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The role of oxidative stress in
aortic dissection: a potential
therapeutic target
Shengnan Xu1,2,3†, Xueyu Han1,2,3†, Xiukun Wang1,2,3, Yi Yu1,2,3,
Chuan Qu1,2,3, Xin Liu1,2,3*‡ and Bo Yang1,2,3*‡

1Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China, 2Cardiovascular
Research Institute, Wuhan University, Wuhan, China, 3Hubei Key Laboratory of Cardiology, Wuhan
University, Wuhan, China
The incidence of aortic dissection (AD) is steadily increasing, driven by the rising
prevalence of chronic conditions such as hypertension and the global aging of
the population. Oxidative stress emerges as a pivotal pathophysiological
mechanism contributing to the progression of AD. Oxidative stress triggers
apoptosis in vascular smooth muscle cells, reshapes the extracellular matrix
(ECM), and governs ECM degradation and remodeling, subsequently impacting
aortic compliance. Furthermore, oxidative stress not only facilitates the
infiltration of macrophages and mononuclear lymphocytes but also disrupts the
integral structure and functionality of endothelial cells, thereby inducing
endothelial cell dysfunction and furthering the degeneration of the middle layer
of the aortic wall. Investigating antioxidants holds promise as a therapeutic
avenue for addressing AD.
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1 Introduction

Aortic dissection (AD) occurs when there is a breach in the lining of the arterial wall and

blood enters the arterial wall through the breach to form a hematoma, which further strips

the intima and media of the aorta. This condition results in the separation and longitudinal

expansion of the aortic media, creating a division within the aortic wall characterized by the

presence of an intimal valve. The newly torn diseased lumen is called the false lumen and the

original lumen with normal blood flow is called the true lumen. Anatomically, acute AD

(AAD) can be classified based on the location of the intimal tear or the extent of aortic

involvement, irrespective of the specific tear location. Stanford’s classification further

categorizes dissections into those involving the ascending aorta (Type A) or not (Type B)

(1). The incidence of AAD stands at approximately 2.6–3.5 cases per 100,000 individuals

per year, which is half the incidence rate observed for symptomatic aortic aneurysms

(2, 3). Without prompt surgical intervention, AD rupture leads to a mortality rate

exceeding 80%. Recent advances in treatment have significantly reduced the overall

in-hospital mortality rate for Type A AAD. However, studies on Type B AAD have not

yielded equally effective outcomes (4). Epidemiological investigations into AD may

underestimate its actual incidence due to the absence of worldwide and prospective

population-based studies. Hypertension stands as the most prevalent risk factor for AAD

(5). In recent years, the prevalence of AD is expected to rise significantly, owing to the

increasing prevalence of chronic diseases such as hypertension and the global aging of

the population (2).
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Oxidative stress refers to an imbalance between the production

of reactive oxygen species (ROS) and endogenous antioxidant

defense mechanisms. ROS encompasses various reactive oxygen-

containing chemicals, including superoxide (O��
2 ) and hydroxyl

(HO�) radicals, as well as non-radical molecules such as hydrogen

peroxide (H2O2). These molecules are predominantly generated

during metabolic processes in mitochondria, peroxisomes, and the

endoplasmic reticulum (6). Among these organelles, mitochondria

are recognized as the primary source of ROS. While the human

body can maintain oxidative/antioxidative equilibrium under

normal conditions, this balance may be disrupted in

pathophysiological conditions such as AD. Elevated ROS levels can

lead to cellular dysfunction, protein and lipid peroxidation, DNA

damage, and ultimately irreversible cellular injury and apoptosis

(6). Oxidative stress has been implicated in the pathogenesis of

numerous chronic diseases, including cardiovascular diseases

(7–9). Numerous endogenous enzyme systems that regulate

oxidative stress in AD have been scrutinized through clinical

investigations and animal experiments spanning several decades

(10, 11). Oxidative stress is intimately linked to the progression of

AD, and a comprehensive understanding of its role in AD’s

development can pave the way for potential diagnostic, prognostic,

and therapeutic applications in this condition.
2 ROS generation

ROS are typically generated through a series of reactions that

result in the production of superoxide. Superoxide undergoes

rapid spontaneous conversion into H2O2, or catalysis by

superoxide dismutase (SOD) to form H2O2. Subsequently, a

cascade of reactions ensues, which includes the interaction of

superoxides with nitric oxide (NO) to yield peroxynitrite

(ONOO−) and the conversion of H2O2 into water, eventually

leading to the generation of hydroxyl radicals (12).

A significant source of ROS emerges from the end substrate of

the respiratory chain, situated within the inner mitochondrial

membrane. Here, a fraction of O2 undergoes reduction during

the transfer of electrons from the mitochondrial electron

transport chain complexes, yielding O��
2 or H2O2. The most

noteworthy among these ROS is O��
2 , which serves as the

principal precursor for the majority of ROS (12). Besides, there

are numerous enzymatic systems can generate ROS, such as

nicotinamide adenine dinucleotide (NADH)/nicotinamide

adenine dinucleotide phosphate (NADPH) oxidase (NOX),

xanthine oxidase (XO), and uncoupled endothelial nitric oxide

synthase (eNOS) (13). Another significant ROS source is NOX,

which is an enzymatic complex (14).

NOX functions as a crucial coenzyme within cells, facilitating

the catalytic transfer of electrons from NADPH to O2, resulting

in O��
2 production. NOX systems have become central players in

vascular diseases and heart-related conditions. They are

associated with the contraction, proliferation, apoptosis, and

inflammation of vascular smooth muscle cells (VSMCs) (15, 16).

The catalytic subunit gp91phox of NOX is commonly referred to

as NOX2. NOX1, NOX2, NOX4, and NOX5 are expressed and
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functionally active in human blood vessel cells, and they are

implicated in altering redox states in vascular diseases (16).

NOX2 exhibits limited expression in endothelial cells, and

elevated expression of NOX2 can augment vascular NOX activity

and oxidative stress (17). XO in the purine catabolic pathway is

accompanied by the production of the reaction by-product (18).

The other source of ROS in metabolic and vascular diseases is

the uncoupling of eNOS. eNOS is predominantly distributed in

endothelial cells and exists as a homodimer. It utilizes L-arginine

(L-Arg) and oxygen as substrates to synthesize NO and citrulline.

Tetrahydrobiopterin (BH4) serves as an indispensable cofactor

for eNOS. In cases of eNOS uncoupling, O��
2 is produced instead

of NO, and the generated O��
2 subsequently reacts with NO to

form ONOO− (19).

Under normal conditions, the elimination of ROS is mediated

by antioxidant systems, which can be categorized into enzyme and

non-enzyme systems. The enzyme system comprises SOD, catalase

(CAT), and glutathione peroxidase (GPx). The non-enzyme system

primarily includes reduced glutathione (GSH), vitamin C/E, and

other compounds (8). SOD facilitates the dismutation of

superoxide anion radicals, yielding O2 and H2O2. Subsequently,

H2O2 can undergo decomposition into O2 and H2O through the

catalytic action of CAT or react with GSH in the presence of

GPx, resulting in the formation of oxidized glutathione (GSSG)

and water. The conversion of GSSG back to GSH is

accomplished by the enzyme glutathione reductase (GR) (18). In

pathological states, excessive ROS production and an imbalance

in intracellular antioxidant systems give rise to oxidative stress,

leading to damage in human tissues (Figure 1).
3 ROS-mediated signaling pathway

The physiological consequences of oxidative stress primarily

stem from its capacity to modulate diverse signaling pathways,

including the nuclear factor κB (NF-κB), mitogen-activated

protein kinase (MAPK), Kelch-like ECH-associated protein

1/nuclear factor E2-related factor 2 (Keap1/Nrf2), and AMP-

activated protein kinase (AMPK) pathways. On the one hand, an

overabundance of ROS activates multiple transcription factors,

such as NF-κB and Nrf2, thereby inducing the synthesis of

proteins that govern inflammation, cellular transformation, cell

viability, proliferation, invasion, angiogenesis, and metastasis. On

the other hand, it triggers distinct cellular death pathways, such

as apoptosis, necrosis, and autophagy.
3.1 NF-κB pathway

The activation of the NF-κB pathway in cells is a significant

contributor to inflammation. Dysregulation of NF-κB activity is

associated with inflammation-related diseases and cancer

(20, 21). NF-κB can promote the transcription of various

inflammatory response genes, including those of tumor necrosis

factor-α (TNF-α) and interleukin (IL)-1β (22). The cellular ROS

levels influence the NF-κB activity level, illustrating the
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FIGURE 1

The production of reactive oxygen species (ROS) under physiological and pathological conditions. Under physiological conditions, protease complex I
and III in the respiratory chain of mitochondrial intima can reduce oxygen to O��

2 with the oxidation of NADH. Triphosphopyridine nucleotide (NADPH)
oxidase (NOX) also facilitates the catalytic transfer of electrons from NADPH to O2, resulting in the production of O��

2 . The O��
2 can be eliminated by

oxidation reactions mediated by antioxidants such as superoxide dismutase (SOD), yielding O2 and H2O2. Subsequently, H2O2 can undergo
decomposition into O2 and H2O through the catalytic action of catalase (CAT), or react with GSH in the presence of glutathione peroxidase (GPx),
resulting in the formation of oxidized glutathione (GSSG). The conversion of GSSG back to GSH is accomplished by the enzyme glutathione
reductase (GR). In pathological conditions, O��

2 is overproduced, the intracellular antioxidant system is unbalanced, resulting in oxidative stress.
Besides, eNOS utilizes L-arginine (L-Arg) and oxygen as substrates to synthesize NO and L-citrulline. Tetrahydrobiopterin (BH4) serves as an
indispensable cofactor for eNOS. eNOS undergoes uncoupling and O��

2 is produced instead of NO, and the generated O��
2 subsequently reacts

with NO to form ONOO– under pathological conditions.
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interdependence between NF-κB and ROS in gene transcription (23).

The P21-activated kinase (PAK) serves as a crucial regulator of actin

dynamics, cell proliferation, and cell survival. PAK modulates NF-κB

activation by regulating cellular sensitivity to ROS (24).

The NF-κB family includes five related transcription factors,

and common NF-κB protein is referred to homologous or

heterodimers composed of p65/p50 subunit (22). It stays inactive

in the cytoplasm by binding to the inhibitor of NF-κB (IκB) to

form a trimeric complex (22). Two distinct signaling pathways

govern the activation of NF-κB: the classical and the

non-classical pathways. ROS regulate the classical NF-κB

pathway through the activation of TNF-α (25–27), Toll-like

receptor family (TLRs) (28–31), and interleukin cytokine

receptors. TNF-α can activate the NF-κB signaling pathway and

induce activation of caspase-8, which leads to ROS production

and promotes apoptosis (26). In the human genome, 10 TLRs

(TLR1–TLR10) have been identified (32). Among these receptors,

TLR4 serves as the principal lipopolysaccharide (LPS) receptor.
Frontiers in Cardiovascular Medicine 03
When bacterial LPS binds to TLR4, the NF-κB signaling

pathway is initiated through intermediaries such as myeloid

differentiation factor 88 (MYD88) (33). ROS regulates NF-κB-

dependent transcription through its involvement in TLR4-

mediated early cellular responses (34). Knockdown of TLR4

inhibits both the NF-κB pathway and ROS production (29).

ROS plays a bidirectional role in NF-κB activation. In the

initial stages, ROS induces NF-κB activation through both

classical and non-classical pathways. Subsequently, ROS

inhibits NF-κB activation (35). Both pathways entail the

activation of the IκB kinase (IKK) complex, resulting in

the phosphorylation and dissociation of the IκB protein from

the trimer. IKK represents another crucial target of ROS to

influence NF-κB signaling (23). H2O2 can deactivate IKK,

which may be mediated through oxidation of IKKβ at cysteine

179 by ROS. IKKβ becomes S-glutathionylated upon exposure

to ROS, thereby deactivating kinase activity and leading to

reduced NF-κB signaling (36).
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3.2 MAPK pathway

The MAPK signaling pathway constitutes a pivotal component

within the eukaryotic signal transmission network, serving as a

primary conduit for cellular processes such as proliferation,

differentiation, apoptosis, and stress response under both normal

and pathological conditions (37). MAPKs are further categorized

into four distinct subfamilies, namely extracellular signal-regulated

kinase (ERK), p38, Jun N-terminal kinase (JNK), and ERK5 (38).

ERK1/2 have been extensively researched, and the ERK1/2

signaling pathway plays a role in both apoptosis induced by

oxidative damage and safeguarding against such apoptosis (38, 39).

This pathway proceeds through the tertiary kinase cascade of

MAPK, with Ras serving as the activating protein upstream. The

three primary subtypes of small GTPase p21 Ras are N-Ras,

Kirsten Ras (Ki-Ras), and Harvey Ras (Ha-Ras), which plays a

direct role in regulating cellular redox status (40). Ha-Ras

potentially serves as a direct receptor of ROS, triggering the NOX

system to generate more ROS, whereas Ki-Ras facilitates ROS

clearance through the activation of the ERK1/2-dependent

pathway (41). Following oxidative stress, Ha-Ras augmentation

leads to increased apoptosis among cells. Conversely, Ki-Ras

shields against H2O2-induced apoptosis by reducing intracellular

ROS levels and counteracting the actions of Ha-Ras (40, 41).

The JNK signal transduction pathway represents a vital branch

within the MAPK pathway. ROS serves as an upstream signaling

molecule for JNK, functioning as a secondary messenger within the

JNK signaling pathway (42). Furthermore, ROS regulates various

signaling proteins, including apoptosis signal regulating kinase-1

(ASK1) and Src kinase, thereby facilitating JNK activation through

apoptosis signals (43–45). Deletion of the Src gene and inhibition of

Src kinase activity markedly suppress JNK activation in the ROS-

mediated JNK signaling pathway, with no discernible impact on

ERK and p38 activation (46). Moreover, ROS is a crucial link

between the NF-κB and JNK signaling pathway. The NF-κB and

JNK signaling pathways share numerous upstream molecules,

permitting mutual influence via ROS (47). NF-κB, by inhibiting

ROS formation and consistently activating the JNK cascade,

participates in survival signaling, effectively counteracting

programmed cell death induced by the TNF-α family of receptors (47).
3.3 Nrf2 pathway

Nrf2 assumes a critical role by activating the body’s antioxidant

response through binding to antioxidant response elements (ARE)

in the promoter regions of numerous genes responsible for cellular

protection (48). Nrf2 governs four genes associated with NADPH

synthesis and orchestrates the expression of key enzymes involved

in GSH production and utilization (49). A deficiency in Nrf2

results in heightened NOX2 activity (50). Moreover, Nrf2 controls

several redox protein family auxiliary proteins, such as thioredoxin

(Trx) (49). Trx1 fosters oxidative phosphorylation and tricarboxylic

acid (TCA) cycling in cardiomyocytes via Nrf2 activation, which

concurrently stimulates Trx1 expression (51). Beyond these direct

effects on redox status, Nrf2 also modulates the expression of genes
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implicated in cellular defense, thereby inhibiting redox cycle

reactions and diminishing GSH consumption (49). However,

excessive Nrf2 activation may contribute to the onset and

progression of vascular diseases (52).

Keap1 functions as an interacting partner of Nrf2, binding with

Nrf2 to facilitate its degradation and exert a negative regulatory

influence on Nrf2 activity. The Keap1/Nrf2/ARE pathway

modulates cellular redox equilibrium to uphold cell homeostasis

(53). Under normal conditions, Keap1 complex-mediated

ubiquitination degrades Nrf2, and when confronted with oxidative

stress, Keap1 complex activity is inhibited and the Nrf2/ARE

pathway is activated. This activation results in the induction of an

array of cytoprotective genes, such as those of NAD(P)H quinone

dehydrogenase 1 (NQO1), heme oxygenase 1 (HO1), GPx, GR,

and SOD (54, 55). Furthermore, the Keap1/Nrf2/ARE pathway

exerts regulatory control over GSH levels by upregulating essential

enzymes involved in GSH synthesis (54). Nrf2 interacts with the

NF-κB signaling pathway, and its depletion enhances NF-κB

activity, thereby augmenting cytokine production. Conversely,

NF-κB regulates both the transcription and activity of Nrf2 (56).

Central to the Nrf2-mediated inhibition of NF-κB is HO1. HO1

stands as a critical antioxidant enzyme. HO1 exhibits beneficial

effects by preventing oxidative damage, regulating apoptosis,

modulating inflammation, and promoting angiogenesis (48). This

elevated activity of HO1 effectively hampers the transcription of

NF-κB-mediated adhesion molecules (56).
3.4 AMPK pathway

AMPK, a serine/threonine kinase, plays a critical role in

regulating energy homeostasis, metabolism, and mitochondrial

equilibrium (57). AMPK is a heterotrimeric complex comprising

a catalytic subunit α and two regulatory subunits β and γ. The

binding of AMP to the γ subunit induces allosteric activation of

AMPK, whereas ATP can inhibit this activation (58). ROS

disrupt oxidative metabolism, but AMPK activation helps

maintain cellular oxidative metabolism stability (59). AMPK also

modulates inflammatory responses by regulating the JNK and

NF-κB signaling pathways, protecting against ROS-induced

apoptosis. Chronic AMPK activation diminishes JNK activation

and inhibition of the JNK signaling pathway reduces NF-κB

activity (60). The AMPK agonist metformin can curb both ROS

production and the JNK/NF-κB signaling cascade (60).

The protective effects of the AMPK signaling pathway on cells are

associated with the regulation of mammalian target of rapamycin

(mTOR) and sirtuins (SIRT). mTOR is an important regulator of

cellular growth and proliferation. Excessive ROS can negatively

regulate mTORC1, and AMPK plays a pivotal role in mediating

autophagy by suppressing mTOR (61). Within the SIRT protein

family, SIRT3 is closely associated with mitochondrial function and

oxidative stress. In mice, SIRT3 inhibits the generation of ROS and

alleviates oxidative stress and cardiac hypertrophy by activating the

AMPK pathway (62). SIRT3 deficiency fosters the development of

AD through reducing the anti-ROS effect while increasing VSMC

apoptosis and vascular inflammation (63).
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4 Oxidative stress and AD

The pathophysiology of AD is multifaceted, and impaired aortic

integrity is a fundamental mechanism in the pathology of AD, which

results from the inherent instability of the aortic wall (e.g., due to

inherited connective tissue diseases) or acquired conditions (e.g.,

atherosclerotic degeneration associated with aging) (64). Patients

with genetic disorders including Marfan syndrome, Lloyd-Dietz

syndrome, and vascular Ehlers-Danlos syndrome often develop

AD called hereditary thoracic aortic disease (HTAD) (65, 66).

Currently, there are two main modes of construction of AD

mouse models: genetically modified models (e.g., genetic

manipulation of fibrillin-1 or transforming growth factor β

receptor 1/transforming growth factor β receptor 2 mutations)

(67, 68) and chemically induced models [e.g., administration of

Ang II, calcium chloride, elastase, or β-aminopropionitrile

(BAPN)] (69, 70). One of the limitations of the mouse model is

the difference in the number of elastic layers in the media, 7 layers

in mice vs. 50 layers in humans, which may severely affect the

mechanical relevance of the model. Nevertheless, these models can

provide valuable data on the initiation of AD, which can help in

understanding human AD (68). Large animal models regarding

AD are mainly constructed surgically and can be used for the

study of disease progression and treatment modalities, but they are

technically demanding, can only study surgically induce traumatic

entrapment, are unsuitable for the study of AD pathogenesis, and

are not as reproducible as small animal models (71, 72).

The key histological abnormalities of AD include necrosis and

apoptosis of VSMCs, fracture of elastic fibers, and degradation of

extracellular matrix (ECM) (73).The thrombi formed within the

false lumen indicates the presence of continued inflammation under

the condition of atherosclerosis and chronic inflammation, and the

higher risk of rupture in patients with inflammatory diseases

demonstrates the importance of inflammation in AD (1). Oxidative

stress promotes pathological phenotypic switching and apoptosis of

VSMCs, upregulates expression of proteolytic enzymes such as

matrix metalloproteinases (MMPs), and induces the degradation of

ECM (74). It also modulates proliferation of fibroblast and

infiltration of macrophages and mononuclear lymphocytes, resulting

in the disruption of endothelial cell structure and function,

ultimately leading to endothelial dysfunction (75). All of those

advances the pathological aortic wall remodeling and AD formation

(Figure 2). Despite significant advances in our understanding of the

molecular pathogenesis of AD over the past 20 years, therapeutic

options to slow disease progression are still limited, and there are

no preventive therapeutic options. Understanding the role of

oxidative stress in AD can help us further explore its potential

diagnostic, prognostic, and therapeutic value in AD.
4.1 Oxidative stress and vascular smooth
muscle cells

The onset of AD is typically concurrent with the deterioration of

contractility in VSMCs and the buildup of inflammatory mediators.

The loss of VSMCs in the middle layer of aorta, including
Frontiers in Cardiovascular Medicine 05
phenotypic switching and apoptosis, could represent a critical initial

stage in AD formation (76). Following stimulation by various

physiological factors (such as inflammatory triggers, vascular

damage, and hemodynamic perturbations), contractile VSMCs in

the normal aortic wall lose their unique structure and function, and

undergo phenotypic switching to synthetic VSMCs, which is

characterized by enhanced abilities of proliferation and migration,

and increased secretion of various extracellular matrix proteins and

cytokines (77). Studies have shown that ROS fosters vascular injury

by promoting phenotypic switching and apoptosis of VSMCs

(78, 79), while the inhibition of ROS reverses this effect (80).

Excessive production of ROS disrupts the oxidation/

antioxidant equilibrium, instigates alterations in VSMC

phenotype, and facilitates the initiation and advancement of AD.

Oxidative stress stimulates angiotensin-converting enzyme (ACE)

expression, which is responsible for the conversion of angiotensin

I (Ang I) to Ang II. Ang II triggers mitochondrial dysfunction by

activating NOX and generating NO, ONOO−, and O��
2 . NOX

deficiency prevents Ang II-induced AD (81). NOX2 potentially

modulates Ang II-induced vascular remodeling and hypertension

through growth differentiation factor 6 Gene and other paracrine

signaling factors in VSMCs (82). NOX1, serving as the primary

NOX2 homolog in VSMCs, regulates VSMC growth and

migration, whereas NOX4 controls VSMC phenotypic switching.

Overexpression of smooth muscle cells-specific NOX1 enhances

VSMC responsiveness to Ang II (83). Additionally, NOX1

governs Ca2+ signaling, contributing to blood vessel constriction

and blood pressure regulation (84). Breast cancer susceptibility

gene 1 shields VSMCs against oxidative stress by inhibiting

NOX1-dependent ROS production (85). Furthermore, NOX1

impacts AD progression by negatively regulating fibrin-5 in

VSMCs (86). NOX4 partly contributes to the development of

Ang II-induced aortic aneurysms and atherosclerosis by

modulating osteopontin expression (87). The cytochrome b558

membrane complex, comprised of NOX2 and p22phox, serves as

the catalytic core responsible for generating O��
2 through NOX.

The p22phox regulates the activity of NOX4. Poldip2, a

molecular chaperone for p22phox, can bind to p22phox, thereby

activating NOX4, regulating VSMC phenotype and migration,

and establishing a connection between ROS production and

cytoskeletal remodeling (88). NOX4 and ROS are increased in

the pericyte mediators of human Marfan aortic tissue and are

transcriptionally overexpressed in VSMC. In Marfan mice, NOX4

deficiency results in delayed aortic aneurysm progression and

normalization of endothelial dysfunction in Marfan aorta (89).

Besides, NOX5 is a key regulator of the phenotypic switching of

VSMCs, and Ca2+ can induce ROS production in VSMCs via

NOX5 (90). Inhibiting NOX5 mitigates actin aggregation and

migration in hypertensive VSMCs, thereby ameliorating

hypertension-associated vascular damage (91). The transfer of the

eNOS gene to VSMCs inhibits their proliferation (92, 93).

Oxidative stress can induce VSMC proliferation and migration

through the MAPK pathway. Alpha-ketoglutaric acid (AKG) is a

key metabolite within the TCA cycle, exhibiting inhibitory effects

on oxidative stress and inflammatory responses. AKG safeguards

VSMCs by impeding the ERK1/2 pathway (94). SIRT1
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FIGURE 2

Oxidative stress and aortic dissection (AD). Overproduction of reactive oxygen species (ROS) and imbalance of intracellular antioxidant systems lead to
oxidative stress. Oxidative stress causes mitochondrial dysfunction, which in turn exacerbates oxidative stress. Excessive ROS not only stimulates
angiotensin-converting enzyme (ACE) expression and promotes the conversion of angiotensin I (Ang I) to Ang II, but also regulates the activation
of many signaling pathways and reduces NO bioactivity. Oxidative stress can promote both phenotypic switching and apoptosis of vascular
smooth muscle cells (VSMCs) and induce the degradation of extracellular matrix (ECM) by upregulating the expression of proteolytic enzymes
such as matrix metalloproteinase (MMP)-2 and MMP-9. It additionally modulates the infiltration of macrophages and mononuclear lymphocytes
and the secretion of cytokines, resulting in the disruption of endothelial cell structure and function, ultimately leading to endothelial dysfunction.
These changes ultimately lead to the occurrence and development of AD. SOD, superoxide dismutase; CAT, catalase; GPx, glutathione
peroxidase; NOX, triphosphopyridine nucleotide (NADPH) oxidase; XO, xanthine oxidase.

Xu et al. 10.3389/fcvm.2024.1410477
overexpression amplifies oxidative stress through the MAPK

signaling pathway, elevating cyclin expression and consequently

fostering excessive VSMC proliferation (95). In human and

mouse aneurysm tissues, vascular peroxidase 1 (VPO1)

expression is upregulated and significantly intensified oxidative

stress by catalyzing H2O2 to generate hypochlorous acid (HOCl).

HOCl treatment triggers ERK1/2 phosphorylation and promotes

VSMC phenotypic switching (96).

Increasing antioxidants and reducing ROS production can

impede AD progression by inhibiting biological processes such as

autophagy and apoptosis in VSMCs. CD38 serves as the primary

degrading enzyme for nicotinamide adenine dinucleotide (NAD)

in mammalian cells, an essential endogenous antioxidant in

mammals. A study on Ang II-induced vascular remodeling in

mice showed that CD38 deficiency leads to elevated NAD levels,

mitigating Ang II-induced vascular aging through VSMC aging
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inhibition (97). Statins significantly enhance the DNA-binding

activity of Nrf2 and induce the expression of its target genes

(e.g., HO1 and GPx), thereby safeguarding endothelial cells and

VSMCs from oxidative stress (98). Aldehyde dehydrogenase 2

(ALDH2), a mitochondrial enzyme, metabolizes major lipid

peroxidation products. In the Chinese population, the ALDH2

rs671 is one of the most common functional genetic mutation

loci. The activity of the ALDH2 enzyme significantly decreases

owing to this mutation. ALDH2 rs671 polymorphism may

expedite the onset and progression of cardiovascular diseases by

modulating biological processes such as autophagy, apoptosis,

and oxidative stress in cardiomyocytes and VSMCs through

ROS-mediated lipid peroxidation (99). A study involving Ang II-

induced aortic aneurysms in mice suggested that ALDH2

deficiency may enhance susceptibility to abdominal aortic

aneurysm formation by diminishing anti-ROS effects and
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increasing VSMC apoptosis and vascular inflammation (100).

However, a case-control study (total n = 706) conducted at two

independent centers showed that ALDH2 deficiency inhibits

VSMC phenotypic switching and reduces the risk of developing

AD (101). This may imply the presence of a dose threshold for

ALDH2 in regulating the risk of AD development.
4.2 Oxidative stress and ECM

A key histological hallmark of AD is the fragmentation of

elastic fibers, disturbed collagen alignment and abnormal

collagen deposition (102–104). Elastic and collagen fibers make

up the fibrous network of the ECM. The ECM constitutes a

dynamic network structure interconnecting cells and mediating

cellular signal transduction. Irregularities in ECM synthesis and

degradation can lead to a spectrum of diseases. Oxidative stress

can perturb ECM component metabolism and influence the

expression of related factors, resulting in excessive accumulation

or degradation of specific ECM elements. Consequently, damage

and diseases of tissue and organs can ensue (105). The

mechanical characteristics of the aorta primarily hinge on elastic

and collagen fibers. Elastic fibers, notably those affiliated with

SMCs, are most abundant in the middle layer of the aortic wall.

Two specific collagen types (Type I and Type III), serving as

critical matrix components and the outer membrane enveloping

fibers, confer tensile strength and sustain the structural integrity

of blood vessel walls. This safeguard prevents arteries from

undergoing excessive distention and rupturing (68, 106).

Fibroblasts in the outer membrane of the aorta play a role in

ECM by regulating the production of type I collagen (107, 108).

Myofibroblasts are specialized cells that have a more contractile

phenotype and produce more ECM proteins than fibroblasts.

Oxidative stress activates myofibroblasts and contributes to tissue

repair and fibrotic remodeling. Overactivated myofibroblasts exhibit

higher MMP activity and abnormal ECM synthesis capacity in AD,

which may directly contribute to AD by producing disordered

ECM and enhancing pro-inflammatory responses (108–110).

MMPs and fibrinolytic enzymes degrade elastin and collagen

(111–113). Both animal experiments and clinical investigations

have substantiated the role of MMPs in AD initiation and

progression (114–119). Ang II can promote the differentiation of

aortic adventitial fibroblasts into myofibroblasts by inducing the

phosphorylation of ERK1/2 and aggravate the formation of AD

(120). Antagonizing Ang II signaling with losartan partially

prevents stress-induced myofibroblast activation, collagen

accumulation, intimal hyperplasia, and aortic dilatation (121).

Oxidative stress contributes to the progression of AD by

upregulating MMPs, causing the degradation of the aortic middle

layer and ECM remodeling. Numerous studies have shown that

ROS can facilitate the degradation of elastin and collagen, induce

VSMC apoptosis, and alter aortic compliance. This promotes the

development of AD by activating MMP1 (122), MMP2 (123–125),

MMP9 (126, 127) and other MMPs (128). MMP1 is a pivotal

enzyme responsible for degrading both Type I and Type III

collagen. SOD3 can mitigate intracellular ROS levels, suppress
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MMP1 expression, and preserve ECM integrity (122). MMP2 and

MMP9 play roles in VSMC growth, proliferation, and migration.

Ang II enhances the mRNA synthesis and activity of MMP2 in a

P47PHOx-dependent, i.e., ROS-dependent, manner (129).

Imbalances in the redox system can lead to the generation of

oxidized LDL (ox-LDL), which activates NOX more than native

LDL does. Ox-LDL also reduces activity of eNOS. MMP2 assumes

a key role in ox-LDL-induced VSMC proliferation in both rabbits

and humans (130). Oxidative stress-induced lipid peroxidation,

along with its byproduct, 4-hydroxynonenal (4-HNE), contributes

to the imbalance between elastin synthesis and degradation,

thereby participating in vascular wall remodeling (131). Notably,

4-HNE can activate the mitochondrial ROS-mediated AKT/NF-κB

signaling pathway and increase MMP2 production in VSMCs

(123). MMP2 also possesses the capability to activate epidermal

growth factor receptors, heighten ROS production, and stimulate

vasoconstriction (124). Downregulating MMP2 serves to diminish

elastin degradation, bolster eNOS activity, and delay vascular aging

(125). Quercetin, a pivotal flavonoid with pronounced antioxidant

properties, attenuates hypertension-induced aortic remodeling,

oxidative stress, and MMP2 activity (132). Nitrite effectively

impedes the activation of MMP2 via XO-mediated antioxidant

mechanisms and reverses vascular structural alterations associated

with hypertension (133). Adiponectin (APN) exerts a significant

inhibitory effect on the proliferation and migration of VSMCs.

MMP2 and MMP9 expression is diminished in mice pre-treated

with APN, and APN hinders ROS-induced cardiomyocyte

remodeling through AMPK activation, ERK signaling inhibition,

and suppression of NF-κB activity (134). Insulin-like growth factor

elicits ROS production through NOX4, heightening MMP2 and

MMP9 activity, thereby promoting VSMC migration (135).

Salusin-β fosters VSMC migration and induces vascular injury by

augmenting MMP9 production via modulating NOX2 activation

(127). In the context of non-enzymatic antioxidant systems,

melatonin exhibits the capacity to forestall AD by modulating

oxidative stress and VSMC proliferation. Moreover, melatonin

treatment significantly curtails elastin degradation, macrophage

infiltration, and MMP expression, and mitigates oxidative stress-

induced damage (136). In conclusion, oxidative stress acts as a

catalyst for deterioration of AD by augmenting MMP activation,

thereby reshaping the ECM and aggravating degradation and

remodeling of aortic wall.
4.3 Oxidative stress and inflammatory cells

Inflammation plays a crucial role in AD (137–141).

Inflammatory cells, such as macrophages, exhibit a multifaceted

impact by releasing ROS, upregulating the expression of MMPs

and cell adhesion molecules, inducing ECM degradation and

neovascularization, and fostering VSMC apoptosis, ultimately

culminating in aortic cystic degeneration (142–144). A vicious

cycle exists between oxidative stress and inflammation (145).

Cytokines secreted by inflammatory cells inflict tissue damage,

resulting in diminished blood vessel wall elasticity, eventually

culminating in AD rupture. Concentrations of IL-6 (146),
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C-reactive protein (CRP), TNF-α, and IL-1β are significantly

elevated in AD (147). Oxidative stress stimulates inflammatory

cell infiltration directly and enhances cytokine secretion and

inflammasome production of inflammatory cells, thereby

amplifying the inflammatory response and exacerbating the

initiation and progression of AD. Cytokines secreted by

inflammatory cells can induce oxidative stress, promoting AD

progression, and excessive ROS also augments cytokine secretion.

The progression of numerous inflammatory diseases is

concomitant with the production of ROS, and excessive ROS can

foster the infiltration of inflammatory cells. Oxidative stress is a

pivotal mediator of Ang II signaling receptors in human

neutrophils (148). In murine models of Ang II-induced AD, Ang

II stimulates neutrophils via the angiotensin receptor AT1, leading

to the induction of NOX, ROS production, and adhesion of

mononuclear cells to endothelial cells (149). In response to this

stimulation, neutrophil DNA is released into the extracellular

space and facilitates the formation of extracellular traps known as

NETs, which serve to immobilize and eradicate pathogens. The

generation of NETs is coupled with neutrophil cell death, a unique

mode distinct from apoptosis and cell necrosis, termed NETosis.

Ang II-mediated NETosis relies on ROS and may contribute to

aneurysmal vascular remodeling through elastin degradation

(primarily involving MMPs) and collagen accumulation (involving

tissue factors) (149). Classical activation of macrophages into the

M1 phenotype induces tissue damage by releasing chemokines and

potent oxidants. Elevated ROS levels induce macrophages to

polarize toward the M1 phenotype, thereby augmenting the release

of inflammatory cytokines and promoting a pro-inflammatory role

(150). Kinases Mst1 and Mst2 detect ROS and uphold the redox

equilibrium within macrophages by modulating the stability of the

antioxidant transcription factor Nrf2 (151). Atherosclerosis is a

notable risk factor for AD. Inflammatory cells augment ROS and

ox-LDL production by secreting oxidase, thereby compromising

the functionality of endothelial cells and VSMCs within the

vascular system. Macrophages avidly ingest ox-LDL in substantial

quantities and eventually form foam cells through scavenger

receptors such as CD36 and lectin-like ox-LDL receptor 1 (LOX-

1) (152). Ox-LDL reconfigures the fatty acid metabolism within

macrophages and sustains chronic inflammation by upregulating

CD36 and its downstream fatty acid transport system (153). LOX-

1 inhibits macrophage migration and instigates foam cell

formation, and then promote the production of MMP9 (154).

Oxidative stress can induce mitochondrial dysfunction in

macrophages, facilitate conversion of macrophages to foam cells,

and induce a pathological switching in the VSMC phenotype.

Mitochondrial oxidative stress in macrophages contributes to the

progression of atherosclerosis by enhancing the production of

monocyte chemotaxis protein-1 and other inflammatory processes

through mediating the NF-κB signaling pathway (155).

IL-6 induces oxidative stress and endothelial dysfunction by

upregulating Ang II Type 1 receptors (156). Carbon monoxide-

releasing molecule 2, a CO-releasing pharmacological donor,

mitigates Ang II-induced VSMC migration by inhibiting ROS

production and reducing IL-6 and MMP9 increments (157). A

positive correlation exists between CRP concentration and
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oxidative stress levels, and activated neutrophils can induce

oxidative stress by releasing ROS and pro-inflammatory cytokines

(158). TNF-α inhibition ameliorates hypertensive vascular

hypertrophy by reducing MMP2 activity and ROS production

(159). IL-1β amplifies ROS production and fosters VSMC

migration, proliferation, and endothelial dysfunction via the TLR4

pathway. Nrf2 activation inhibits IL-1β and interferes with the

TLR4 pathway, safeguarding blood vessels from damage (160).

Sestrin2, primarily secreted by macrophages, suppresses ROS

production, affording cellular protection against various noxious

stimuli. Sestrin2 plays a protective role in AD by mitigating Ang

II-induced VSMC cell apoptosis through the Nrf2 pathway (161).

The inflammasome is a complex of multiple proteins that serve as

cytoplasmic receptors within the innate immune system. They possess

the ability to detect pathogens and trigger inflammatory responses,

both in normal and pathological conditions. Among these, the

NLRP3 inflammasome stands out as the most extensively

investigated, chiefly responsible for the secretion of bioactive IL-1β

and IL-18, consequently inducing inflammatory cell demise (162).

ROS is a catalyst for activation of NLRP3 inflammasome, thereby

recruiting macrophages and neutrophils (163). The NLRP3

inflammasome exerts crucial effects in the initial inflammatory

reaction associated with AD (164). The inflammasome within

macrophages exacerbates the advancement of AD, while the absence

of NLRP3 mitigates oxidative stress and regulates macrophage

polarization. The suppression of mitochondrial ROS generation in

macrophages effectively curtails inflammasome activation (165).

Activation of Nrf2 can prevent BAPN-induced AD by impeding

ROS-mediated activation of the NLRP3 inflammasome, concurrently

diminishing the invasion of macrophage and production of MMPs

and pro-inflammatory cytokines (166).
4.4 Oxidative stress and endothelial cells

Vascular endothelial cells not only function as a selective

barrier but also synthesize and secrete diverse active molecules,

participate in inflammatory processes, and regulate vascular

elasticity. These functions are important in governing blood

vessel elasticity and configuration (167). Oxidative stress-induced

endothelial dysfunction is believed to play a significant role in

the development of AD (168). In mouse models of Ang II

infusion-induced AD, augmented production of specific ROS

within the endothelial cells of NOX2 transgenic mice was found

to contribute to Ang II-mediated AD (11).

As a crucial rate-limiting enzyme of NO production in

endothelial cells, eNOS assumes a pivotal role in the occurrence

and development of AD. Oxidative stress can induce eNOS

dysfunction and, consequently, impair vascular endothelial

function. Mice with both eNOS and apolipoprotein E gene

knockouts exposed to a Western diet for a 24-week duration

exhibit the spontaneous development of abdominal aortic

aneurysms and AD (169). Endothelial cells produce excess ROS

through mitochondria, NOX, and XO, which not only lead to the

clearance of NO but also induce eNOS uncoupling, thereby

exacerbating oxidative stress (170). eNOS consists of two subunits
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connected by a zinc finger structure and each of subunit comprises

two structural regions: an oxidation region and a reduction region.

The oxidation region encompasses binding sites for BH4, L-Arg,

and heme, while the reduction region contains binding sites for

flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN),

and NADPH. The junction between the oxidation and reduction

regions is where calmodulin (CaM) binds. When CaM from two

molecules combines, eNOS becomes activated and leads to the

conversion of O2 to NO and L-Arg to L-citrulline (170).

The oxidative depletion of the eNOS cofactor BH4, deficiency in the

eNOS substrate L-Arg or its analogue, accumulation of asymmetric

dimethylarginine (ADMA) can result in eNOS uncoupling, leading to

endothelial dysfunction and ultimately contributing to cardiovascular

disease. Oxidative stress plays a pivotal role in all three mechanisms

(170). BH4 serves as a key cofactor for eNOS, exerting substantial

influence over eNOS activity. Under oxidative stress conditions, BH4

is swiftly oxidized to BH2 by superoxide anions, particularly

peroxynitrite generated by the scavenging of NO by O2, and BH2 can

subsequently be regenerated into BH4 through the dihydrofolate

reductase (DHFR) recovery pathway. BH2 can competitively displace

BH4 in its binding to heme, thereby promoting eNOS decoupling

(171) (Figure 3). In cardiovascular diseases, oxidative stress not only

accelerates the oxidative depletion of BH4 but also affects the

expression and activity of DHFR (170). Ang II downregulates DHFR,

inducing BH4 deficiency in an H2O2-dependent manner.

Overexpression of DHFR can restore NO production and reduce the

O��
2 generated by eNOS (172). Oral folic acid supplementation or

overexpression of DHFR has been shown to prevent aneurysm

formation in mice with Ang II-induced AD by effectively mitigating

eNOS uncoupling and attenuating vascular remodeling and

inflammation. This includes the reduction of medial elastin

breakdown, MMP2 and MMP9 activation, and macrophages

infiltration (173). eNOS uncoupling may manifest activation of

downstream NOX. In double knockout mice lacking the NOX1,

NOX2, or NOX4 genes alongside the BH4 gene, respectively, the

bioavailability of NO and BH4 in endothelial cells is increased, DHFR

content is significantly increased, and the incidence of abdominal

aortic aneurysms is significantly decreased, as compared with mice

with knockout of the BH4 gene only. This suggests that inhibiting the

NOX signaling pathway can decelerate aneurysm progression by

mitigating oxidative stress-induced damage in endothelial cells (174).

These findings underscore the tight linkage between oxidative stress in

endothelial cells and the development of AD.

In the development of AD, VSMCs, ECM, inflammatory cells, and

endothelial cells engage in intricate interactions. Endothelial cells exert

influence over the proliferation, migration, and phenotypic switching

of VSMCs through the secretion of vasoactive substances, thereby

altering the configuration of the blood vessel walls. Vascular

endothelial cells secrete not only vasodilatory substances such as NO

but also other active compounds, including endothelin 1 (ET1) and

transforming growth factor-β (TGF-β). NO can bind to the heme

moiety of VSMCs, activating guanylate cyclase to elevate cyclic

guanosine phosphate (cGMP) levels. Subsequently, cGMP becomes a

secondary messenger that inhibits the proliferation of VSMCs and

promotes apoptosis of VSMCs (175). The NO/eNOS signaling

pathway plays a crucial role as a negative regulator of VSMC
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growth. Impairment of NO synthesis in endothelial cells due to

oxidative stress results in significant proliferation of VSMCs in the

aortic walls (176). The overexpression of ET1 in endothelial cells

induces vascular remodeling and endothelial dysfunction by

activating NOX (177). ROS mediates the activation of ET1-induced

ERK1/2 signaling and protein synthesis in VSMCs (178). The

equilibrium between NO and ET1 governs the apoptosis and

survival of VSMCs, respectively. ET1 inhibits NO-induced apoptosis

of VSMCs through the MAPK pathway (179). Oxidative stress can

activate multiple signaling pathways in endothelial cells and augment

TGF-β secretion (180). When co-cultured with endothelial cells,

endothelial-derived TGF-β can induce the switching of VSMCs into

a secretory phenotype by regulating the phosphoinositide 3-kinase/

AKT signaling pathway (181, 182). Endothelial cell dysfunction

results in ECM metabolism disorders, VSMC apoptosis, aortic wall

thinning, and then aortic aneurysms and dissection. The NF-κB

signaling pathway mediates the upregulation of adhesion molecules

in endothelial cells. In mice, specifically blocking the NF-κB pathway

in endothelial cells significantly reduces the expression of adhesion

molecules and inflammatory factors, macrophage infiltration, matrix

degradation, and oxidative stress in endothelial cells. This ultimately

reduces inflammation and artery dilation in mice (183). NLRP3

inflammasome activation exacerbates oxidative stress and endothelial

dysfunction, while inhibition of the NLRP3 inflammasome signaling

pathway can ameliorate vascular dysfunction (184).
5 AD treatment

5.1 Therapies targeting the enzyme systems
that generate ROS

In recent years, both preclinical and clinical studies have

elucidated several endogenous enzyme systems that regulate

oxidative stress in AD. Given the critical role played by NOX in

AD, there is potential for selectively targeting specific NOX

subtypes to rectify eNOS uncoupling and mitochondrial

dysfunction, thereby offering a viable approach for the prevention

and treatment of AD (15). Additionally, SOD mimics can also be

used to enhance the effect of SOD, remove harmful O��
2 from the

body, diminish the infiltration of inflammatory cells, and retard the

aging process (185). Polyphenols, which are natural antioxidants,

inhibit the production of MMPs and thwart ROS-induced signal

transduction (186). Polyphenols mitigate the necrosis and apoptosis

in myocardial cells, decrease the infarct size of heart, and enhance

cardiac function by reducing ROS or reactive nitrogen-free radical

production stemming from oxidative stress (187) (Figure 4).
5.2 Treatments associated with the
ROS-mediated signaling pathways

ROS exerts multiple effects on the development of AD

pathology by regulating different signaling pathways. Calcium

channel blockers such as nifedipine can inhibit the activation of

the MAPK signaling pathway to regulate inflammation (188).
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FIGURE 3

Role of oxidative stress in eNOS uncoupling. The eNOS utilizes L-arginine (L-Arg) and oxygen as substrates to synthesize NO and L-citrulline with the
indispensable cofactor tetrahydrobiopterin (BH4). Meantime, the triphosphopyridine nucleotide (NADPH) was oxidated and electrons were transferred
to heme by flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN). In cases of eNOS uncoupling, O��

2 is produced instead of NO. The role
of oxidative stress in eNOS uncoupling due to oxidative depletion of tetrahydrobiopterin (BH4), deficiency of the eNOS substrate L-Arg or
accumulation of asymmetric dimethylarginine (ADMA), and eNOS S-glutathionylation. Under oxidative stress, BH4 is rapidly oxidized by superoxide
anion to BH2, which competitively replaces BH4 for heme binding and promotes eNOS uncoupling. BH2 can subsequently be regenerated into
BH4 through the dihydrofolate reductase (DHFR). Oxidative stress can lead to a decrease in the L-Arg/ADMA ratio, effectively reducing substrate
utilization. Oxidative stress also decreases the intracellular glutathione (GSH)/oxidized glutathione (GSSG) ratio, leading to eNOS S-
glutathionylation and impede electron transport.

Xu et al. 10.3389/fcvm.2024.1410477
Lipid-regulating drugs also exhibit anti-inflammatory effects by

inhibiting MAPK activity and maintaining endothelial cell

junctional homeostasis (189). Drugs acting on the renin-

angiotensin system are involved in the NF-κB and MAPK

signaling pathways and reduce the expression of inflammatory

factors such as IL-4 and TNF-α. LMA, a major component of

codonopsis lanceolata, displays antioxidant effects not only by

downregulating ROS production via inhibiting expression/

phosphorylation of NOX subunits but also by inhibiting the

activation of JNK and NF-κB pathway (190). Additionally,

Senkyunolide I (SEI) is a traditional Chinese medicine with
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notable anti-inflammatory functions. SEI can improve the

progression of AD through suppressing the NF-κB activity, and

thereby attenuating the production of inflammatory cytokines,

oxidative stress, and apoptosis in endothelial cells (191).
5.3 Supplementing the endogenous and
exogenous antioxidants

The primary endogenous antioxidants in mammalian cells

include NAD, GSH, and vitamin C, which collectively shield
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FIGURE 4

Possible therapeutic targets. There are some potential therapeutic medicines that associated with oxidative stress. Therapies targeting the enzyme
systems that generate oxidative stress and reactive oxygen species (ROS), such as triphosphopyridine nucleotide (NADPH) oxidase (NOX) inhibitors
may play a crucial role in the improve of aortic dissection (AD). Superoxide dismutase (SOD) mimics and polyphenols can enhance the body’s
antioxidant capacity and exert effects of reduce oxidative stress. Moreover, ROS exerts multiple effects on the development of AD pathology by
regulating different signaling pathways and treatments associated with the activation of ROS-mediated signaling pathways should also be explored
more closely. GPx, glutathione peroxidase; GSH, glutathione; GSSG, oxidized glutathione; GR, glutathione reductase; XO, xanthine oxidase; ACE,
angiotensin-converting enzyme; Ang, angiotensin.

Xu et al. 10.3389/fcvm.2024.1410477
cells from oxidative stress. The supplementation of NAD or

GSH precursors improves cardiac function and redox status

in models of heart failure (192–195). NAD precursors

include nicotinamide (196), nicotinamide ribose (197),

nicotinamide mononucleotide, and nicotinic acid (198).

Augmenting NAD levels can extend a healthy lifespan,

mitigate metabolic syndrome, and reduce blood pressure

(198). GSH is synthesized through the gamma-glutamyl cycle

and procysteine has demonstrated the capacity to elevate

endogenous GSH production, rendering it a promising area

of research in cardiovascular diseases (8). Vitamin C serves

to safeguard BH4, reinstating eNOS enzyme functionality

and enhancing aortic endothelial performance (199, 200).

Moreover, it curbs ROS production and amplifies NO

availability in endothelial cells, thus averting acute alcohol-

induced endothelial dysfunction (201). Furthermore, aside

from bolstering endogenous antioxidant capabilities, an

alternate approach to mitigating oxidative stress involves

supplementing with exogenous antioxidants. As a natural

polyphenolic antioxidant, resveratrol has abilities for anti-

inflammatory and cardiovascular protection. In murine

models of AD, resveratrol prevents vascular senescence by

inhibiting NOX activity and reducing oxidative stress in a

SIRT1-dependent way (202).
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6 Limitations and prospects

Increased oxidative stress is regarded as a potential common

etiological factor in diverse cardiovascular diseases. Extensive research

has explored the role of oxidative stress in the initiation and

progression of AD. There is substantial evidence indicating the

involvement of ROS in the pathophysiology of AD. However, the

pathogenesis of AD is intricate, and no solitary mechanism can

comprehensively elucidate its pathophysiological processes. Oxidative

stress and inflammation are acknowledged as major contributing

factors. Our endeavor was to elucidate the role of oxidative stress in

the occurrence and advancement of AD through a comprehensive

analysis of existing studies. This analysis encompassed the impact of

oxidative stress on VSMCs, ECM, inflammatory cells, and endothelial

cells. Encouraging outcomes from preclinical investigations have

showcased the potential efficacy of diverse antioxidant strategies.

As a result of these very promising results in animal models,

several studies have evaluated the potential of anti-oxidative stress

therapies in clinical settings (203, 204). However, clinical trials of

various antioxidants have shown no benefit (205). In fact, the

evidence from recent intervention studies of high-dose antioxidant

vitamins and other antioxidants in food has been very

disappointing (206, 207). Although targeting oxidative stress is

theoretically logical, most strategies currently employed in the
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clinical setting have failed to improve patient prognosis. The exact

reasons and mechanisms regarding the failure of these studies to

produce the expected beneficial effects remain largely unknown.

Still, we should not completely ignore studies targeting oxidative

stress, especially endogenous antioxidant capacity, in AD patients. It

is noteworthy that NAC supplementation to increase endogenous

GSH levels and thus antioxidant capacity resulted in improved

prognosis in patients with heart failure without any adverse side

effects. Future oxidative stress therapies should focus on increasing

endogenous antioxidant capacity rather than inhibiting oxidative

stress production or supplementing with exogenous antioxidants (8).

Although these favorable effects observed in clinical trials did

not consistently translate into positive patient outcomes, they did

manifest as a reduction in cardiovascular and all-cause mortality.

Considering these observations, the pursuit of novel therapeutic

targets for mitigating oxidative stress emerges as a promising

avenue for advancing the treatment of AD.
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