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Background: The relationship between human immunodeficiency virus (HIV)
infection and pulmonary arterial hypertension (PAH) has garnered significant
scrutiny. Individuals with HIV infection have a higher risk of developing PAH.
However, the specific mechanism of HIV-associated PAH remains unclear.
Our study aims at investigating the shared biomarkers in HIV infection and
PAH and predicting the potential therapeutic target for HIV-associated PAH.
Methods: Data for HIV infection and PAH were downloaded from Gene
Expression Omnibus (GEO) database. Differentially expressed genes (DEGs)
analysis was performed to detect shared genes in HIV infection and PAH.
Enrichment analysis was conducted to identify the function of common DEGs.
Protein-protein interaction (PPI) analysis was used to detect key genes. These
crucial genes were subsequently verified by RT-qPCR. Finally, candidate drugs
were identified by using the Drug Signatures Database (DSigDB).
Results: Nineteen common DEGs were identified in HIV infection and PAH.
Enrichment analysis exhibited that the functions of these genes were mainly
enriched in inflammatory responses, mainly including cellular immunity and
interaction between viral proteins and cytokines. By constructing PPI
networks, we identified the key gene CC-type chemokine ligand 5 (CCL5), and
we verified that CCL5 was highly expressed in hypoxia induced human
pulmonary artery endothelial cells (hPAECs) and human pulmonary artery
smooth muscle cells (hPASMCs). In addition, we predicted 10 potential drugs
targeting CCL5 by Autodock Vina.
Conclusion: This study revealed that CCL5 might be a common biomarker of
HIV infection and PAH and provided a new therapeutic target for HIV-
associated PAH. However, further clinical validation is still indispensable.
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Abbreviations

HIV, human immunodeficiency virus; PAH, pulmonary arterial hypertension; GEO, gene expression
omnibus; DEGs, differentially expressed genes; GO, gene ontology; KEGG, Kyoto encyclopedia of genes
and genomes; PPI, protein-protein interaction; CCL5, CC-type chemokine ligand 5; hPAECs, human
pulmonary artery endothelial cells; hPASMCs, human pulmonary artery smooth muscle cells; RT-qPCR,
quantitative real-time polymerase chain reaction; AIDS, Acquired Immunodeficiency Syndrome;
MCODE, molecular complex detection; ssGSEA, single sample gene set enrichment analysis; DSigDB,
drug signatures database; RMSD, root mean square deviation; RANTES, regulated on activation, normal
T cell expressed and secreted; CCR5, C-C chemokine receptor type 5.
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1 Introduction

HIV is a retrovirus that includes two types: HIV-1 and HIV-2

(1). HIV infection is a serious public health problem that has

caused approximately 40 million deaths worldwide (2). Acquired

immunodeficiency syndrome (AIDS) is the final outcome of HIV

infection, and people diagnosed with AIDS often die from

serious infections or cancer because of their highly weakened

immune systems. In recent years, with the application of antiviral

drugs, the life span of HIV infected people has been greatly

extended (3). Thus, the chronic complications of HIV infection

have attracted more attention. Previous studies indicated that

HIV infection was linked to a higher risk of cardiovascular

disease, which may be connected to persistent inflammation (4).

Among them, HIV-associated PAH has received great attention

because of its poor prognosis. A previous study indicated that

PAH was a long-term complication of HIV infection, and

individuals with HIV-associated PAH had a worse survival rate

compared with HIV-positive patients without PAH (5). The

prevalence of PAH is 0.5% in HIV-positive individuals, which is

much greater than that in HIV-negative individuals (6).

As a subtype of pulmonary hypertension, pulmonary arterial

hypertension is distinguished by pulmonary arterial remodeling.

Right heart failure is the usual cause of death for PAH patients,

causing a huge disease burden (7). Studies elucidating the

mechanism of the relationship between HIV infection and PAH

are very limited. DNA damage response and chronic

inflammation may contribute to the development of HIV-

associated PAH (8, 9). Besides, previous studies showed that

increased levels of asymmetric dimethylarginine (10) and smooth

muscle cell proliferation (11) also played key roles in HIV-

associated PAH. In order to detect novel therapeutic targets for

HIV-associated PAH, studying the common mechanism between

PAH and HIV infection is very crucial.

Nowadays, we are able to better understand diseases owing to

advancements in sequencing technology and bioinformatics

analysis. In this study, we identified the common biomarkers

between HIV infection and PAH and predicted potential drugs

for HIV-associated PAH.
2 Materials and methods

2.1 Transcriptome data

Datasets on HIV infection and pulmonary arterial

hypertension were obtained from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/) (12). For discovery cohorts, dataset

GSE37250 contained 274 HIV-positive and 263 HIV-negative

whole blood samples (13), and dataset GSE117261 included lung

tissue samples from 58 PAH patients and 25 controls (14). For

validation cohorts, dataset GSE30310 involved 48 HIV-positive

and 19 HIV-negative peripheral blood mononuclear cell samples

(15), and dataset GSE53408 comprised lung tissue samples from

12 PAH patients and 11 healthy controls (16). All the data were

derived from human species. Details of these datasets can be
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found in Supplementary Table S1. Figure 1 (by Figdraw) exhibits

the workflow of this study.
2.2 Identification of common DEGs

DEGs analysis was performed by using “limma” package. For

dataset GSE37250, the cutoff criteria was |Log2 fold change| >0.1

and adjusted P-value <0.001 (17). For dataset GSE117261, the

cutoff criteria was |Log2 fold change| >0.585 and adjusted P-

value <0.05 (18). The above results were visualized by heatmaps

and volcano plots. The common DEGs of the two diseases were

obtained by using “venn” package (19).
2.3 Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses are commonly used to

find the biological function of gene sets (20, 21). We conducted

function enrichment analysis of common DEGs by using

“ClusterProfiler” package. P-value <0.05 was considered significant.
2.4 PPI network

Using the STRING database (version 12.0; https://cn.string-db.

org/) (22), we built a PPI network of common DEGs. The

minimum required interaction score was 0.150, and unconnected

nodes were hidden. Besides, the PPI network was visualized by

Cytoscape (version 3.10.1) (23). Subsequently, Molecular

Complex Detection (MCODE) (24) was used to identify

functional modules, and the default parameters were set as

follows: degree cutoff = 2, node score cutoff = 0.2, K-core = 2, and

max depth = 100. Finally, the top ten genes were identified by

CytoHubba plugin according to Degree algorithm (25).
2.5 Immune cells infiltration analysis

Single sample gene set enrichment analysis (ssGSEA) algorithm

was utilized to calculate enrichment scores between distinct groups

by “GSVA” R package (26, 27). Next, the abundance of 28 types of

immune cells in each group was visualized. Plus, we explored the

linkage between hub genes and immune cells by Spearman’s rank

correlation analysis.
2.6 Cell culture

hPAECs were purchased from ScienCell (Shanghai, China, Cat.

No. 3100). hPASMCs were obtained from Procell (Wuhan, China,

Cat. No. CP-H243). They were cultured in endothelial cell medium

(ScienCell, Cat. No. 1001) and smooth muscle cell medium

(Procell, Cat. No. CM-H243), respectively, at 37°C with 5% CO2.
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FIGURE 1

The workflow of this study. HIV, human immunodeficiency virus; GEO, gene expression omnibus; DEGs, differentially expressed genes; GO, gene
ontology; KEGG, Kyoto encyclopedia of genes and genomes; PPI, protein-protein interaction; RT-qPCR, quantitative real-time polymerase
chain reaction.
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Hypoxia induced hPAECs and hPASMCs were incubated with 2%

O2, 5% CO2 and 93% N2 at 37°C for 24 h in anoxic incubators.
2.7 Quantitative real-time PCR

RNA was extracted from cells by Trizol reagent (Invitrogen,

USA, Cat. No. 15596026). Next, the purity of the RNA was

determined using NanoDrop 2000 (Thermo, USA). Then, the

PrimeScript®RT Reagent Kit with gDNA Eraser (Takara, Japan,

Cat. No. RR047A) was used for reverse transcription in T100

Thermal Cycler (Biorad, USA). Finally, qPCR was executed

employing the SYBR®Premix Ex TaqII kit (Takara, Japan, Cat. No.

RR820A) in qPCR instrument (Applied Biosystems 7500, USA).

The primer sequences are displayed in Supplementary Table S2.
2.8 Gene-disease association analysis

DisGeNET is one of the largest collections of genes and

variants linked to human disease (28). We constructed gene-

disease association networks filtering by disease class infections
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and cardiovascular diseases, respectively. The above process was

completed in DisGeNET Cytoscape App (version 7.3.0).
2.9 Validation of the docking protocol and
molecular docking

The top ten candidate drugs with the best statistical significance

were obtained from DSigDB database (29) by Enrichr (https://

maayanlab.cloud/Enrichr/) (30) (Supplementary Figure S1). Small

molecule drug structures were obtained from PubChem (https://

pubchem.ncbi.nlm.nih.gov/). Structures of CCL5 (PDB code:

5DNF) were accessed from the PDB database (https://www.rcsb.

org/). Autodock Vina software (31) and Pymol (32) were used for

validation of the docking protocol and molecular docking. Firstly,

the co-crystalline ligand (beta-D-glucopyranose) of CCL5 was

extracted and saved. Then the co-crystalline ligand was re-docked

with CCL5. The root mean square deviation (RMSD) between the

conformation of the redocked ligands and the conformation of

the original crystal structure was calculated to validate the

docking protocol (33). Finally, the molecular docking process

between ten drugs and CCL5 was carried out.
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2.10 Statistical analysis

R software (v. 4.3.0) and GraphPad Prism (v.9.5.1) were

employed in statistical analysis. Correlation between CCL5 and

immune cells was determined by Spearman correlation analysis.

P-value <0.05 was considered statistically significant.
3 Results

3.1 Identification of DEGs in HIV infection
and PAH

2216 DEGs and 307 DEGs were identified in datasets

GSE37250 and GSE117261, respectively (Supplementary

Table S3). Figures 2A,B showed the DEGs of HIV infection, and

Figures 2C,D showed the DEGs of PAH. Further, the common

DEGs were identified, and 12 up-regulated and 7 down-regulated

genes were detected in HIV infection and PAH (Figures 2E,F).
3.2 Functional enrichment analysis
of shared genes between HIV infection
and PAH

To investigate the possible common mechanism between HIV

infection and PAH, GO and KEGG enrichment analyses were

performed. According to GO analysis, these shared genes were

mostly associated with positive regulation of mononuclear cell

migration, cellular extravasation, positive regulation of T cell

proliferation (biological process), fibrillar center (cellular

component), and CCR chemokine receptor binding (molecular

function) (Figure 3A). Besides, KEGG enrichment indicated that

these genes were mainly related to viral protein interaction with

cytokine and cytokine receptor (Figure 3B).
3.3 PPI network and identification of
hub genes

As shown in Figures 4A,B, a PPI network was constructed and

visualized. Next, we extracted one closely related gene cluster

module using the MCODE plug-in (Figure 4C). Subsequently,

the top 10 candidate hub genes were screened by the Degree

algorithm. As shown in Figure 4D, the top three genes were

CCL5, GZMA, and CCR2. They were closely linked.
3.4 Validation and diagnostic values of
hub genes

The expression levels of CCL5, GZMA, and CCR2 were

analyzed in validation cohorts GSE30310 and GSE53408. Only

CCL5 showed significant differences in both validation groups

(Figures 5E,G). For dataset GSE30310, there was no significant

difference in CCR2 (Supplementary Figure S2), and GZMA was
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not detected. Similarly, for dataset GSE53408, the expression

level of GZMA was significantly increased in the PAH group

(Supplementary Figure S3), but CCR2 was not detected.

Therefore, CCL5 was identified as a hub gene in HIV infection

and PAH.

To make our study more credible, we evaluated the expression

levels and diagnostic values of CCL5 in both the discovery cohort

and the validation cohort. In the discovery cohort, CCL5 was

upregulated in HIV infection group (Figure 5A) and PAH group

(Figure 5C). The receiver operating characteristic curves (ROC

curves) showed certain diagnostic values of CCL5 (Figures 5B,D).

Similarly, in the validation cohort, CCL5 was upregulated in the

disease group with certain diagnostic values (Figures 5E–H).
3.5 Immune infiltration analysis

Immune infiltration analysis showed the roles that immune

cells played in HIV infection and PAH. In the HIV infection

group, the proportion of activated CD4 T cells, activated CD8 T

cells and activated dendritic cells increased, and there was a

decline in the percentage of effector memory CD4 T cells,

monocytes, and neutrophils (Figures 6A,B). In the PAH group,

the proportion of activated B cells, activated CD8 T cells and

eosinophils increased, and the proportion of activated

dendritic cells, neutrophils, and regulatory T cells decreased

(Figures 6C,D). Correlation analysis showed a correlation

between CCL5 and immune cells. In dataset GSE37250, CCL5

was positively related to effector memory CD4 T cells, activated

CD4 T cells, and activated CD8 T cells (Figure 6E). CCL5 was

also positively correlated with the above immune cells in

dataset GSE117261 (Figure 6F).
3.6 Validation of CCL5 expression in cells

The results of the PCR indicated that the expression of CCL5

was increased significantly in hypoxia-induced hPAECs and

hPASMCs (Figures 7A,B).
3.7 Gene-disease association network

Figure 8A showed the association between CCL5 and

infections, including HIV infection. In addition, Figure 8B

showed the association between CCL5 and cardiovascular disease,

including PAH.
3.8 Validation of docking protocol and
molecular docking

The native co-crystallized ligand of CCL5 was extracted and re-

docked by Autodock (Supplementary Figure S4). The calculated

RMSD value was 0.266Å, which was less than 2Å, indicating that

the docking protocol was valid. Besides, molecular docking was
frontiersin.org
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FIGURE 2

DEGs in HIV infection and PAH group. (A,B) Heatmap and volcano plot of DEGs in HIV infection. (C,D) Heatmap and volcano plot of DEGs in PAH. (E,F)
The intersection of DEGs between HIV infection and PAH. DEGs, differentially expressed genes; HIV, human immunodeficiency virus; PAH, pulmonary
arterial hypertension.
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FIGURE 3

Enrichment analysis of common DEGs between HIV infection and PAH. (A) GO enrichment analysis of common DEGs between HIV infection and PAH.
(B) KEGG enrichment analysis of common DEGs between HIV infection and PAH. DEGs, differentially expressed genes; HIV, human immunodeficiency
virus; PAH, pulmonary arterial hypertension; GO, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes; BP, biological process; CC,
cellular component; MF, molecular function.

FIGURE 4

PPI network. (A) PPI network of common DEGs between HIV infection and PAH. (B) PPI network visualized by Cytoscape. Up-regulated and down-
regulated genes were marked in red and green, respectively. (C) Sub-cluster of PPI network by MCODE. (D) Top ten hub genes according to Degree
algorithm. PPI, protein-protein interaction; DEGs, differentially expressed genes.

Yang et al. 10.3389/fcvm.2024.1417701
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FIGURE 5

Expression levels and diagnostic values of CCL5. (A) Expression level of CCL5 in the discovery cohorts for HIV infection (GSE37250). (B) ROC curve of
CCL5 in the discovery cohorts for HIV infection (GSE37250). (C) Expression level of CCL5 in the discovery cohorts for PAH (GSE117261). (D) ROC curve
of CCL5 in the discovery cohorts for PAH (GSE117261). (E) Expression level of CCL5 in the validation cohorts for HIV infection (GSE30310). (F) ROC
curve of CCL5 in the validation cohorts for HIV (GSE30310). (G) Expression level of CCL5 in the validation cohorts for PAH (GSE53408). (H) ROC curve
of CCL5 in the validation cohorts for PAH (GSE53408). HIV, human immunodeficiency virus; PAH, pulmonary arterial hypertension; ROC, receiver
operating characteristic; CCL5, CC-type chemokine ligand 5.
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FIGURE 6

Immune infiltration analysis. (A) Heatmap of immune cells between control and HIV infection groups. (B) Violin plot of immune cells fraction between
control and HIV infection groups. (C) Heatmap of immune cells between control and PAH groups. (D) Violin plot of immune cells fraction between
control and PAH groups. (E) Correlation analysis of immune cell and CCL5 in GSE37250. (F) Correlation analysis of immune cell and CCL5 in
GSE117261. HIV, human immunodeficiency virus; PAH, pulmonary arterial hypertension; CCL5, CC-type chemokine ligand 5.
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performed between the ten potential drugs and CCL5. All of the

anticipated binding sites had binding energies of less than

−5 kcal/mol (Supplementary Table S4), suggesting that ligands

can spontaneously attach to the receptor molecule. The binding

modes and binding interactions between candidate drugs
Frontiers in Cardiovascular Medicine 08
(ligands) and CCL5 were displayed in Figure 9. Ligands were

located in the active pocket. Except for ticlopidine, the other

ligands were bound to amino acid residues around the active

pocket by forming hydrogen bonds, indicating that they formed

stable conformations.
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4 Discussion

This study aimed to explore the shared biomarkers between

HIV infection and PAH and seek potential therapeutic targets

for HIV-associated PAH. We found that CCL5 may be a key

gene in HIV-associated PAH, and several potential drugs were

identified. Over the past few decades, it has been recognized that

there is a correlation between HIV infection and PAH. Kim and

Factor reported the first case report of a man with both HIV
FIGURE 8

Gene-disease association network. (A) The association between CCL5 and in
CCL5, CC-type chemokine ligand 5.

FIGURE 7

Expression of CCL5 in hPAECs and hPASMCs. (A) Expression level of
CCL5 between control and hypoxia groups in hPAECs. (B) Expression
level of CCL5 between control and hypoxia groups in hPASMCs.
hPAECs, human pulmonary artery endothelial cells; hPASMCs,
human pulmonary artery smooth muscle cells. n= 3, *P < 0.05,
**P < 0.01.
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infection and pulmonary arterial hypertension in 1987 (34).

Shortly thereafter, more similar cases were reported, which

revealed a possible correlation between HIV infection and PAH

(35). HIV-positive individuals have a 1,000-fold higher risk of

PAH than the general population (36). So far, the

pathophysiological mechanism of PAH in HIV-infected people

has not been clarified, and it may be related to the HIV-viral

proteins GP120, TAT, and NEF. HIV-viral proteins lead to

pulmonary artery endothelial damage through inflammatory

responses, which further leads to pulmonary artery remodeling

and pulmonary hypertension (37). However, its mechanism at

the gene level needs to be further revealed.

In this study, we performed DEGs analysis on the HIV

infection dataset and the PAH dataset, respectively. By

intersecting the above two DEGs sets, 19 common DEGs were

obtained. Functional enrichment analyses were conducted to

investigate the biological functions of the above genes. GO

analysis showed that the common DEGs were mainly enriched in

positive regulation of mononuclear cell migration, positive

regulation of T cell proliferation, and CCR chemokine receptor

binding, which are mainly involved in inflammatory responses. It

is consistent with previous studies. Immune activation and

chronic inflammatory responses play important roles in HIV

infection. HIV targets monocyte-derived dendritic cells,

monocyte-derived macrophages, and CD4 T cells with the help

of chemokine receptors to activate a series of complex signaling

pathways that cause the long-term activation of inflammatory

responses (38, 39). Similarly, in PAH, chemokines recruit various

immune cells in lung tissue, including monocytes and T cells,

and promote pulmonary artery hypertension by producing a

series of inflammatory factors (40). Furthermore, KEGG
fections. (B) The association between CCL5 and cardiovascular diseases.
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FIGURE 9

Molecular docking results of ten potential drugs and CCL5. Hydrogen bonds were displayed in blue dashed lines. Amino acid residues were labeled
yellow. (A) Proscillaridin. (B) Flunisolide. (C) Alexidine. (D) Palmatine. (E) Prazosin. (F) Dequalinium. (G) Triamcinolone. (H) Formoterol. (I) Ticlopidine. (J)
Clopidogrelum. CCL5, CC-type chemokine ligand 5.
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enrichment analysis revealed that the shared genes were mainly

enriched in viral protein interaction with cytokine and cytokine

receptor. This is somewhat in line with previous studies. HIV-

associated PAH might possess the following pathogenesis: HIV

viral proteins bind to receptors on lung endothelial cells,
Frontiers in Cardiovascular Medicine 10
promoting cytokine release and inflammation, thus resulting in

vascular remodeling and pulmonary hypertension (35).

Therefore, we can conclude that immune activation and

inflammatory responses play an important role in HIV infection

and PAH.
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In order to further identify the key genes, we constructed a PPI

network. Moreover, it was further confirmed in the validation

cohort that CCL5 was highly expressed in HIV infection and

PAH, enhancing the reliability of our study.

CCL5 (CC-type chemokine ligand 5), also known as RANTES

(Regulated on Activation, Normal T Cell Expressed and Secreted),

is mainly secreted by activated T cells. Numerous previous

investigations demonstrated that CCL5 played a crucial role in

human diseases, including solid tumors (41), autoimmune

diseases (42), metabolic diseases (43), etc. Similarly, CCL5 is

essential for HIV infection and PAH, although the exact

mechanism remains to be further studied.

CCL5 was identified as an HIV-suppressive factor produced by

CD8 T cells according to a previous study (44). A clinical study

showed that the expression levels of CCL5 in HIV-infected

people was increased compared with HIV-negative controls (45).

A meta-analysis showed that the expression level of CCL5 was

negatively associated with the risk of HIV infection. CCL5 can

competitively bind to CCR5 or promote the internalization of

CCR5, thereby preventing the entry and replication of HIV (46).

The expression level of CCL5 in individuals with HIV infection

may be influenced by many factors. In HIV-positive individuals,

the increased cell frequency of memory-like NK cells (47), virtual

memory CD8 T cells (48), and co-infection with the human T

cell lymphotropic virus (HTLV) (49) may elevate the expression

of CCL5, playing a role in anti-HIV and delaying AIDS.

Consistent with previous studies, we discovered that CCL5

expression was markedly elevated in the HIV infection group,

which may be connected to the activation of cellular immune

responses caused by viral infection.

In addition, CCL5 expression was positively correlated with the

risk of PAH. A recent study showed that CCL5 expression levels

were significantly elevated in the pulmonary endarterectomy

tissue of patients with chronic thromboembolic pulmonary

hypertension compared to healthy controls, and CCL5 may lead

to pulmonary hypertension by promoting fibroblast migration

(50). A study indicated that CCL5-CCR5 pathway was activated

in PAH, thus promoting macrophage recruitment and

pulmonary-artery smooth muscle cells proliferation (51). Besides,

another study indicated that CCL5 promoted platelet activation,

thus leading to endothelial cell injury and vascular remodeling in

PAH (52). Furthermore, a study showed that CCL5 deficiency

could reverse hypoxia-induced pulmonary hypertension by

restoring bone morphogenetic protein receptor 2 (BMPR2)

signaling (53). Consistent with previous studies, our study

indicated that the expression level of CCL5 was increased in

transcriptome data. To make our study more rigorous, in vitro

experiments were conducted. Hypoxia-induced hPAECs and

hPASMCs are commonly used to construct models of PAH. Our

study indicated that CCL5 was highly expressed in hypoxia-

induced hPAECs and hPASMCs, suggesting that CCL5 may

promote the pathogenesis of PAH. It was consistent with our

findings in the transcriptome data. In a word, although CCL5

plays a beneficial role in HIV infection, elevated levels of CCL5

promote the progression of PAH. Therefore, we can reasonably

speculate that CCL5 is a key gene in HIV-associated PAH.
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Regulating the expression of CCL5 may be a target for the

treatment of HIV-associated PAH in the future. Previous studies

have revealed several drugs that can regulate the expression of

CCL5. A study showed that dimethylfumarate downregulated the

secretion of CCL5 by inhibiting NF-KB (54). Similarly, Chen

et al.’s study indicated that traditional Chinese medicines

Shuanghuanglian and Qingkailing inhibited the expression of

CCL5 by suppressing NF-kB (55). Likewise, Terminalia chebula

Retz. Extract (56), desipramine, and atomoxetine (57) have been

proven to downregulate the expression level of CCL5. Therefore,

we speculated that the above drugs might play a role in the

treatment of HIV-associated PAH by inhibiting the expression

level of CCL5.

Furthermore, several drugs that target CCL5 were predicted

using the DSigDB, including proscillaridin, flunisolide,

alexidine, palmatine, prazosin, dequalinium, etc. Proscillaridin is

a cardiac glycoside that can alleviate heart failure by inhibiting

the Na+/K + pump (58), and it can also promote tumor cell

apoptosis, thus playing an anti-tumor role (59). Flunisolide is

a corticosteroid that is used in asthma and rhinitis by reducing

inflammatory responses (60). These drugs may delay the

progression of HIV-associated PAH by reducing the

inflammatory responses. However, studies on the application of

the above candidate drugs in HIV-related PAH are very limited.

Our study provides a new idea for drug development in HIV-

related PAH in the future. Due to the fact that the effect of the

candidate drugs in vivo cannot be predicted by molecular

docking, further studies are needed.

There are some advantages in our study. Firstly, previous

studies on the common mechanisms of HIV infection and PAH

are very limited. This was the first study to explore shared

biomarkers between HIV infection and PAH by using

bioinformatics methods, and the key role of inflammatory

responses in HIV infection and PAH was identified by

enrichment analysis and immune infiltration analysis, providing

new diagnostic and treatment targets for HIV patients with PAH.

Besides, the above findings were verified in validation datasets

and in vitro experiments, which strengthened the persuasiveness

of this study. Lastly, candidate drugs were predicted by molecular

docking, which provided new ideas for drug development in

the future.

Nevertheless, there are some shortcomings in our study. First

of all, although our study was intended to explore the shared

genes of HIV infection and PAH, we were unable to obtain

transcriptome data from patients with both HIV infection and

PAH. It is necessary to collect clinical samples for further

analysis in the future. Secondly, our study did not clarify the

specific mechanism by which CCL5 promotes the development

of PAH, and further animal or cell experiments are required.

Lastly, the specific mechanisms of interactions of 10 potential

drugs with CCL5 are unknown, and further studies are required.

In conclusion, our study identified shared biomarkers in HIV

infection and PAH. We illustrated that immune responses might

be a key step in HIV infection and PAH, and CCL5 was a key

gene in HIV-associated PAH. Finally, ten candidate drugs were

predicted for HIV-associated PAH.
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