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Association between non-high-
density lipoprotein cholesterol to
high-density lipoprotein
cholesterol ratio and telomere
length: the NHANES 1999–2002
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1Department of Oncology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, Hubei, China, 2Hepatic Surgery Center, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, Hubei, China
Background: The relationship between non-high-density lipoprotein cholesterol
to high-density lipoprotein cholesterol ratio (NHHR) and telomere length (TL)
remains unclear. This study aims to investigate their association in a nationally
representative US population.
Methods: Data from 6,342 adults aged ≥20 were obtained from the National
Health and Nutrition Examination Survey (NHANES) 1999–2002. The NHHR
was calculated and categorized into tertiles. TL was measured as the
telomere-to-standard reference DNA ratio. Multivariate linear regression and
smooth curve fitting were employed to assess the association between NHHR
and TL.
Results: The study population (mean age 45.1 ± 0.4 years, 48.9% male) was
stratified into NHHR tertiles. Compared with the lowest NHHR tertile, the
highest NHHR tertile was associated with adverse inflammatory and
cardiometabolic profiles, including elevated white blood cell counts
(6.88 ± 0.07–7.54 ± 0.08 × 109/L) and increased prevalence of hypertension
(18.81%–25.71%) and diabetes (3.38%–7.17%). An elevated NHHR was
significantly associated with a shorter TL (T/S ratio: 1.09 ± 0.02–1.03 ± 0.02;
P=0.0005). This association remained significant in partially adjusted models
but was attenuated in a fully adjusted model. Significant interactions were
observed for age and hypertension status.
Conclusion: This study revealed a linear inverse association between NHHR and
TL, suggesting the utility of the NHHR as a novel biomarker for biological aging.
Further prospective studies are warranted to validate these findings.
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1 Introduction

Telomeres, the protective caps at the ends of chromosomes, play a pivotal role in

cellular aging and stability. The enzyme telomerase is indispensable for maintaining

telomere length (TL) through the addition of telomeric DNA, which is crucial for the

normal functioning of cells and the longevity of organisms (1). However, with each cell

division, telomeres undergo a process of shortening, which accelerates with age and is

linked to various age-related diseases (2). The shortening of TL has been proposed as a

biomarker for aging, as it correlates with increased oxidative stress and inflammation,
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both of which can accelerate telomere attrition (3). A reduction in

telomere length in peripheral blood leukocytes has been linked to

an elevated risk of cardiovascular disease and certain types of

cancer, underscoring its importance in the context of age-related

disorders (4). Moreover, telomere shortening contributes to

genomic instability, a hallmark of cancer that facilitates tumor

formation and metastasis (5).

The non-high-density lipoprotein cholesterol to high-density

lipoprotein cholesterol ratio (NHHR) is a recently developed

composite indicator that provides a more nuanced understanding

of lipid profiles (6). It reflects the balance between atherogenic

and antiatherogenic lipoproteins and demonstrates a robust

predictive value for adverse cardiovascular events (7). Recent

studies have demonstrated that the NHHR is associated with an

increased risk of cardiovascular disease and exhibits superior

predictive capabilities for metabolic syndrome and insulin

resistance compared with traditional lipid indicators such as total

cholesterol and high-density lipoprotein cholesterol (HDL-C)

levels (8, 9). Moreover, the NHHR has been demonstrated to

outperform other composite indices, including the total

cholesterol/HDL-C ratio, in predicting cardiovascular events,

thereby establishing its broader clinical utility (10). Another

comparative analysis with other lipid parameters also showed

that the NHHR provided better value in predicting abdominal

aortic aneurysms while maintaining diagnostic performance,

especially in the elderly population (11). This finding contributes

to the understanding of the relationship between NHHR and

health status in the elderly population.

TL, a key biomarker of aging, has recently garnered increased

attention due to its purported relationship with lipid metabolism.

A Mendelian randomization study has provided preliminary

evidence suggesting potential positive causal relationships

between low-density lipoprotein cholesterol (LDL-C), very low-

density lipoprotein cholesterol (VLDL-C), total cholesterol, and

TL (12). These findings imply that alterations in lipid

metabolism may influence TL dynamics, which could, in turn,

affect the risk of developing age-related diseases. A cross-

sectional study conducted among individuals in the US has

further revealed a possible relationship between telomere length

and HDL-C (13), thereby reinforcing the notion that lipid

profiles are related to telomere dynamics.

Although mounting evidence links alterations in TL to

alterations in lipid metabolism, limited information is available

concerning the connection between NHHR and TL. Using data

from the National Health and Nutrition Examination Survey

(NHANES), this study aims to investigate the relationship

between NHHR and TL and evaluate the NHHR as a practical

biomarker for TL dynamics. By elucidating the association

between NHHR and TL, this research aims to contribute to a

deeper understanding of the influence of lipid metabolism on

the aging process. The findings could have significant

implications for clinical practice, particularly in the

development of targeted interventions aimed at improving lipid

profiles and preserving telomere length, which would ultimately

enhance health span and reduce the burden of age-

related diseases.
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2 Materials and methods

2.1 Study population

The NHANES is a repeated cross-sectional survey that is being

undertaken by the US National Center for Health Statistics

(NCHS). It is a countrywide database that provides data on the

health and nutritional status of adults and children in the US

(14). The NCHS Ethics Review Board gave its approval to the

NHANES study protocols. All research subjects executed formal

informed consent documents.

This study performed a cross-sectional analysis based on the

NHANES 1999–2002 cycles (1999–2000 and 2001–2002), as TL

measurements were exclusively available during these cycles. Of

the initial 21,004 participants, exclusions were made for

individuals under 20 years of age (n = 10,713), pregnant women

(n = 600), and those taking cholesterol-lowering medications

(n = 994). Additional exclusions included participants with

missing data for the NHHR (n = 1,253), telomere length

(n = 822), and the dietary inflammatory index (DII) (n = 280).

The final analytical cohort comprised 6,342 participants, as

illustrated in Figure 1.
2.2 Study variables

The exposure variable was the NHHR, calculated by first

subtracting HDL-C from TC to obtain non-HDL-C, and then

dividing non-HDL-C by HDL-C (6).

The outcome variable was mean TL, determined by the ratio of

TL-to-standard reference DNA (T/S ratio) in blood leukocytes

from NHANES samples. Consistent with previous studies, the T/

S ratio is referred to as TL in this analysis (15).

Covariates included both continuous and categorical variables.

Continuous variables comprised age (years), body mass index

(BMI), income-to-poverty ratio, and DII. The DII quantifies the

inflammatory potential of dietary patterns, with higher scores

reflecting more pro-inflammatory diets (16). For this analysis,

DII scores were further classified as pro-inflammatory (DII > 0)

or anti-inflammatory (DII < 0) (17). Categorical variables

included gender, race, educational attainment, physical activity,

smoking status, and medical history (diabetes, hypertension, and

cancer). Given that TL was measured using DNA isolated from

whole blood (18), hematological parameters were also included

as covariates: white blood cell count (109/L) and differential

percentages (lymphocytes, monocytes, neutrophils, eosinophils,

and basophils).
2.3 Statistical analysis

Statistical analysis was conducted using EmpowerStats (version

4.2) and R (version 4.2.0) software. The statistical analysis was

conducted following the procedures recommended by the

Centers for Disease Control and Prevention (CDC). To account
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FIGURE 1

Flowchart of participant selection. NHANES, National Health and
Nutrition Examination Survey; NHHR, non-high-density lipoprotein
cholesterol to high-density lipoprotein cholesterol ratio.
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for the complex survey design and non-response rates observed in

the NHANES, sample weights were employed in the analyses. As

the sample weights for the NHANES 1999–2000 and the

NHANES 2000–2001 were derived from distinct US censuses, the

Dietary Day one 4-Year sample weight provided by the NCHS

was employed to account for the two reference populations (19).

The continuous variable NHHR was transformed into a

categorical variable based on tertiles. Both continuous and

categorical variables were presented as means ± standard error

(SE) or proportions, respectively, and were compared using

t-tests with weights or weighted chi-square tests based on the

various NHHR tertiles.

The relationship between NHHR and TL was investigated

using multivariate linear regression analysis, with the beta

coefficient (β) and 95% confidence interval (CI) calculated for

each model. The study examined the non-linear relationship
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between TL and NHHR through the use of generalized additive

model (GAM) regression analysis and smooth curve fitting. The

variables that were categorized included smoking behavior, age,

BMI, sex, educational attainment, dietary habits, hypertension,

diabetes, and cancer. A two-sided P-value of less than 0.05 was

considered statistically significant.
3 Results

3.1 Baseline characteristics

In this population-based study, after applying NHANES survey

weights, the study population represented 149,541,747 US adults

who were stratified into three NHHR tertiles (means ± SE:

1.88 ± 0.01, 3.05 ± 0.01, and 4.97 ± 0.04) (Table 1). An elevated

NHHR was significantly associated with a shorter TL (T/S ratio:

1.09 ± 0.02–1.03 ± 0.02; P = 0.0005). A demographic analysis

revealed that a higher NHHR correlated with increased age

(43.83 ± 0.45–46.33 ± 0.43 years; P < 0.0001), higher male proportion

(32.65%–66.19%; P < 0.0001), and decreased educational attainment

(above high school: 59.15%–49.05%; P < 0.0001).

Subjects with an elevated NHHR demonstrated significantly

increased inflammatory markers, including higher white blood cell

counts (6.88 ± 0.07–7.54 ± 0.08 × 109/L; P < 0.0001) and DII scores

(0.99 ± 0.06–1.19 ± 0.08; P = 0.0415). In addition, these subjects

exhibited an increased BMI (25.30 ± 0.20–30.16 ± 0.17 kg/m2;

P < 0.0001) and a higher prevalence of hypertension (18.81%–

25.71%; P < 0.0001) and diabetes (3.38%–7.17%; P < 0.0001). These

findings suggest that elevated NHHR is independently associated

with adverse demographic, inflammatory, and cardiometabolic

profiles in the US adult population.
3.2 Association between NHHR and TL

The unadjusted Model 1 demonstrated a statistically significant

inverse correlation between NHHR and TL (β =−0.02, 95% CI:

−0.02 to −0.01, P < 0.0001) (Table 2). This association remained

significant after controlling for basic demographic variables in

Model 2 (β =−0.01, 95% CI: −0.02 to −0.01, P = 0.0015).

However, in the fully adjusted Model 3, the association was

found to be attenuated and became non-significant (β =−0.005,
95% CI: −0.015 to 0.004, P = 0.4030).

In analyses based on tertiles, the highest NHHR tertile

exhibited significant negative associations in both Model 1

(β =−0.06, 95% CI: −0.08 to −0.03, P = 0.0001) and Model 2

(β =−0.04, 95% CI: −0.06 to −0.01, P = 0.0126). However, this

association was not significant in Model 3 (β =−0.02, 95% CI:

−0.07 to 0.03, P = 0.5620). The results of the trend analyses

indicated the presence of a significant dose–response relationship

in Models 1 and 2 (P for trend = 0.0001 and 0.0123,

respectively), which, however, was no longer statistically

significant in Model 3 (P for trend = 0.4643). The results of the

smoothing curve fitting revealed a significant linear inverse

association between NHHR and TL (P < 0.05). Specifically, as
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TABLE 1 Baseline characteristics of study participants according to NHHR tertiles.

Characteristics Overall Tertile 1 Tertile 2 Tertile 3 P-value
NHHR 3.30 ± 0.01 1.88 ± 0.01 3.05 ± 0.01 4.97 ± 0.04 <0.0001

Age (years) 45.16 ± 0.32 43.83 ± 0.45 45.32 ± 0.45 46.33 ± 0.43 0.0001

Income-to-poverty ratio 3.00 ± 0.05 3.13 ± 0.07 2.95 ± 0.08 2.93 ± 0.08 0.006

BMI (kg/m2) 27.94 ± 0.14 25.30 ± 0.20 28.35 ± 0.20 30.16 ± 0.17 <0.0001

WBC count(109/L) 7.21 ± 0.06 6.88 ± 0.07 7.21 ± 0.07 7.54 ± 0.08 <0.0001

Lymphocyte percent (%) 30.02 ± 0.20 29.84 ± 0.23 30.03 ± 0.29 30.17 ± 0.27 0.4267

Monocyte percent (%) 8.10 ± 0.04 8.11 ± 0.07 8.18 ± 0.05 8.02 ± 0.06 0.1703

Neutrophils percent (%) 58.47 ± 0.21 58.75 ± 0.26 58.37 ± 0.28 58.28 ± 0.31 0.2547

Eosinophils percent (%) 2.79 ± 0.03 2.67 ± 0.05 2.80 ± 0.06 2.90 ± 0.04 0.0027

Basophils percent (%) 0.66 ± 0.01 0.67 ± 0.02 0.65 ± 0.01 0.67 ± 0.02 0.4461

TL, T/S ratio 1.06 ± 0.02 1.09 ± 0.02 1.06 ± 0.02 1.03 ± 0.02 0.0005

DII 1.08 ± 0.07 0.99 ± 0.06 1.07 ± 0.08 1.19 ± 0.08 0.0415

Gender (%) <0.0001

Male 49.21 32.65 48.55 66.19

Female 50.79 67.35 51.45 33.81

Race/ethnicity (%) <0.0001

Mexican American 7.25 6.29 8.42 7.13

Other Hispanic 6.46 4.95 6.91 7.53

Non-Hispanic White 72.94 73.41 70.14 75.04

Non-Hispanic Black 9.53 11.94 10.66 6.1

Other races 3.82 3.4 3.86 4.21

Education level (%) <0.0001

Less than high school 20.72 17.88 22.3 22.08

High school or GED 25.89 22.97 25.79 28.87

Above high school 53.39 59.15 51.9 49.05

Physical activity (%) 0.1193

None 20.62 19.46 19.73 22.59

Low 27.14 24.72 27.99 28.73

Medium 18.98 19.75 19.93 17.35

High 33.25 36.06 32.35 31.32

Smoking status (%) 0.0304

Current 42.58 41.99 41.48 43.97

Former 8.38 11.11 6.3 7.84

Never 49.04 46.91 52.22 48.18

Hypertension (%) <0.0001

Yes 23.44 18.81 25.96 25.71

No 76.56 81.19 74.04 74.29

Diabetes (%) <0.0001

Yes 5.42 3.38 5.71 7.17

No 93.63 96.06 93.37 91.48

Borderline 0.95 0.56 0.92 1.35

Cancer history (%) 0.07

Yes 7.79 8.67 8.23 6.52

No 92.21 91.33 91.77 93.48

Abbreviations: NHHR, non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio; BMI, body mass index; WBC, white blood cell; DII, dietary inflammatory index;

TL, telomere length; T/S ratio, telomere length-to-standard reference DNA ratio; GED, general educational development.

Data are presented as mean ± standard error for continuous variables and percentages for categorical variables.

Liu et al. 10.3389/fcvm.2024.1407452
NHHR values increased, a consistent decrease in TL was

observed (Figure 2).
3.3 Subgroup analyses

Subgroup analyses revealed significant interactions for age

(P for interaction = 0.0435) and hypertension status

(P for interaction = 0.0482) in the association between NHHR

and TL (Figure 3). No significant interactions were
Frontiers in Cardiovascular Medicine 04
observed for sex, education level, BMI, smoking behavior,

diabetes status, cancer history, or dietary habits (all P for

interaction > 0.05).
3.4 Differential associations of NHHR with
TL by age and hypertension status

Further analyses were conducted to identify significant

interaction factors identified in subgroup analyses. The results of
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the smooth curve fitting revealed distinct patterns across different

stratification factors (Figure 4). Concerning hypertension status,

non-hypertensive participants exhibited a consistent negative

trend, whereas hypertensive participants demonstrated a positive

correlation. With regard to age stratification, participants aged

less than 60 years exhibited a steeper negative slope in

comparison with those aged 60 years or older, who demonstrated

a relatively stable trend.
TABLE 2 Association between NHHR and TL.

Exposure Model 1
[β (95% CI),
P-value]

Model 2
[β (95% CI),
P-value]

Model 3
[β (95% CI),
P-value]

Continuous
NHHR

−0.02 (−0.02 to
−0.01),<0.0001

−0.01 (−0.02 to
−0.01), 0.0015

−0.005 (−0.015 to
0.004), 0.4030

NHHR group
Tertile 1 Reference Reference Reference

Tertile 2 −0.03 (−0.05 to
−0.01), 0.0166

−0.01 (−0.04 to
0.01), 0.2185

−0.02 (−0.05 to
0.02), 0.4903

Tertile 3 −0.06 (−0.08 to
−0.03), 0.0001

−0.04 (−0.06 to
−0.01), 0.0126

−0.02 (−0.07 to
0.03), 0.5620

P for trend 0.0001 0.0123 0.4643

95% CI, 95% confidence interval.
Model 1, no covariates were adjusted. Model 2, age, gender, and race were adjusted. Model 3,

age, gender, race, education level, BMI, income-to-poverty ratio, smoking behavior, diabetes,

hypertension, physical activity, DII, white blood cell count, lymphocyte percent, monocyte

percent, segmented neutrophils percent, eosinophils percent, and basophils percent
were adjusted.

FIGURE 2

The linear relationship between NHHR and TL. The solid red line represent
represent the 95% confidence intervals. The rug plot at the bottom show
was adjusted for potential confounders in Model 3.
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4 Discussion

This study identified a significant inverse association between

NHHR and TL in a nationally representative sample of US adults

for the first time. Participants in the highest NHHR tertile,

compared with those in the lowest tertile, were older, had a

higher proportion of males, and demonstrated more adverse

inflammatory and cardiometabolic profiles. Specifically,

individuals in the highest tertile exhibited elevated white blood

cell counts, higher DII scores, increased BMI, and a greater

prevalence of hypertension and diabetes. These findings suggest

that the NHHR may serve as an indicator not only of lipid

metabolism but also of systemic inflammation and metabolic

health, both of which are potential contributors to

telomere shortening.

Previous studies have demonstrated the association between

adverse lipid profiles and cellular aging. For example, a shorter

TL was closely linked to a higher triglyceride-glucose index in a

recent observational study involving 6,489 non-diabetic

individuals in the United States (20). The Fels Longitudinal

Study also reported that apolipoprotein B concentrations and

higher total cholesterol/HDL-C ratios were independently

associated with shorter telomeres (21). Similarly, an inverse

association between TL and changes in total blood lipid

concentrations was observed in a male population in Tehran

(22), reinforcing the critical role of lipid metabolism in telomere

dynamics. The NHHR has emerged as a significant biomarker
s the fitted values of TL across NHHR values, and the blue dotted lines
s the distribution of NHHR values in the study population. The model
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FIGURE 3

Association between NHHR and TL in subgroups. The green squares represent the β coefficients, and the horizontal lines indicate 95% CI for each
subgroup. The model was adjusted for potential confounders in Model 3, except for the stratification factor in each subgroup.
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for evaluating cardiovascular risk and its association with aging-

related diseases (23–25). Compared with traditional lipid

indicators, the NHHR provides a more comprehensive

assessment by integrating both non-HDL-C and HDL-C levels,

thus accounting for the protective effects of HDL-C (26, 27).

Notably, our study revealed an inverse relationship between
Frontiers in Cardiovascular Medicine 06
NHHR and TL, further supporting the link between lipid profiles

and cellular aging.

The relationship between NHHR and TL can be explained

through several interconnected mechanisms, including oxidative

stress, lipid metabolism, inflammation, and telomerase activity.

A prevailing hypothesis suggests that lipid metabolism is closely
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FIGURE 4

Smooth curve fitting for the association between NHHR and TL stratified by age (A) and hypertension status (B). The colors of the dots and fitted curves
are as follows: red is used for the hypertensive/age <60 years groups, while light blue is used for the non-hypertensive/age ≥60 years groups. The
vertical axis represents telomere length, while the horizontal axis represents NHHR values.
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tied to oxidative stress levels (28). Oxidative stress is not only a key

contributor to aging and age-related chronic diseases, such as

cardiovascular disease, but also accelerates telomere attrition (29,

30). Elevated NHHR reflects a lipid imbalance characterized by

decreased HDL-C and increased non-HDL-C levels. This

imbalance can exacerbate oxidative stress and inflammatory

responses, both of which accelerate telomere shortening. Non-

HDL-C primarily comprises VLDL-C, intermediate-density

lipoprotein cholesterol (IDL-C), and LDL-C (31). The clearance

of LDL-C is regulated by hepatic LDL receptors (LDLRs), which

remove approximately 75% of circulating cholesterol via

endocytosis (32). Non-HDL cholesterol is eliminated by the

LDLR through the recognition of apolipoprotein B100 (Apo

B100) and apolipoprotein E (Apo E) on lipoproteins. Recent

studies in aging mice have revealed that hepatic mitochondrial

function declines with age, leading to increased reactive oxygen

species (ROS) production and oxidative stress. This, in turn,

promotes glucose uptake and glycolysis, ultimately resulting in

cholesterol accumulation in the liver (33). Furthermore, it has

been suggested that when cholesterol levels in the endoplasmic

reticulum of hepatocytes exceed 5% of total blood lipids, LDLR

mRNA transcription is inhibited, reducing LDLR expression and

attenuating LDL-C clearance, thereby increasing circulating non-

HDL-C levels (34). Previous research has also established serum

cholesterol as a significant contributor to oxidative stress (35).

A randomized trial demonstrated that persistently elevated

cholesterol levels can trigger inflammatory responses and

promote ROS generation and accumulation, which damages

DNA through oxidative stress (36). Oxidative stress and

inflammation may also enhance leukocyte turnover, reducing TL

with each cell cycle (37).

In addition to its role in clearing lipid deposits from arterial

walls, HDL also exhibits antioxidant, anti-inflammatory, and

antiproteolytic properties during aging (38, 39). Seo et al. found
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that HDL-C levels significantly declined with age in mice of

different ages (33). HDL has been proposed to participate in

stress-related signaling pathways (40). In plasma and interstitial

cells, HDL reduces oxidative stress, cytotoxicity, and cellular

damage (41). Declining HDL-C levels with age may impair the

regulation of oxidative stress and increase cellular damage,

thereby accelerating leukocyte renewal and telomere shortening.

Notably, prior research demonstrated that the HDL-associated

enzyme paraoxonase 1 (PON1), which contributes to the

antioxidant activity of HDL, loses its protective effect with age.

This suggests that telomere shortening may also be linked to the

deterioration of HDL function during aging (42). In summary,

elevated NHHR may create a vicious cycle of increased oxidative

stress and elevated cholesterol levels, which can directly or

indirectly damage telomeres.

Telomerase is an enzyme that counteracts telomere shortening

during cell division by adding telomeric repeats to chromosome

ends (1). Reduced telomerase activity accelerates telomere attrition,

contributing to cellular aging and the development of age-related

diseases. Oxidative stress not only directly damages telomeric

DNA but also inhibits telomerase activity, further exacerbating

telomere shortening (43, 44). Although our study did not directly

measure telomerase activity, elevated NHHR may influence

telomerase function through increased oxidative stress and

inflammation. Dyslipidemia has been associated with reduced

telomerase expression and activity in endothelial cells (45). In

addition, pro-inflammatory cytokines have been shown to

downregulate telomerase activity (46). These mechanisms suggest

that the NHHR may affect TL by modulating telomerase function,

further linking lipid metabolism to cellular aging processes.

In the fully adjusted Model 3, which accounted for covariates

such as physical activity and the DII, the negative association

between NHHR and TL became non-significant. This attenuation

may reflect the influence of lifestyle factors on telomere
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dynamics. Physical activity and diet are well-established factors

that impact both lipid metabolism and telomere maintenance.

Higher levels of physical activity have been associated with

longer telomeres, potentially due to reductions in oxidative

stress and inflammation, as well as improvements in lipid

profiles (47). Regular exercise enhances antioxidant defenses

and mitigates the oxidative stress that contributes to telomere

shortening. Conversely, sedentary behavior may accelerate

telomere attrition through increased oxidative stress and

reduced telomerase activity (48, 49). Dietary patterns also play

a critical role in telomere biology (50). The DII quantifies the

inflammatory potential of the diet of an individual, with

higher scores indicating a pro-inflammatory diet. Diets rich in

pro-inflammatory foods have been linked to increased

oxidative stress and shorter TL (51). In our study, participants

with a higher NHHR tended to have higher DII scores and

lower levels of physical activity. These factors may confound

the relationship between NHHR and TL, as both physical

inactivity and pro-inflammatory diets independently contribute

to telomere shortening. The inclusion of physical activity and

the DII in Model 3 may have attenuated the NHHR-TL

association by accounting for these lifestyle factors. This

suggests that physical activity and dietary patterns may

modulate the impact of the NHHR on telomere length,

potentially through mechanisms involving reduced oxidative

stress and improved lipid metabolism. These findings highlight

the importance of considering lifestyle behaviors when

evaluating the relationship between lipid profiles and cellular

aging markers.

Our subgroup analyses revealed nuanced interactions between

NHHR and TL across different populations. In non-hypertensive

individuals, the negative correlation between NHHR and TL

remained significant, supporting the hypothesis that adverse lipid

profiles contribute to telomere shortening via oxidative stress and

inflammation. However, in hypertensive participants, this

association was attenuated and even showed a positive trend.

This could be attributed to the confounding effects of

antihypertensive medications, which may alter lipid metabolism

and influence telomere dynamics (52). Age-stratified analyses

showed that the negative association between NHHR and TL was

more pronounced in participants under 60 years of age

compared with those 60 and older. This may be due to age-

related changes in lipid metabolism and lifestyle factors that

modify the relationship between NHHR and TL. In older adults,

cumulative exposure to adverse lipid profiles may reach a

threshold where additional increases in the NHHR have a

diminished impact on TL. In addition, survival bias may play a

role, as individuals with healthier lipid profiles and more robust

telomere maintenance mechanisms are more likely to survive to

advanced ages (53).

In conclusion, this study highlights the potential of the NHHR

as a biomarker for biological aging, linking lipid metabolism,

systemic inflammation, and telomere dynamics. These findings

underscore the importance of considering lifestyle factors, such

as physical activity and diet, when evaluating the relationship

between lipid profiles and cellular aging. Further longitudinal
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and mechanistic studies are warranted to validate these findings

and elucidate the underlying pathways.

This study has several notable strengths. First, it is the first to

demonstrate an association between NHHR and TL among US

adults. It identified a linear correlation between NHHR and

TL, providing new insights into this relationship. Second, this

study focused on the NHHR metric, which has proven to be an

excellent predictive marker across a wide range of diseases. This

focus enhances the clinical relevance and significance of the

findings compared with earlier studies of a similar nature.

Lastly, this study utilized data from the NHANES, which

employs a complex multistage probability sampling

methodology. This approach allows the results to be generalized

to other comparable populations during the study period. In

addition, the large sample size enabled the study to account for

numerous potential covariates that could influence NHHR

variations and TL alterations, increasing the robustness of

the findings.

However, this study also has several limitations. First, due to

its cross-sectional design, it was able to present only observational

evidence of the correlation between NHHR and TL, and it could

not establish causality. The cross-sectional nature of TL

measurements also fails to capture dynamic changes in telomere

attrition rates. Future prospective and longitudinal studies are

needed to address this limitation. Second, this study excluded

individuals who were pregnant or taking lipid-lowering

medications, as these factors significantly influence TL and

cholesterol levels (54). Consequently, the findings do not apply

to these groups. Third, all participants in this study were drawn

from the US general population, which raises questions about

the applicability of the findings to populations in other

countries or regions. Further research in diverse populations is

necessary to confirm the generalizability of these results.

Furthermore, the lack of direct measurements of telomerase

activity restricts our understanding of the mechanistic pathways

involved. Future longitudinal studies are warranted to explore

the causal relationships and assess the impact of interventions

targeting physical activity, diet, and lipid profiles on telomere

dynamics. Investigating telomerase activity with the NHHR

could provide deeper insights into the mechanisms linking lipid

metabolism to cellular aging. Such research may inform

strategies aimed at preserving telomere length and promoting

healthy aging.
5 Conclusion

This study revealed a significant linear inverse association

between NHHR levels and telomere length in the US population

for the first time. The NHHR, obtained from routine clinical

testing, shows potential as a novel biomarker for TL prediction.

During standard lipid monitoring, elevated NHHR levels may

indicate accelerated biological aging. This provides a practical

screening approach for age-related conditions. Future prospective

studies are needed to validate the predictive value of the NHHR.
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