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Genetic drivers of human plasma
metabolites that determine
mortality in heart failure patients
with reduced ejection fraction
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L. Keoki Williams1, Hani N. Sabbah4, Stephen J. Gardell5 and
David E. Lanfear1,4*
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Background: Heart failure with reduced ejection fraction (HFrEF) remains a
significant public health issue, with the disease advancing despite
neurohormonal antagonism. Energetic dysfunction is a likely contributor to
residual disease progression, and we have previously reported a strong
association of plasma metabolite profiles with survival among patients with
HFrEF. However, the genetic and biologic mechanisms that underlie the
metabolite-survival association in HFrEF were uncertain.
Methods and results: We performed genetic mapping of the key metabolite
parameters, followed by mediation analyses of metabolites and genotypes on
survival, and genetic pathway analyses. Patients with HFrEF (n= 1,003) in the
Henry Ford Pharmacogenomic Registry (HFPGR; 500 self-reported Black/
African race patients [AA], 503 self-reported White/European race patients
[EA], and 249 deaths over a median of 2.7 years) with genome-wide
genotyping and targeted metabolomic profiling of plasma were included. We
tested genome-wide association (GWA) of single nucleotide polymorphisms
(SNPs) with the prognostic metabolite profile (PMP) and its components; first
stratified by race, and then combined via meta-analysis for the entire cohort.
Seven independent loci were identified as GWA significant hits in AA patients
(3 for PMP and 4 for individual metabolites), one of which was also significant
in the entire cohort (rs944469). No genome wide significant hits were
found in White/EA patients. Among these SNPs, only rs35792152, (a hit
for 3.HBA) tended to be associated with mortality in standard survival analysis
(HR = 1.436, p= 0.052). The mediation analyses indicated several significant
associations between SNPs, metabolites, and mortality in AA patients.
Functional annotation mapping (FUMA) implicated inflammation, DNA
metabolic, and mRNA splicing processes.
Conclusions: GWAS of key metabolites and survival along with FUMA pathway
analysis revealed new candidate genes which unveiled molecular pathways that
contribute to HF disease progression via metabolic and energetic abnormalities.
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Introduction

Heart failure (HF) is one of the most common, costly, and

deadly diseases. According to the American Heart Association,

there are almost 900,000 new cases annually in the U.S., an

estimated prevalence of 5.7 million (1). HF remains high risk

even in the setting of optimal guideline directed medical therapy

(2, 3). Therefore, a deeper understanding of the residual HF

disease burden and associated pathophysiology toward novel

interventions is critically needed. Energetics, mitochondrial

function, and substrate utilization are perturbed in HFrEF and

likely contribute to disease progression (4–6). However, the

pathways that remain incompletely understood and are not

entirely related to the well-established neurohormonal

abnormalities (7). Certain circulating metabolites are associated

with HF disease progression and outcomes (8–11). Similarly, a

validated multi-metabolite profile (13 metabolites, HR = 1.76) is

an independent predictor of mortality in HFrEF patients. This

supports the notion of a key role for energetic abnormalities in

HFrEF and identifies these circulating metabolites as potentially

valuable surrogate markers.

While genome-wide association studies (GWAS) have illuminated

disease mechanisms in many conditions, GWAS on clinical HF

phenotype alone requires very large sample sizes and lacks a

mechanistic focus, limiting downstream interpretation. On the other

hand, GWAS power may be enhanced when focused on important

mechanistic surrogates for the disease, sometimes termed

“endophenotypes”. For example, this approach has been successful

in asthma (12) identifying novel causative pathways for hay fever

(13), and in Alzheimer’s disease where it allowed identification of

novel variants with increased Alzheimer’s Disease (14). In the case

of HF, there have been a few candidate genes discovered in large

GWAS studies (15), and yet, this approach may not be sensitive.

Relevant to this, metabolomics has proven to be an advantageous

approach in obtaining unique insights about underlying disease

states (16–21). Data from both ours and other studies show that the

plasma metabolite profile is associated with HF prognosis (21, 22).

Hence, plasma metabolite levels in HF patients could be an

attractive endophenotype to map in order to better understand the

genetic and mechanistic underpinnings of HF progression.

In this study, we tested genetic association of prognostic

metabolites and assessed mediation between the genetic factors

and metabolites with survival outcomes. We then performed

pathway analysis to identify key processes and groups of related

genes that may be novel therapeutic targets in HF.
Methods

Sample collection

Participants for this study were enrolled into the Henry Ford

heart failure Pharmacogenomic registry (HFPGR), the details of

which are previously described (22). The study was approved by

the Institutional Review Board at Henry Ford Health System in
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Detroit, MI, USA. After being educated about the study all

participants provided written informed consent at the time of

enrollment. Briefly, the registry consists of >1,700 HF patients in

total that met the Framingham criteria for HF and who were

covered for at least 1 year by the affiliated health insurance plan

(the “Health Alliance Plan”) and primarily received their care

through Henry Ford Health System. All patients have detailed

clinical and electronic health record data, claims collected as part

of the registry, and had donated blood for DNA and biomarker

analyses. At the time of enrollment, fasting blood samples were

collected and centrifuged to isolate plasma, aliquoted and stored

at −70 °C until being assayed. This study is focused on HFrEF

patients defined here as having at least one an ejection fraction

(EF) <50% measured by any modality. From this registry, we

collected patients with reduced EF, and they were separated into

two groups according to their self-reported race: White (EA) and

African American (AA). After quality control (QC), i.e.,

accounting for missing SNP and metabolite data, there were a

total of 1,003 participants (500 AA and 503 EA) for this study.
DNA genotyping

Genotyping was performed on all enrolled participants using

the Axiom Biobank array (Affymetrix Inc, Santa Clara, CA). This

array contained ∼600k SNPs including: (1) 300k GWAS markers

with minor allele frequencies >1%, (2) >250k with low frequency

(<1%) coding variants from the exome sequencing project, and

(3) additional 50k variants to improve African race coverage

(YRI Booster). This array provides excellent coverage of genomic

variation, capturing 90% in European race and 80% in African

race patients; and it also allows for ancestral quantification and

admixture mapping. Standard quality control steps were adopted

to clean the raw genotypes from the array (23). Clean genotypes

were submitted to Michigan Imputation Server for imputation to

1,000 Genome Reference panel Phase 3 v5 (24). To avoid

population differences, imputations were done separately for EA

and AA. Only high-quality genotyped and imputed SNPs were

included in the downstream association analysis. Minor allele

frequency (MAF) cut-off was set at 0.05, and imputation score

(r2) cut-off was set at 0.5.
Metabolomic profiling

Quantitative and targeted metabolite profiling of individual

amino acids (AA), organic acids (OA), and acylcarnitines (AC)

were performed at the Sanford Burnham Prebys Medical Discovery

Institute using HPLC/mass spectrometry or GC/mass spectrometry

(22). Targeted metabolite profiling of 8 OAs, 23 AAs, and 57 ACs

were measured using plasma samples (see Supplementary Material).

A prognostic metabolite profile (PMP) that significantly predicted

HF mortality was derived and validated in our cohort (22). This

PMP was the primary independent variable for the metabolite

quantitative trait loci (mQTL) GWAS. As secondary GWAS

analyses, we analyzed the 13 individual metabolites that had
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significant independent association to mortality and were included

in the PMP [Arginine, Leucine, Phenylalanine, Valine, C2,

C4.Isobutyryl, C5.Isovaleryl, C5.DC, C18.1, 3-hydroxy butyric acid

(3HBA), Succinate, Fumarate, and α-ketoglutarate (KG)]. We used

these 14 molecular phenotypes (i.e., the PMP and each of the 13

individual metabolites) to search for mQTL associations in this study.
Statistical analyses

To perform genome-wide association analysis on the

metabolites that are potential endotypes of heart failure survival,

typical GWAS protocol was used to link genome-wide SNPs with

each metabolite and overall PMP. SNPs were coded as 0, 1 or 2

copies of the minor alleles. The primary analysis was performed

for PMP and then secondary analyses for each of its component

metabolites. A linear regression model implemented in PLINK

was tested between SNP dosage and quantitative traits, with

adjustment of the top 5 principal components (PC) (25). PCs

were estimated from linkage disequilibrium pruned SNP sets

using R package “Genesis” (26). Single variant association was

done separately for EA and AA. To adopt a more powerful two-

stage GWAS analysis across ethnic groups, AA GWAS was used

as discovery analysis, while EA GWAS was used for replication.

METAL was then used to combine their summary statistics

together by fixed-effect meta-analysis (27). The significance

threshold was set at 5 × 10−8 for SNP-level analysis.
TABLE 1 Baseline characteristics of HFrEF patients in HFPGR analytic
cohort (n = 1,003).

Characteristic Value
Female, N 353 (35%)

Age, years 68 (±12)

African American, N 500 (51%)

Systolic blood pressure, mmHg 129 ± 23

Heart rate, bpm 71 (±13)

Ischemic, N 568 (57%)

COPD, N 222 (22%)

A-Fib, N 279 (28%)

Stroke/TIA, N 90 (8.97%)

Diabetes, N 412 (41%)

LVEF, % 34.9 (±11)

NTproBNP, pg/ml 354.02 (±378.35)

Creatinine, mg/dl 1.30 (±0.99)

MAGGIC score 19.22 (±7.78)

KCCQ overall 82 (±21)

Follow up time, days 995 (591)

Death 249 (24.8%)
Bioinformatics functional annotation and
pathway analyses

SNPs reaching genome-wide significance were interrogated for

functional annotation (gene disrupting, expression quantitative trait

locus, genomic regulation) that may link to HF pathology by public

resources including The Encyclopedia of DNA Elements

(ENCODE), Genotype-Tissue Expression (GTEx) and Human

Metabolome database (HMDB) (28, 29) and metabolomics GWAS

server (http://metabolomics.helmholtz-muenchen.de/gwas/).

Gene and gene-set association analyses were performed to

identify functional pathways enriched by significant SNPs or

genes. ENCODE annotation was used to mark functional

genomic regions/genes. Combining the evidence of association

from all SNPs within each gene/region was done using an

extended Simes procedure to yield an overall gene-based

association p-value (30). The gene-focused approach enabled

assessment of pathways to allow investigation of multi-site effects

and leverage other pre-existing data such as known protein-

protein interactions or regulatory pathways (i.e., FUMA).
NYHA Class I 582 (58.03%)

NYHA Class II 182 (18.15%)

NYHA Class III 120 (11.96%)

NYHA Class IV 119 (11.86%)

ACE use 482 (48.06%)

ARB use 196 (19.54%)

Beta blocker use 692 (68.99%)
Mediation analysis and heart failure
mortality

Two lists of SNPs were included in the mediation analysis,

which was used to build up the causal relationship between
Frontiers in Cardiovascular Medicine 03
candidate SNPs, metabolites, and HF mortality. The first list was

from mQTL analysis in this study, and the second list was from

another independent GWAS on HF survival phenotype.

Metabolites were treated as mediators, and HF mortality was

treated as the outcome. Both model-based mediation analysis and

its corresponding sensitivity analysis were done by the R package

“Mediation” (31). A significant mediation effect was defined

when mediation analysis returned a p-value < 0.01 and sensitivity

analysis returned a p-value >0.05. The top associated SNPs,

genes, or pathways were tested for mortality association in Cox

proportional models adjusted for the first 5 PCs, clinical risk

score (MAGGIC score) (32) and NT-proBNP levels. Multiple

testing was corrected by Bonferroni method using the total

number of genetic risk variables tested (i.e., the total number of

hits from mQTL analysis).
Results

The baseline characteristics for the HFrEF patients in our

analytic cohort are shown in Table 1. Among a total of 1,003

patients, 35% were female, 49% self-identified as AA, and the

cohort average age was 68 years. The average ejection fraction

was 34.9%, and 57% of the cohort had HF of ischemic origin.

We initially performed systematic genetic analysis for the

multi-metabolite profile metabolite levels (PMP) in HFrEF

patients, these results are depicted in Figure 1. Among AA

participants, 3 SNPs were identified that met whole-genome

significance (p < 5 × 10−8), while no SNPs were significant among
frontiersin.org
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FIGURE 1

Manhattan and QQ plots for PMP association in (A) African Americans (−500 subjects); (B) European Americans; (C) meta-analysis. (A) PMP as
phenotype in African Americans (500 subjects). (B) PMP as phenotype in European Americans (503 subjects). (C) PMP meta-analytic GWAS in
African American and European Americans subjects (n= 1,003).
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EA participants (Table 2). Among the 3 significant SNPs, one was

located in a protein coding gene (ARHGEF28) and the other two

were in inter-genic regions. We then examined the individual
Frontiers in Cardiovascular Medicine 04
metabolites that make up the previously published prognostic

profile. An additional 4 independent SNPs were identified as

GWAS hits for human metabolites in AA HFrEF patients. The
frontiersin.org
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TABLE 2 Top associated SNPs with metabolite level.

Chr SNP MAF Info score Gene Pop Metabolite Beta P
1 rs4402119 0.193 0.91 Intergenic AA Arginine 0.442 1.35 × 10−8

17 rs35792152 0.064 0.83 TEN1, Near ACOX1 (upstream) AA 3.HBA −0.803 4.08 × 10−9

19 rs4643456 0.172 0.85 LOC284395 (intron) AA C4 Isobutyryl 0.51 5.97 × 10−9

8 rs73281346 0.132 0.72 Intergenic AA Fumarate 0.526 4.03 × 10−8

5 rs6453017 0.461 0.76 Near ARHGEF28 (upstream) AA PMP 0.181 2.51 × 10−8

15 rs11638945 0.145 0.84 Intergenic AA PMP 0.269 1.29 × 10−8

20 rs944469 0.095 0.9 Intergenic AA PMP 0.321 4.49 × 10−9
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multi-race meta-analytic GWAS resulted in no SNPs meeting

genome wide significance. No significant SNPs were identified in

the EA patients. Among AA patients, one metabolite hit,

rs35792152 for 3-HBA (Figure 2), was moderately associated

with HF mortality (HR = 1.436, p = 0.052).

To gain a composite view of all genetic associations and use

this to identify key pathways, we took a systems biology

approach using FUMA, leveraging the primary GWAS output.

Top associated gene-sets using FUMA for the multi-metabolite

profile are shown in Table 3. Results derived using FUMA

highlighted some additional intriguing gene ontology groups

such as endoribonuclease activity, regulation of RNA splicing,

Holliday junction resolving, and defense from virus. Finally,

mediation models were used to assess the relationship of genetic

signals, metabolite traits and clinical outcome (mortality), results

of which are summarized in Table 4. Mediation analysis of

individual SNP hits did not reveal any metabolites mediating the

effect of single SNP genotypes on HF mortality (all p > 0.05).
FIGURE 2

Regional plot for association of SNPs with 3.HBA in African American popu
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Discussion

Metabolomic profile is a potentially useful endophenotype

for HF progression since plasma metabolite levels are associated

with risk of death in HF, and are linked to mitochondrial

function and energetics, which represents a key pathophysiologic

pathway in HF. Thus, the study of genetic influences on

metabolites as endophenotypes may provide a short-cut to

understanding the mechanisms involved that contribute to

worsening HFrEF. The present study examined this, utilizing a

combined approach by predicting mortality using genetic GWAS

hits combined with a metabolite profile to identify novel

candidate genes for HF (COX1, ARHGEF28, and TEN1) and

underscoring key gene ontology groups (33) that likely have

impact in HF development and progression (metabolic and

apoptotic pathways, among others).

We identified several genome wide significant hits for the PMP,

but interestingly, all of them appear in the AA-only analysis. The
lation.
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TABLE 3 Top associated gene sets from FUMA analysis.

Group Pathway name No. of genes P-value FDR
Meta Endodeoxyribonuclease_activity_producing_3_phosphomonoesters 10 0.000002485 0.0222609

Meta Negative_regulation_of_mrna_splicing_via_spliceosome 18 0.000002876 0.0222609

Meta Negative_regulation_of_rna_splicing 23 0.000011771 0.0522135

Meta Endodeoxyribonuclease_activity 37 0.000013491 0.0522135

Meta Holliday_junction_resolvase_complex 5 0.000031466 0.0819332

Meta Regulation_of_mrna_splicing_via_spliceosome 89 0.000031755 0.0819332

Meta Crossover_junction_endodeoxyribonuclease_activity 7 0.000038907 0.0851416

Meta Maternal_process_involved_in_parturition 7 0.000043998 0.0851416

AA Defense_response_to_virus 224 0.000002676 0.0414318

TABLE 4 Mediation analysis between SNP, metabolite, and mortality.

Genetic variants Population Model 1 (Survival –
Metabolite)

Model 2
(Metabolite –

SNP)

Model 3
(Survival – SNP)

Model 4
(mediation)

Metabolite beta1 P1 beta2 P2 beta3 P3 % Mediated P4
rs6453017_C African American (AA) PMP 0.420 0.0214 0.181 2.51 × 10−8 −0.137 1.68 × 10−1 139 0.35

rs11638945_A 0.269 1.29 × 10−8 0.202 1.10 × 10−1 57.4 <2e-16

rs944469_G 0.321 4.49 × 10−9 −0.147 3.67 × 10−1 110 0.058

rs35792152_C 3HBA −0.043 0.516 −0.803 4.08 × 10−9 0.478 3.32 × 10−3 4.09 0.73

rs6453017_C European American (EA) PMP 1.122 7.93 × 10−8 −0.006 8.45 × 10−1 −0.135 1.33 × 10−1 23 0.67

rs11638945_A −0.022 4.80 × 10−1 −0.044 6.32 × 10−1 28.5 0.55

rs35792152_C 3HBA −0.251 0.000291 0.095 5.22 × 10−1 0.114 5.89 × 10−1 −1.77 0.86

rs6453017_C Meta analysis (All samples) PMP 0.681 4.83 × 10−7 0.084 1.83 × 10−4 −0.151 2.17 × 10−2 118 0.62

rs11638945_A 0.068 9.17 × 10−3 0.021 7.71 × 10−1 73.5 0.228

rs944469_G 0.321 4.49 × 10−9 −0.147 3.67 × 10−1 NA NA

rs35792152_C 3HBA −0.137 0.00439 −0.419 3.02 × 10−5 0.293 2.22 × 10−2 12.5 0.032

The values in bold highlight the significant P-values.
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reason for this is unclear. While the lack of findings across both

cohorts could reflect chance findings, it also could be that the

greater genetic diversity present in AA patients provides greater

power in this moderate sized study. One SNP was near

(approximately 3 kb upstream) a known coding gene, Rho Guanine

Nucleotide Exchange Factor 28 (ARHGEF28). While this precise

gene has not previously been linked to HF, GEFs are involved in

processes across a wide range of tissues interacting with integrins

and are linked to autophagy and apoptotic pathways; both processes

known to be active in the setting of HF as well as being linked to

mitochondrial and energetic cellular functions. Indeed, other GEF

family members have been linked to cardiac remodeling and cardiac

fibrosis in model systems (34, 35).

We identified only one SNP (rs35792152) that was significant

for one of the prognostic metabolites (3HBA) and that was also

associated with mortality. This SNP lies in or near multiple

genes; it is within Telomere Length Regulation Protein gene

(TEN1) and TEN1-CDK3 (a read-through long non-coding RNA

gene), and near (5 kb upstream) Acyl-CoA Oxidase 1 (ACOX1).

TEN1 is a key part of a protein complex involved in telomere

maintenance during DNA replication (36). Telomere length and

maintenance is linked to aging and senescent cell processes, but

also more specific links to energetic function and age-related

diseases (like HF) have been widely proposed (37). More

obviously, ACOX1 catalyzes the initial and rate-limiting step in
Frontiers in Cardiovascular Medicine 06
peroxisomal beta-oxidation of fatty acids, a process with

emerging implications for heart failure (38). There are intriguing

links between TEN-CDK3, a lncRNA gene, with dextro-cardia

and cardiomyopathy. In considering the possible gene links of

this SNP, the fact that it is associated with 3HBA levels and is

located near ACOXI could be seen as pointing to energetic

mechanisms or substrate utilization. However, as described, the

other potential candidates also have plausible biologic

mechanisms. Further investigation is needed to clarify possible

causation and mechanism.

One possible limitation of the study is that the plasma

metabolite profile may not reflect HF disease progression per se.

However, this is unlikely given that most patients with HFrEF

die from cardiac complications and not another disease. Another

possible limitation of the study is that the plasma metabolite

profile may reflect HF progression but not myocardial energetics

specifically. With regards to alternative approaches to the

metabolomic studies themselves, one could consider global/

untargeted metabolomics. However, existing literature on

metabolomics in cardiovascular disease has focused our attention

on several very promising metabolite classes including ACs, AAs

and OAs, and the strength of our data associating these

metabolites with survival in HF patients suggests we stay focused

on fewer, quantifiable analytes. Moreover, a formidable challenge

of global metabolomics is identification of unknown
frontiersin.org
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(unannotated) metabolites, which is key for elucidating mechanism

and developing new intervention strategies. Future studies are

needed to look over more metabolomics wide markers, not just

targeted assays. Lastly, an additional limitation of the study is the

relatively small sample size (N = 1,003).

Moreover, the patient metabolite profile was measured only at

one time point i.e., the time of study enrollment. The metabolite

profile was not taken in relation to any disease stage, and no

direct replication of the profile was performed. We have

developed a novel method to link genetic variants with changes

in plasma metabolite levels and HF mortality. Several causal

relationships were uniquely significant in the AA population,

suggesting this technique could be useful in generating

prognostic factors in at-risk populations.
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