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Despite significant advances in diagnosis and treatment over recent decades,
cardiovascular disease (CVD) remains one of the leading causes of morbidity
and mortality in Western countries. This persistent burden is partly due to the
incomplete understanding of fundamental pathogenic mechanisms, which
limits the effectiveness of current therapeutic interventions. In this context,
recent evidence highlights the pivotal role of immuno-inflammatory activation
by the gut microbiome in influencing cardiovascular disorders, potentially
opening new therapeutic avenues. Indeed, while atherosclerosis has been
established as a chronic inflammatory disease of the arterial wall,
accumulating data suggest that immune system regulation and anti-
inflammatory pathways mediated by gut microbiota metabolites play a crucial
role in a range of CVDs, including heart failure, pericardial disease,
arrhythmias, and cardiomyopathies. Of particular interest is the emerging
understanding of how tryptophan metabolism—by both host and microbiota—
converges on the Aryl hydrocarbon Receptor (AhR), a key regulator of immune
homeostasis. This review seeks to enhance our understanding of the role of
the immune system and inflammation in CVD, with a focus on how gut
microbiome-derived tryptophan metabolites, such as indoles and their
derivatives, contribute to cardioimmunopathology. By exploring these
mechanisms, we aim to facilitate the development of novel, microbiome-
centered strategies for combating CVD.
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1 Introduction

Cardioimmunology is a field of study that focuses on the interactions between the

cardiovascular system and the immune system (1–5). It explores how the immune

system can impact various cardiovascular diseases, such as atherosclerosis, myocardial

infarction, cardiomyopathies, arrhythmias and heart failure. Research in

cardioimmunology aims to understand the complex mechanisms by which immune

cells and molecules contribute to both the pathogenesis and resolution of cardiovascular

diseases (CVD) (6). By uncovering these interactions, scientists hope to develop new
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strategies for preventing and treating cardiovascular conditions

through targeted immunomodulatory therapies (7).

Cardioimmunology, indeed, is a relatively new and rapidly

growing field that focuses on the intersection of CVD and the

immune system (8). It explores the complex interactions between

the immune system and the cardiovascular system, as well as the

role of inflammation in the development and progression of

various cardiovascular conditions (9, 10). In the last decade, the

systemic dimension has emerged as a predictor of CVD, alongside

cardiomyopathies and arrhythmias. Immunomodulation in the

local microenvironment, metabolism and mitochondria of the

cardiac tissue are highly responsive to the environment (10–15).

Experiments involving factors such as gut microbial composition

(e.g., considering the host-microbiome dyad as a “superorganism”),

the circadian clock (16) or hypoxia (17) have been shown

to impact tissue function, leading to conditions such as

cardiometabolic disorders, myocarditis, arrhythmias along with

tissue remodeling notably with occurrence of fibrosis. Similarly,

systemic inflammation, immune cells and oxidative stress also

contribute to the pathogenesis of hypertension, which is a

significant risk factor for CVD, through vascular inflammation and

microvascular remodeling (18).

Mapping cell destinies, depleting and regenerating immune

cells in experimental models of heart disease, along with

analyzing the human heart at a cellular level, significantly

enhance our comprehension of the intricate communication

between immune and non-immune cells within the heart

(19, 20). Although the immediate immune reaction is crucial for

triggering inflammation and repairing tissue after damage,

prolonged activation leads to harmful effects, influencing negative
FIGURE 1

The figure recapitulates key aspects of cardioimmunology within text box
described in the text. Created with BioRender.com.
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changes in the heart’s structure and function. Identifying the

precise roles of immune cells within the cardiac setting opens up

novel avenues for adjusting immune responses to manage

inflammation effectively in cases of heart diseases.
2 Key aspects of cardioimmunology

The heart incorporates immune cells as crucial cellular

elements that engage in communication with resident cardiac

cells in situations of homeostasis, cardiac injury, and remodeling

(21, 22). These discoveries play a pivotal role in shaping and

broadening the emerging domain of cardioimmunology. In this

analysis, we examine the latest literature related to this subject

and deliberate on the ongoing and prospective initiatives aimed

at propelling this field ahead. Some of the crucial aspects of

cardioimmunology are depicted in Figure 1 and listed below.

(a) Inflammation and cardiovascular disease: Chronic inflammation

is now recognized as a key driver of CVD, including

atherosclerosis, cardiomyopathies, arrhythmias, heart failure,

and myocarditis. Immune cells and inflammatory mediators

play a crucial role in the development of these conditions (12, 23).

(b) Immune cells in cardiovascular health and disease: Immune cells

such as macrophages, T cells, and neutrophils play important

roles in maintaining cardiovascular health and responding to

injury or infection in the heart and blood vessels (22).

(c) Immunomodulatory therapies for CVD: Researchers are

exploring the potential of targeting the immune system to

develop novel therapies for CVD (24). This includes
es departing from immune cells overlying a human heart. Details are
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BOX 1 The role of immunity and inflammation in arrhythmia
development.

Arrhythmias associated with autoimmunity and

inflammation occur through at least four mechanisms that

disrupt electrical coupling:

1. Autoimmunity targeting ion channels and junctional

molecules of the intercalated disc and lateral gap

junctions. The clinical manifestation involves the presence

of autoantibodies against ion channels (Na+, Ca2+, K+)

and junctional molecules (connexins and intercalated disc

molecules). It has been proposed that these arrhythmias

may respond to mild immunosuppressive treatment, which

suppresses autoantibody production (30).

2. Direct effects of proinflammatory mediators and

cytokines on channel function and gap junction

coupling. Molecules like histamine and prostaglandins,

which increase cytosolic c-AMP/c-GMP, temporarily

disrupt cell-to-cell junctions, leading to electrical

uncoupling between cardiomyocytes at the intercalated disc

level (31). Cytokines such as TNF-α, IL-1β, and IL-6 can

also affect both cardiomyocyte channels and gap junctions,

thus influencing electrical activity and leading to cytokine-

associated arrhythmias (32).

3. Immuno-mediated damage of excitable and conduction

tissue, resulting in blocks, bradycardias, and various types

of tachyarrhythmia (33–35). Myocardial cell death and

myocardiosclerosis following immuno-inflammation are

frequent arrhythmic causes in myocarditis. Also, these

arrhythmias may respond to mild immunosuppressive

treatment, when allowing the repair of sublethally

damaged tissue.

4. Arrhythmogenic cardiomyopathy, a rare heart disease

characterized by structural and electrical alterations,

including abnormalities in intercalated discs and fibro-fatty

replacement of ventricular myocardium. While familial

genetic factors play a significant role in its pathogenesis,

subsequent alterations in intercalated disc junctional

complexes contribute to the clinical presentation, especially

involving desmosome and tight junction components.

Autoantibodies against tight junction and desmosome-

associated molecular components have been described (36).

Russo et al. 10.3389/fcvm.2024.1411306
investigating the use of anti-inflammatory agents, immune-

modulating drugs, and biologics to reduce inflammation and

improve outcomes in patients with heart disease (25–27).

(d) Biomarkers of inflammation in CVD: Biomarkers of

inflammation, such as C-reactive protein and IL-6, are used

to assess the level of inflammation in patients with CVD.

Monitoring these biomarkers can help guide treatment

decisions and predict outcomes (28).

(e) Cardiovascular complications of autoimmune diseases: Some

autoimmune diseases, such as rheumatoid arthritis and

systemic lupus erythematosus, are associated with an

increased risk of cardiovascular complications due to chronic

inflammation and immune system dysregulation (29).

(f) Ongoing directions: Current research in cardioimmunology

aims to further elucidate the mechanisms underlying the

crosstalk between the immune system and the cardiovascular

system, identify new therapeutic targets, and develop

personalized approaches to prevent and treat CVD based on

immunological profiles (10). Paradigmatic in this context

are the mechanistic studies linking autoimmunity and

inflammation to the development of arrhythmia (Box 1).

Overall, cardioimmunology represents an exciting and

promising area of research that has the potential to improve our

understanding of CVD and lead to the development of

innovative therapies to combat these conditions. In particular,

some emerging areas of particular interest are represented by:

(i) The role of the gut microbiota and products thereof. The gut

microbiota plays a pivotal role in educating and modulating

the immune system, influencing the balance between

pro-inflammatory and anti-inflammatory responses. On the

one hand, dysbiosis of the gut microbiota, characterized

by alterations in microbial composition and function,

has been linked to immune dysregulation and chronic

low-grade inflammation, which are key drivers of

atherosclerosis, hypertension, and other cardiovascular

conditions. Understanding the interconnections between the

cardiovascular and the gut microbiota opens avenues for

developing novel therapeutic strategies (37, 38). On the other

hand, the intricate crosstalk between the gut microbiota and

the cardiovascular system underscores the importance of

considering the gut as a key player in cardioimmunology

(39). By elucidating the mechanisms by which the gut

microbiota influences immune responses, inflammation,

and metabolism in the context of cardiovascular health,

researchers may uncover novel therapeutic targets and

strategies for the prevention and management of several

pathologic conditions, including CVD (39, 40).

(ii) The potential role of anti-inflammatory biologics in CVD. The

gut microbiota produces a myriad of bioactive metabolites and

signaling molecules that can impact immune function and

cardiovascular health. Short-chain fatty acids (SCFAs),

produced through the fermentation of dietary fibers by gut

bacteria, have been shown to exert immunomodulatory

effects by regulating the differentiation and activity of

immune cells, thereby influencing inflammation in the
Frontiers in Cardiovascular Medicine 03
cardiovascular system (41). Beyond SCFAs, the gut

microbiota generates a diverse array of metabolites, including

trimethylamine N-oxide (TMAO), lipopolysaccharides (LPS),

and bile acids (BAs), which have been implicated in the

pathogenesis of CVD (42). On the one hand, the exploration

of anti-inflammatory biologics in cardiovascular diseases,

particularly anti-inflammatory and immunomodulatory indole

derivatives, represents an exciting avenue for research and

therapeutic development (43). While there is evidence

suggesting their potential benefits, ongoing studies and further

clinical trials are necessary to establish their role in specific
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BOX 2 Autoimmune myocarditis in viral infection.

Autoimmune myocarditis is often indirectly linked to viral

infections (53). One potential contributing factor is the release

or exposure of cardiac myosin following viral-mediated

myocyte damage, triggering autoimmune responses and

myocardial inflammation (54, 55). Fulminant myocarditis

spontaneously develops in Pdcd1–/– Ctla4+/– mice. Axelrod

et al. (56) conducted single-cell sequencing and TCR

sequencing of immune cells infiltrating these myocarditis

tissues, revealing a significant increase in the number of

CD8+ T cells with clonal expansions. The removal of CD8+

T cells prevented myocarditis development, while the

removal of CD4+ T cells did not alter myocarditis

incidences. Adoptively transferring CD8+ T cells from

Pdcd1–/– Ctla4+/– mice to Rag1–/– mice led to myocarditis

development after two months, emphasizing the pivotal role

of CD8+ T cells in fulminant myocarditis (56). Additionally,

a recent study highlighted macrophage migration as a

notable histopathological feature of myocarditis, suggesting

that targeting macrophages could be a potential therapeutic

approach for this disease (57). Treating mice with a nontoxic

endogenous Aryl hydrocarbon Receptor (AhR) ligand, ITE

[2-(1’H-indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl

ester] ameliorated cardiac function. It was hypothesized that

activation of AhR by ITE in myocardial infarction mice

would boost regulatory T-cell differentiation, modulate

macrophage activity, and facilitate infarct healing (58).

Russo et al. 10.3389/fcvm.2024.1411306
patient populations and to refine treatment strategies. On the

other hand, chronic inflammation is a hallmark of many

cardiovascular diseases, and the gut microbiota has been

implicated in the regulation of inflammatory pathways that

contribute to vascular dysfunction and atherogenesis. Through

the activation of toll-like receptors and nucleotide-binding

oligomerization domain-like receptors, gut-derived microbial

products can trigger inflammatory cascades that promote

the development of cardiovascular pathology. Some biologics

that target inflammatory pathways, such as TNF-α inhibitors

or IL-1 inhibitors (26, 27, 44), may have indirect heart-

protective effects by reducing systemic inflammation, which

is a risk factor for cardiovascular disease (45). Overall,

targeting the gut microbiota represents a promising avenue

for the development of novel therapeutic strategies in

cardioimmunology. Approaches such as probiotics, prebiotics,

postbiotics, and fecal microbiota transplantation offer the

potential to modulate the gut microbiota composition and

activity, thereby influencing immune responses and mitigating

cardiovascular risk factors (46–48).

(iii) Vaccination and cardiovascular health. Some research in

cardioimmunology explores the impact of vaccinations on

cardiovascular health. For instance, vaccines targeting

infectious agents may not only prevent infections but

also impact the risk of cardiovascular events associated

with inflammation. In particular, vaccination plays a crucial

role in maintaining overall health, including cardiovascular

health. While vaccines primarily target specific infections,

their impact can extend beyond preventing the targeted

diseases. Here are some aspects of vaccination and

cardiovascular health (49). A prototypic example is

represented by influenza vaccine: Influenza infections can

lead to respiratory complications, and severe cases may

have cardiovascular implications. By preventing the flu,

the vaccine helps reduce the risk of influenza-related

cardiovascular events. Not secondarily, COVID-19, caused

by the SARS-CoV-2 virus, has been associated with various

cardiovascular complications. These include myocarditis,

pericarditis, and an increased risk of blood clot formation.

COVID-19 vaccination has been shown to be effective in

preventing severe illness and complications, including those

related to the cardiovascular system (50). Nevertheless, the

very vaccine, owing to its formulation (i.e., mRNA in lipid

nanoparticles) can exert direct effects on the cardiovascular

system (51, 52). Relevant in this regard are experimental

studies on autoimmune myocarditis. Box 2 provides some

information in this regard.

3 Human and gut microbiota synergy
on tryptophan utilization

Both humans and gut microbiota feed on dietary Trp for

proteogenesis and other functions that rely of the degradation of

this essential amino acid. The phylogenesis of Trp catabolism

across different organisms provides insights into the evolutionary

advantages and diverse functions of this pathway (59). Trp
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catabolism is a highly conserved process that has evolved over

time, and its existence across various organisms suggests its

importance in adaptation and survival (60–62). Here are some

key points regarding the phylogenesis of Trp catabolism: (a)

Universal presence: Trp catabolism is found in a wide range of

organisms, including bacteria, fungi, plants, and animals. This

universality indicates that the pathway has been evolutionarily

conserved and is fundamental to the biology of diverse life forms

(60); (b) Metabolic regulation: The regulation of Trp catabolism

has likely evolved as a mechanism for organisms to adapt to

changing environmental conditions, nutrient availability, and

immune responses (63). In many cases, the regulation of Trp

catabolism is responsive to external stimuli, such as stress,

infection, or inflammation, highlighting its role in the adaptive

response to various challenges; (c) Host-pathogen dynamics: The

evolutionary arms race between hosts and pathogens has likely

shaped the development and diversification of Trp catabolism.

Hosts may have evolved this pathway as a defense mechanism to

limit nutrient availability for pathogens, while some pathogens

have developed strategies to exploit or manipulate Trp

metabolism for their benefit (64); (d) Immunomodulation and

tolerance: The immunomodulatory effects of Trp catabolism,

including the generation of metabolites with immunosuppressive

properties, suggest that this pathway has evolved to play a role in
frontiersin.org
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regulating the immune response (65). Tolerance induction,

mediated by Trp catabolism, could have provided an

evolutionary advantage by preventing excessive inflammation and

immunopathology, contributing to the host’s ability to coexist

with commensal microorganisms; (e) Nutrient sensing and energy

metabolism: Trp catabolism is not only involved in immune

responses but is also linked to broader metabolic processes.

The breakdown of Trp can provide precursors for the synthesis

of other molecules, and its regulation may be tied to overall

energy metabolism.

Therefore, as to the question of why an organism would want

to destroy an essential amino acid like Trp, it is important to note

that the goal is not necessarily the destruction of Trp but rather the

modulation of its levels (63, 66–69). The evolutionary advantage

lies in the ability to dynamically regulate Trp availability in

response to specific environmental and physiological cues. By

controlling Trp levels, organisms can influence their own

metabolism, respond to stressors, and shape the host-microbe

interaction in ways that promote survival and adaptation. It is

interesting to note that bacteria that eat worms use NAD as a

‘food signal’ to open their mouths but, if NAD is unavailable,

they stop reproducing and enter a developmental and

reproductive arrest phase, mediated by serotonin, to survive

(60, 70). In the context of host defense, limiting the availability

of essential nutrients like Trp can be a strategic means of

thwarting the growth and proliferation of pathogens (Figure 2).

Much like their hosts, bacteria can metabolize Trp along all three

pathways, influencing the so-called “brain-gut-microbiota axis”.

Bacteroides spp., Clostridium spp., Escherichia coli, Lactobacillus spp.,

Bifidobacterium spp., Akkermansia muciniphila, Faecalibacterium
FIGURE 2

The figure depicts the three main tryptophan metabolic pathways of host and
and indole (brown box) pathways. Details are described in the text. NAD, N
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prausnitzii, Prevotella spp., Ruminococcus spp., all degrade Trp in

the gut via the kynurenine pathway (71). There is some evidence

that several of the same species may likewise induce serotonin in

the gut. Escherichia coli, Clostridium Spp., Bacteroides spp.,

Akkermansia muciniphila, Clostridioides difficile, Enterococcus spp.,

Proteus spp., Citrobacter spp., and Klebsiella spp. will instead

produce a preponderance of indole or derivatives thereof (72). It

follows that—if host and gut bacteria—both metabolize Trp there

must be competition for the substrate, yet flexible balance for local

and systemic homeostasis (69).
4 Tryptophan and the heart

Gut microbiota and microbiota-derived metabolites have

been increasingly recognized for their potential impact on

CVD, including hypertension, heart failure, myocardial infarction,

arrhythmia, atherosclerosis, and myocarditis. Evidence from

recent studies has shown that gut microbiota contributes to

the development of myocarditis, an inflammatory disease that

can result in myocardial damage and the emerging field of

cardioimmunology (37, 73, 74). The metabolites produced by gut

microbiota can affect the immune system and have an impact on

cardiovascular health (10, 40). This is in line with the long-

established notion that gut microbiota-dependent metabolites serve

as a link connecting the dynamic balance between the host and

the gut microbiota (75). In addition to microbial-derived SCFAs,

BAs and TMAO, a number of host and microbial metabolites

derived from the essential amino acid tryptophan (Trp)

degradation has been implicated in cardiovascular diseases (10, 76).
microbial origin, namely the kynurenine (pink box), serotonin (violet box)
icotinamide Adenine Dinucleotide. Created with BioRender.com.
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BOX 3 Key points regarding indole and its derivatives on the
cardiovascular system.

1. Vasodilation: Some studies have shown that certain indole

derivatives exhibit vasodilatory effects, which can help relax

blood vessels and lower blood pressure. For example,

indole-3-acetic acid has been shown to induce vasodilation

in experimental models (97).

2. Anti-inflammatory effects: Indole derivatives may possess

anti-inflammatory properties that can be beneficial in

cardiovascular health (98).

3. Antioxidant activity: Some indole derivatives have been

found to have antioxidant activity, which can help

reduce oxidative stress in the cardiovascular system.

Oxidative stress is implicated in various cardiovascular

diseases, and antioxidants can help neutralize harmful

free radicals (99).

4. Serotonin receptor modulation: Indole derivatives play a

role in regulating cardiovascular function through the

modulation of serotonin receptors.

5. Platelet aggregation: Some indole derivatives may affect

platelet function and aggregation, which are important in

the formation of blood clots. Modulation of platelet activity

by indole derivatives could have implications for

cardiovascular health and thrombotic events (100).

6. Cardioprotective effects: Certain indole derivatives have

been investigated for their potential cardioprotective

effects. For example, indole-3-carbinol has been studied

for its anti-inflammatory and antioxidant properties,

which could contribute to protecting the heart from

damage (101, 102).

7. Potential therapeutic applications: Indole derivatives are

being explored for their potential therapeutic applications in

CVD such as hypertension, atherosclerosis, and heart failure.

Further research is needed to better understand the

mechanisms of action and potential benefits of indole

derivatives in cardiovascular health (103–105).

Russo et al. 10.3389/fcvm.2024.1411306
The kynurenine pathway is a metabolic pathway that plays a

crucial role in Trp degradation (77–82). This pathway is

primarily associated with immune regulation and has been

implicated in various physiological and pathological processes,

including immune homeostasis and cardiovascular integrity (83).

The pathway’s contributions to immune homeostasis include (a)

Regulation of T-cell responses: The kynurenine pathway is a key

player in the modulation of immune responses. One of its main

functions is the regulation of T cell activity. Specifically, the

production of kynurenine metabolites can influence T cell

differentiation and function (84); (b) Immunosuppressive effects:

Certain metabolites of the kynurenine pathway, such as

kynurenine itself, have immunosuppressive properties. They can

inhibit the proliferation of T cells and promote the generation of

regulatory T cells, which are crucial for maintaining immune

tolerance and preventing autoimmune reactions (82). As regards

the cardiovascular system, additional functions are: (c) Regulation

of vascular function: Components of the kynurenine pathway,

including kynurenine and its derivatives, have been implicated in

vascular function by affecting, for instance, endothelial function

and blood vessel integrity (85); (d) Control of inflammation and

atherosclerosis. The immunomodulatory effects of the kynurenine

pathway may influence the inflammatory processes associated

with cardiovascular conditions (86–88). As a matter of fact,

dysregulation of the kynurenine pathway has been implicated

in cardiovascular diseases in which the kynurenine and the

[Kyn]/[Trp]-ratio were associated with an increased risk of

developing cardiovascular disease (10, 76) while higher Trp

levels were associated with a tendency toward lower incident risk

of mortality (76).

The serotonin pathway also plays an important role in the

degradation of Trp with effects that go beyond its role as

neurotransmitter in the central nervous system to include, among

others, the regulation the immune and cardiovascular functions. In

the periphery, serotonin is a major regulator of vasoreactivity, by

directly inducing vasoconstriction in large arteries and veins and

exerting a vasodilatory effect in arterioles via nitric oxide release

and vascular smooth muscle relaxation (89). Aggregating platelets

release serotonin that may contribute to the etiology of spasm in

cerebral, digital and coronary vessels, and in the maintenance of

the elevated peripheral resistance in arterial hypertension (90).

Increased concentrations of serotonin were indeed associated with

an increased risk of cardiovascular damage and disease (76, 91).

Finally, the impact of indoles, produced by bacterial

degradation of Trp, has gained attention for their dual influence

at the pathogen-host interface (84, 92–94). In cardiology,

metabolites in the indole pathway did not show consistent

associations with cardiovascular outcomes, although higher

concentrations of some end products of the indole pathway have

been reported to be associated with a lower risk of

atherosclerosis (76, 95). For instance, the indole-3-aldehyde

(3-IAld) metabolite was found to be lower, different from others,

in patients with myocardial infarction (96). The section below

delves into the manifold influence of indole metabolites on the

host metabolism and immunity, specifically examining their

systemic effects from the standpoint of cardioimmunology.
Frontiers in Cardiovascular Medicine 06
4.1 Indoles and systemic immunity

Indole is a heterocyclic organic compound with a bicyclic

structure consisting of a six-membered benzene ring fused to a

five-membered pyrrole ring. It is found in various natural

products such as the amino acid tryptophan and the hormone

serotonin. Indole derivatives have been studied in relation to

their effects on the cardiovascular system (Box 3).
4.2 Indole and the aryl hydrocarbon
receptor: the case of indole-3-aldehyde,
3-IAld

The Aryl hydrocarbon receptor (AhR) is a ligand-activated

transcription factor that plays a crucial role in regulating

various physiological processes, including immune responses,
frontiersin.org
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xenobiotic metabolism, and maintenance of cellular homeostasis

(106–108). AhR is a member of the basic helix-loop-helix/Per-

ARNT-Sim (bHLH-PAS) protein family and is primarily

localized in the cytoplasm in its inactive state. AhR activation

occurs when it binds to specific ligands, leading to its

translocation into the nucleus, where it forms a complex with

its partner, the AhR nuclear translocator. This complex then

binds to specific DNA sequences known as xenobiotic response

elements in the promoter regions of target genes, thereby

regulating their expression.

The gut microbiota has been implicated in the production of

AhR ligands (106–110). These ligands are often derived from

dietary components and microbial metabolism. Indole derivatives

are prominent examples of AhR ligands produced by gut

microbiota through the breakdown of dietary tryptophan.

Additionally, certain metabolites of tryptophan, such as

kynurenine and kynurenic acid, can also activate AhR. The

activation of AhR by these microbial-derived ligands has been

associated with various immunomodulatory effects. AhR

activation in immune cells can regulate the balance between pro-

inflammatory and anti-inflammatory responses, impacting the

development and function of immune cells. Furthermore, AhR

activation in the gut has been linked to the maintenance of

intestinal barrier integrity and the regulation of mucosal immune

responses (111–113). The interaction between the gut microbiota

and AhR highlights the intricate relationship between the

microbiome, dietary factors, and host physiology, emphasizing

the importance of these interactions in shaping immune and

metabolic functions (114). As mentioned above, degradation of

Trp by bacteria or enterocytes generates several AhR-binding

molecules, mainly serotonin, tryptamine and indoles, including:

indole, indole-3-propionic acid (IPA), indole-3-acetic acid (IAA),

indole-3-aldehyde (3-IAld), indole-3-acetaldehyde (IAAld),

indole-3-lactic acid (ILA), indole acrylic acid and others,

including tryptamine and skatole (115). Thus, the co-evolution of

microbial communities with mammalian hosts has led to

interconnected metabolic pathways that intricately influence both

physiological and pathological processes. Trp derivatives, arising

from both host and microbial sources, exemplify this metabolic

complexity. Among these derivatives, 3-IAld stands out as a

metabolite produced by the gut microbiota (92, 116–119).

Initially recognized for its role as an agonist of the AhR,

particularly in promoting epithelial barrier functions, this

compound has now been implicated in a myriad of activities

across various pathological conditions. Along this direction, our

group has been involved for some time in turning microbial AhR

agonists into therapeutic agents via drug delivery systems

(116, 118). By deciphering how signaling molecules, such as

3-IAld, interact with AhR may pave the way for novel therapeutics

in inflammatory human diseases, for the realization of which drug

delivery platforms are instrumental. So far, three synthetic AhR

agonists—laquinimod, tranilast and benvitimod—have been

investigated in phase I–III clinical trials. The trials involved patients

with autoimmune conditions, such as Crohn’s disease, rheumatoid

arthritis, asthma, atopic dermatitis or multiple sclerosis (120).

However, to our knowledge, none of them was tested in patients
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with cardiovascular diseases. A 3-IAld dry powder for inhalation was

formulated and assessed for its effectiveness in comparison to oral

and intranasal delivery methods in experimental lung inflammation

(44). The resulting inhalable dry powder demonstrated: (i) suitability

for pulmonary administration, (ii) favorable toxicological safety, and

(iii) superior efficacy over alternative administration routes (oral and

intranasal) in reducing inflammatory and disease scores. This

research advocates for the utilization of 3-IAld inhalable dry

powders as a promising and innovative therapeutic approach for

targeting inflammation in pulmonary diseases and, likely,

cardiopulmonary conditions (121, 122).

In conclusion, AhR plays a crucial role not only in

detoxification but also in various physiological processes,

particularly in maintaining vascular homeostasis. Despite its high

expression in the endothelium, there is a lack of comprehensive

understanding of AhR’s function in this context. There is a

definite need for consolidating existing knowledge regarding

AhR’s involvement in the endothelium and its implications for

cardiovascular health (122). Whatever, modulating AhR signaling

emerges as a potential therapeutic target for addressing vascular

disorders whereby systemic low-grade inflammation reduces

circulating endothelial progenitor cells (123). In this regard, it is

of interest that while indoxyl sulfate promoted vascular

inflammation, IPA and 3-IAld had protective effects (117).
5 Future perspectives and conclusions

Accumulated evidence substantiates the notion that a triad

comprising microbiota, Trp, and AhR is a targeted axis in several

cardiovascular conditions (Figure 3).

Presently, most treatments primarily address symptoms,

focusing on enhancing compromised functionality. However,

therapeutic options capable of influencing cellular degeneration

or pathology remain elusive. Should a significant role of

abnormal intestinal flora composition in specific phenotypes be

confirmed, a promising therapeutic avenue could emerge by

optimizing pharmacological therapy of CVD with Trp

supplementation and/or medications altering the Trp metabolic

pathways. Nevertheless, variations among individuals, coupled

with the impact of comorbidities, dietary patterns, medications,

infections, and lifestyle, can alter gut microbiota composition.

Hence, future research demands meticulous investigation using a

rigorous experimental framework, taking these factors into

account (124). Indeed, despite the potential promise of precisely

defined and tailored diets in influencing the microbiome and

inflammation, their practical applicability in the general

population remains questionable as it is the potential long-lasting

benefits of fecal microbiota transplantation in CVD (125).

Additionally, the potential value of the measurement of Trp

metabolites as screening and diagnostic tools for a broader

population, indicate that mechanistic studies are required to

understand the role of Trp metabolism in CVD with the goal to

identify new diagnostic and therapeutic options.

Lastly, delving into research on microbiota, Trp catabolic

pathways and AhR signaling has uncovered insights into the
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FIGURE 3

The figure depicts tryptophan, the microbiota and the host at the vertices of a triangle representing the triad involved in cardiovascular health and
disease. Specifically, microbial- and host-dependent degradation of tryptophan results in the production of metabolites, including serotonin,
indoles and kynurenine, the latter two working as ligands of the Aryl Hydrocarbon Receptor (AhR), ultimately affecting key functions of the
cardiovascular system. Details are described in the text. Created with BioRender.com.
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mechanisms of intestinal distress (126, 127). Despite being

underappreciated, a role for the intestinal barrier dysfunction in

CVD has become evident in light of its occurrence in

hypertension, coronary artery disease, atherosclerosis, heart

failure, and myocardial infarction (128). Thus, testing indole

derivatives as intestinal barrier-targeted compounds may lead to

their potential new class of CVD therapeutics.
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