findings. However, we did not observe a

reduction in total ASCs in FoB-Blimp-1-KO mice. High

expression of the cell surface marker CD138 is widely used to

identify ASCs by flow cytometry (44), especially as CD138
Frontiers in Cardiovascular Medicine 06
expression is one of the first surface markers to be expressed by

mature, activated B cells committed to an ASC fate (48).

However, CD138 expression is not exclusively expressed on ASCs

and may also be present on developing pre-B cells (49). A study

using GFP reporter mice (44) showed ASCs are better identified

by the co-expression of CD138 and Sca-1, where nearly 100% of

cells within this gate expressed Blimp-1. Thus, the discrepancy

between (26, 47) and the present study may be explained by

differences in gating strategies where the former identified ASCs

as CD19−CD138hi cells whereas we used the more stringent

approach of including Sca-1. Nevertheless, given that follicular B

cells are classically associated with the production of high-affinity

class-switched antibodies (33), the lower baseline levels of serum
frontiersin.org
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FIGURE 3

Neither a targeted Blimp-1 truncation nor angiotensin II infusion affected plasmablasts or plasma cells in the spleen or bone marrow. Representative
flow cytometry plots and bar graphs showing plasmablast (PBs) and plasma cell (PCs) numbers in the spleen (panel A) and bone marrow (panel B) of
control and FoB-Blimp-1-KO mice infused with either angiotensin II (0.7 mg/kg/day) or vehicle (0.5% NaCl, 0.1% acetic acid) solutions for 28 days. PBs
were defined as B220+ and PCs as B220- cells gated on Sca-1hiCD138hiBlimp-1+ ASCs. Data are represented as the mean ± standard error of the
mean of the total cell counts per spleen or per femur. Treatment effects are indicated at the top of the graphs.
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FIGURE 4

FoB-Blimp-1-KO mice were not protected from increases in blood pressure, cardiac hypertrophy, fibrosis or aortic stiffening. Blood pressures as
measured by tail-cuff plethysmography (A) and radiotelemetry (B), heart weight to body weight ratio (C), pulse-wave velocity (PWV) (D) and
adventitial collagen deposition (E) of vehicle (0.5% NaCl, 0.1% acetic acid) and angiotensin II (0.7 mg/kg/day) infused mice are shown. Data are
represented as the mean ± standard error of the mean. For systolic blood pressure measurements (A), *indicates a P value <0.05 for Control + Veh
group vs. the Control + Ang II group; #indicates a P value <0.05 for FoB-Blimp-1-KO+ Veh group vs. the FoB-Blimp-1-KO+ Ang II group; For the
heart weight to body weight ratio (C) data **P values <0.01 and ****P value <0.0001. Treatment effects are indicated at the top of the relevant bar
graphs.
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IgG1 and IgG2a provide at least indirect evidence that their

differentiation into ASCs was impaired in our model. This is

supported by another study showing that while Blimp-1 was not

required for initial B cell commitment to an ASC fate, its

expression was necessary for their terminal differentiation and

high-capacity antibody secretion (50). The findings from that

study combined with our more selective approach of identifying

ASCs may, at least in part, explain the lower levels of serum IgG

isotypes despite apparently similar ASC numbers compared

to controls.

Since the ASC population is composed of both plasmablasts

and plasma cells, we sought to investigate whether selective

Blimp-1 knockout or angiotensin II infusion differentially
Frontiers in Cardiovascular Medicine 08
affected these subpopulations. Consistent with their lack of an

effect on total ASC numbers, FoB-Blimp-1-KO mice did not

exhibit fewer plasmablasts or plasma cells in the spleen or bone

marrow than control mice. Similarly, infusion with angiotensin II

did not affect the total number of ASCs, plasmablasts or plasma

cells in the spleen or bone marrow of FoB-Blimp-1-KO or

control mice. These findings are consistent with previous work

(23) and recent work from our group (42) in which there were

no increases in ASCs following angiotensin II infusion.

Innate-like B-1 (B-1a and B-1b) and conventional B-2

(marginal zone and follicular) B cells are the two major B cell

lineages which emerge during embryonic and foetal development,

respectively (51). B-1 cells are regarded as the main source of
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low-affinity polyreactive serum IgM and IgA (52, 53), sometimes

referred to as “natural” antibodies (53). In contrast to B-2 cells,

B-1 cells are devoid of CD23 expression (39). Hence, it is not

surprising that serum IgM and IgA were not altered by FoB-

Blimp-1-deletion. We have previously reported that angiotensin

II infusion increases serum IgG3 in wild-type mice (21). Here,

angiotensin II infusion similarly increased serum IgG3 in control

mice, but not in FoB-Blimp-1-KO mice, suggesting a role for

follicular B cell-derived ASCs in IgG3 production during

hypertension. IgG3 is known to be robustly elevated following T

cell-independent antigen stimulation (54), primarily by B-1 and

marginal zone B cells (55, 56). However, mature recirculating

follicular B cells, which migrate and occupy perisinusoidal niches

in the bone marrow, can respond to T cell-independent antigens

in response to blood-borne infections (57). Thus, it is possible

that follicular B cell activation following angiotensin II infusion

is, at least partially, driven by T cell-independent antigens.

Alternatively, the transient expression of CD23 during marginal

zone B cell development (58), and therefore potentially Cre

recombinase, may have impaired the secretion of marginal zone-

derived antibodies and/or their differentiation into short-lived

plasmablasts (59–62). Recent studies have shown that the

downregulation of the B cell transcriptional program and

upregulation of the plasma cell transcriptional program relies on

a series of coordinated, epigenetic chromatin remodelling events

(63–65). Given that chromatin accessibility is known to impact

the ability of Cre recombinase to access loxP sites (66), Cre

recombinase may have had limited access to the floxed Blimp-1

locus during marginal zone B cell development. Thus, future

studies should investigate whether a CD23-driven truncation of

Blimp-1 impairs marginal zone B cell function and/or

differentiation into ASCs. Nevertheless, since a reduction in IgG3

did not reduce SBP in hypertensive mice, it is unlikely that

IgG3 secretion contributes to BP dysregulation associated with

the condition.

The present study highlights that the differentiation of

follicular B cells into ASCs and/or the secretion of IgG1, IgG2a

and IgG3 may not be the key effector mechanisms mediating the

pro-hypertensive actions of B cells. Given that FoB-Blimp-1-KO

mice were ASC sufficient, it is possible that other B cell subtypes

differentiated into ASCs and compensated for the genetic block

in follicular B cell-derived ASCs. Notwithstanding potential sex-

specific differences and other B cell functions such as antigen

presentation and cytokine secretion, future studies should

consider the contribution of other B cell subsets to hypertension

as these have distinct roles and may respond differently to

hypertensive stimuli.
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