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Multifractal analysis of heart rate
variability in pregnancy during
sleep
Martin O. Mendez1,2, Anna M. Bianchi2*, Florian Recker1,
Brigitte Strizek1, J. S. Murguía3, Pierluigi Reali2 and
Jorge Jimenez-Cruz1

1Department of Obstetrics and Prenatal Medicine, University of Bonn, Bonn, Germany, 2Department of
Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy, 3Science Faculty,
Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
Understanding the complex dynamics of heart rate variability (HRV) during
pregnancy is crucial for monitoring both maternal well-being and fetal health.
In this study, we use the Multifractal Detrended Fluctuations Analysis approach
to investigate HRV patterns in pregnant individuals during sleep based on RR
interval maxima (MM fluctuations). In addition, we study the type of
multifractality within MM fluctuations, that is, if it arises from a broad
probability density function or from varying long-range correlations.
Furthermore, to provide a comprehensive view of HRV changes during sleep
in pregnancy, classical temporal and spectral HRV indices were calculated at
quarterly intervals during sleep. Our study population consists of 21 recordings
from nonpregnant women, 18 from the first trimester (early-pregnancy) and
18 from the second trimester (middle-pregnancy) of pregnancy. Results. There
are statistically significant differences (p-value < 0.05) in mean heart rate, rms
heart rate, mean MM fluctuations, and standard deviation of MM fluctuations,
particularly in the third and fourth quarter of sleep between pregnant and
non-pregnant states. In addition, the early-pregnancy group shows significant
differences (p-value < 0.05) in spectral indices during the first and fourth
quarter of sleep compared to the non-pregnancy group. Furthermore, the
results of our research show striking similarities in the average multifractal
structure of MM fluctuations between pregnant and non-pregnant states
during normal sleep. These results highlight the influence of different long-
range correlations within the MM fluctuations, which could be primarily
associated with the emergence of sleep cycles on multifractality during sleep.
Finally, we performed a separability analysis between groups using temporal
and spectral HRV indices as features per sleep quarter. Employing only three
features after Principal Component Analysis (PCA) to the original feature set,
achieving complete separability among all groups appears feasible. Using
multifractal analysis, our study provides a comprehensive understanding of the
complex HRV patterns during pregnancy, which holds promise for maternal
and fetal health monitoring. The separability analysis also provides valuable
insights into the potential for group differentiation using simple measures such
as mean heart rate, rms heart rate, and mean MM fluctuations or in the
transformed feature space based on PCA.
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1 Introduction

During pregnancy, the autonomic nervous system (ANS)

undergoes significant changes to accommodate the physiological

demands of the mother and support the developing fetus. The

ANS is responsible for regulating various involuntary processes

in the body, such as heart rate, blood pressure, digestion, and

respiration (1). For instance, some of these changes are that heart

rate tends to increase gradually during pregnancy, mainly due to

the influence of hormonal changes and increased blood volume.

Blood pressure also undergoes alterations, with a decrease in

systemic vascular resistance and a subsequent reduction in blood

pressure during the first two trimesters, followed by a gradual

return to pre-pregnancy levels in the third trimester. One of the

key adaptations in the ANS during pregnancy is an overall

increase in sympathetic activity (2). This shift in autonomic

balance helps to create an environment conducive to fetal growth

and development. In addition, other systems related to the ANS,

such as the respiratory system, are also affected during

pregnancy, leading to higher minute ventilation (the total

amount of air inhaled and exhaled per minute) (3). However,

certain pregnancy complications, such as hypertensive disorders

of pregnancy (HDP) or gestational diabetes mellitus (GDM), can

disrupt the normal autonomic regulation, generating complications

in both maternal and fetal health (4–7).

Heart rate variability (HRV) refers to the variation in time

intervals between consecutive heartbeats (8), and it is considered a

valuable measure of the ANS activity (9). Self-affinity, in the

context of HRV, refers to the presence of statistical similarity or

scaling properties across different time scales within the HRV

signal. When HRV exhibits self-affinity, it means that the

fluctuations in the time intervals between heartbeats display

similar patterns or characteristics at different time scales.

This property implies that the HRV signal possesses a certain level

of complexity and organization (10, 11). For example, healthy

individuals often exhibit statistical similarity patterns in their

HRV, indicating a balanced and adaptable autonomic control

of the heart rate. Reduced or altered self-affinity may

indicate impaired autonomic regulation and increased risk of

cardiovascular diseases, such as hypertension, heart failure, and

arrhythmias. It can also be indicative of physiological stress,

inflammation, or other disturbances in the body (12–15). The self-

affinity analysis of HRV is commonly performed using techniques

such as detrended fluctuation analysis (DFA) or fractal analysis

(16). These methods quantify the presence and degree of self-

affinity by examining how the fluctuations in HRV persist or

decay across different time scales. Self-affinity in HRV has been

studied in the context of pregnancy to understand the changes in

ANS regulation in short-time recordings (17, 18), which suggest

changes in the fractal-like behavior and complexity of HRV

patterns during different stages of pregnancy. In general, the

scaling exponents of HRV increase as gestation time advances,

while the HRV complexity decreases (19). However, the reason is

unclear since it may be influenced by hormonal changes,

increased sympathetic activity, and other physiological adjustments

related to pregnancy, given fetal development and growth.
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As mentioned above, there are studies characterizing changes in

HRV during pregnancy and the postpartum period, but they have

been limited to short-term recordings of electrocardiographic

(ECG) signals during wakefulness. Few studies have analyzed

classic temporal and frequency indices of HRV during sleep at

different stages of pregnancy (8, 20). However, sleep deserves more

attention because it is a fundamental process that plays an

essential role in maintaining overall health and well-being, and its

importance is heightened during pregnancy. Sleep acts as a catalyst

for immune function, facilitates tissue repair, and increases overall

vitality. In addition, the emotional benefits of proper sleep are

remarkable, acting as a shield against stress, anxiety, and mood

swings - factors that are particularly prevalent during pregnancy

(21). The effects of sleep extend to the growth and development of

the fetus, as the body releases essential hormones that play a key

role in the proper development of the fetus. An often

underestimated aspect of sleep is its role in maintaining healthy

blood pressure levels. This is particularly important during

pregnancy when maintaining optimal blood pressure is essential to

prevent complications such as pre-eclampsia. Sleep also plays a

role in managing blood sugar levels and promoting healthy weight

gain. Finally, sleep is a complex process involving many sub-

processes during the different sleep stages, so it would be useful to

establish indices to characterize it. Therefore, understanding the

relationship between HRV, self-affinity, pregnancy, and sleep may

provide insights into maternal cardiovascular health and sleep-

related complications during this crucial period.

Sleep is a cyclical process characterized by multiple stages that

influence the oscillatory components of HRV. In particular, the

high-frequency (between 0.15 Hz and 0.5 Hz) and low-frequency

(between 0.04 Hz and 0.15 Hz) components contribute to the

self-affinity of cardiac activity, which is often described by a

monofractal structure with 1/f behavior (15, 22). Additionally,

some studies have shown that HRV also shows some

characteristics of multifractality during wakefulness at different

pathologies (23, 24), in 24h recordings (25), during sleep (26, 27)

and in different stages of sleep (28). However, during sleep, the

dominance of the high-frequency component could obscure

valuable insights into the multifractality of cardiovascular

dynamics during sleep, since slow and small variations with

valuable information could be hidden by this oscillatory rhythm

(29, 30). To address this issue and accurately characterize a

possible multifractal self-affinity inherent to the sleep process, it

would be interesting to assess variations in HRV amplitude after

mitigating the impact of high-frequency components.

Thus, we are interested in analyzing sleep HRV patterns during

pregnancy using classical and Multifractal indices to better

understand the dynamics of the ANS regulation during sleep in

different physiological conditions (early-pregnancy, middle-

pregnancy, and non-pregnancy). The main aim is a better

understanding of the underlying mechanisms: How does the

autonomic nervous system controlling heart rate is modified during

the different stages of pregnancy and compared to non-pregnancy?

The objective of this research is to study the self-affinity patterns

exhibited by the ANS throughout the HRV indices during sleep in

three distinct women groups: non-pregnancy, early-pregnancy, and
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1404055
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Mendez et al. 10.3389/fcvm.2024.1404055
middle-pregnancy. The analysis of self-affinity behavior is carried out

through the widely recognized Multifractal Detrended Fluctuation

Analysis methodology. Additionally, the sleep period is segmented

into four intervals, and classical temporal and spectral indexes of

heart rate variability are computed and subsequently compared

across these segments. Lastly, we have analyzed the original feature

space of the HRV indexes and its transformed version using

Principal Component Analysis (PCA) with the aim of highlighting

differences between non-pregnancy, early-pregnancy, and middle-

pregnancy individuals.
2 Methodology

Figure 1 illustrates the procedural workflow used in this study.

The process begins with the ECG signal, in which specific segments

relevant to our analysis were identified and selected. This is

followed by a precise detection of the R peaks. From this point,

the process is divided into two distinct analyses. The first

analysis focuses on the multifractal assessment, which is based

on the detection of maxima within the RR intervals. In parallel,

the second analysis focuses on the more traditional HRV analysis

together with maxima within the RR intervals, including

classification (class separation) and statistical evaluations.
2.1 Polysomnography data

Twenty-one whole-night polysomnographies (PSG) from Healthy

(n = 6) and Nocturnal Frontal Lobe Epilepsy (NFLE, n = 15) women

in reproductive age were downloaded from the CAP database. The

database consists of 108 PSG recordings in EDF format acquired at

the Sleep Disorders Center of the Ospedale Maggiore of Parma,

Italy. This database is freely available from Physionet (http://www.

physionet.org). The sleep recordings present at least three

electroencephalography (EEG) channels, electrooculography (EOG),
FIGURE 1

Schematic representation of the methodology process.
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electromyography (EMG) of the submentalis muscle, bilateral

anterior tibial EMG, respiratory signal, and ECG (sampling

frequencies varied between 100Hz and 512Hz). The sleep stages

were scored by expert neurologists following the gold standard rules

(31). The complete database comprises the following groups:

healthy (n = 16), nocturnal frontal lobe epilepsy (n = 40), REM

Behavior Disorder (n = 22), periodic leg movement (n = 10),

insomniac (n = 9), narcoleptic (n = 5), sleep disorder breathing

(n = 4), and bruxism (n = 2). We selected recordings of women

from the healthy and NFLE groups since the sleep profile was

similar and the HRV was not altered by pathological events such as

apneas. Besides, this similarity between healthy and NFLE subjects

has been previously documented in the literature (32).

Eighteen whole-night PSGs of early-pregnant and eighteen ones

of middle-pregnant nulliparous women were downloaded from the

National Sleep Research Resource (NSRR) repository (funded by

the National Heart, Lung, and Blood Institute from USA). The

recordings belong to the study, called The Nulliparous Pregnancy

Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) (33, 34).

The goal of the database was to provide valuable information to

healthcare professionals and women who are pregnant or planning

to become pregnant and to provide data and knowledge for future

research. Most participants underwent two PSGs, the first between

weeks 6 and 15 (3072 records for the first trimester), and the

second between weeks 22 and 29 (2805 records for the second

trimester). At each of the two recordings, data were collected

through clinical measurements, personal interviews, and self-

administered questionnaires. Participants ranged in age from 14 to

44 years. Each PSG has airflow (AF), snoring, nasal pressure,

abdominal and thoracic effort, blood oxygen saturation (SpO2),

and ECG (sampled at 200Hz). Each PSG comes with an XML file

with wake-sleep annotation and the time of occurrence of events:

central apnea, obstructive apnea, hypopnea, SpO2 desaturation,

and noise in SpO2. For the signal acquisition the Embletta Gold

digital recorder was used and the technical details can be found in

the manual of operation (33, 34). Table 1 shows the demographic
frontiersin.org
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TABLE 1 Median and interval of the demographic information of the
women making up the study groups.

Non-
pregnancy
(N = 21)

Early-
pregnancy
(N = 18)

Middle-
pregnancy
(N = 18)

Age (yr) 30.0 [16.0, 42.0] 25.5 [18.0, 32.0] 26.5 [19, 32]

BMI (kg/m2) – 26.7 [21.0, 39.1] 29.3.0 [22, 41.5]

Desaturation time (s) – 52.0 [4.0, 405.0] 115.00 [101.0, 265.0]

Apnea (quantity) – 0.00 [0.0, 2.0] 0.00 [0.0, 5.0]

Useful record (h) 7.5 [5.3, 9.2] 7.00 [4.5, 10.5] 7.4 [4, 9.8]

BMI, Body mass index.
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information of the women who were recorded. Information is

presented as median and min-max interval. NFLE and healthy

recordings are shown as non-pregnancy.

It is important to note that the data come from two different

data sets, which could cause inhomogeneity in the data.

However, the acquisition protocol follows the standards accepted

for clinical and home monitoring of sleep, with sampling

frequencies for the ECG sufficient to correctly detect the R-peaks

(between 100 and 512 Hz). In addition, it is worth mentioning

that the HRV signal extraction only depends on the identification

of the R peak on the ECG, which is possible even in presence of

noise or on different ECG leads, thus it presents the advantage of

being one of the physiological signals more robust to the noise

and device independent in different data sets. In addition we

tested and compared the HRV metrics from the healthy and

NFLE groups through the Mann-Whitney U test and Brown-

Forsythe test: no one of the HRV metrics resulted different

between the two groups confirming their homogeneity.

As a final note regarding the non-pregnant group, despite a

thorough search of a database of sleep recordings from women,

we did not find a free database with healthy, nulliparous, young

women to match the nuMoM2b dataset. To overcome this

situation for future research, we are in the process of formulating

a protocol to acquire recordings for a control group, with the

goal of complementing the nuMoM2b dataset.
2.2 Pre-processing of the ECG signal

The pre-processing stage helps to improve the quality of the ECG

signal, reduces noise and artifacts, and prepares the signal for further

analysis, such as HRV assessment or feature extraction for clinical

diagnosis. However, motion artifacts contaminating the ECG signal

and missing segments of ECG are common in sleep recordings, so

their identification is necessary before any other procedure.

2.2.1 Non-useful segments and R-peak detection
From each PSG, the ECG signal was extracted and used to locate

the inter-beat time by detecting the R-peaks. R-peak detection is an

important step since self-affinity analysis will be based on the

occurrence of R-peaks. Therefore, it is necessary to define the ECG

segments in which R-peaks can be reliably detected.

The amplitude of the ECG signal depends on the subject and

varies throughout the night due to body movements caused by

changes in body position, apneas, etc. Therefore, it is necessary to
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normalize the ECG to mitigate the effect of ECG amplitude

change on the development of non-useful segment detectors. For

this purpose, non-overlapping 10 s segments of the ECG signal

were normalized with respect to their variance. Then, to detect

signal segments with motion artifacts (non-useful segments), the

trend was removed from each segment, and its variance was

calculated. If the variance was between a value of 0.04 and 0.2

(note that segments were previously normalized with respect to

the variance), the segment was considered ECG; otherwise, it was

annotated as a non-useful segment. The optimal threshold interval

was based on the analysis of manually annotated segments from

ten polysomnographic sleep ECG signals. For all the recordings,

the first and last 20 min were considered non-useful segments.

We then used two different approaches for automatic R-peak

detection: the widely recognized Pan-Tompkins algorithm (35)

and a custom procedure based on wavelet decomposition. This

dual-method strategy was adopted because of the variance in

signal characteristics, which warranted the use of the most

effective technique for detecting accurate R-peaks in each scenario.

Following this step, we proceeded to eliminate non-useful

segments and wake epochs from the R-peak series. The segments

remaining after filtering were then merged. It’s worth noting that

this process has minimal impact on the assessment of the scaling

behavior (36). To ensure the robustness of our analysis, we only

considered recordings with a minimum duration of 5 h for the

calculation of self-affinity, in line with maintaining at least 3

sleep NREM-REM cycles.

2.2.2 Heart rate variability fluctuations
After obtaining the R-peaks series from the previous step, the

consecutive R-peak intervals, often referred to as RR intervals or

inter-beat intervals, were calculated. These RR intervals were

then subjected to cubic spline interpolation to create a regularly

spaced time series with a 4 Hz sampling rate.

The RR intervals exhibit fluctuation around a mean value,

representing the mean Heart Rate. For extended time periods like

sleep, these RR intervals tend to form a Gaussian distribution.

However, for shorter time spans, variations in the properties of the

global Gaussian distribution can be observed. These variations

might correlate with sleep stages or sequences of pathological

events. Therefore, an appropriate method is needed to account for

these local variations over time. Multifractal Detrended Fluctuation

Analysis (MF-DFA) is particularly well-suited for this purpose

because it extends beyond the limitations of the standard DFA by

considering the scaling of qth-order moments at different

time scales (37, 38). Unlike standard DFA, which specifically

focuses on the second moment (q ¼ 2), MF-DFA considers

different qth-order moments, providing a more comprehensive

perspective on the multifractal nature of the data. The latter

approach allows for identifying or detecting intricate correlations

and patterns that may remain unnoticed using other methods (27).

However, during sleep, the prevalence of parasympathetic

activity, combined with the significant effect of breathing on the

cardiovascular system, enhances the oscillatory rhythm within

the RR intervals. This rhythm contains remarkable information

on the HRV dynamics, but could also prevent some techniques
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from revealing other interesting features in the RR intervals

(29, 30). Therefore, a time series was constructed to counterbalance

the influence of this oscillatory rhythm. This series includes only

the maxima of the RR intervals (here called MM fluctuations). This

time series could also be extracted with various analytical methods,

such as the Hilbert transform (29), empirical mode decomposition,

wavelets, filtering techniques, or adaptive filtering.

Figure 2 shows in the upper panel the RR intervals (black line)

during the sleep of an early-pregnancy record and the overlapping

amplitude of the MM fluctuations (gray line). As we can easily see,

the MM fluctuations contain information related to the slow

oscillations of the RR intervals. A zoom of the yellow window is

shown in the lower panel, where the MM fluctuations are

depicted with a dashed line. MM fluctuations were used to assess

the multifractal characteristics of the cardiovascular system

during the sleep phase using MF-DFA.
2.3 Multifractal detrended fluctuation
analysis (MF-DFA)

MF-DFA is a technique used to assess the presence of fractal

scaling behavior in physiological signals such as HRV. The MF-

DFA method involves the following steps:

1. Obtain a time series: The time series can be a sequence of

evenly spaced time points, n, representing measurements over

time, x[n].
FIGURE 2

Example of the RR intervals during sleep and along with the superimposed M
highlighted yellow window, showing the MM fluctuations (dashed line).
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2. Calculate the cumulative sum of the time series: This step

involves integrating the time series minus the mean time series,

y[n] ¼
Xn
k¼1

(x[k]� E(x[n])), n ¼ 1, . . . , N , (1)

where N is the number of data points and E(x[n]) is the mean.

3. Divide the cumulative sum, y[n], into non-overlapping

segments: The time series is divided into smaller segments of

equal length. Ns ¼ [N=s], segment of length s.

4. Fit a polynomial function to each segment: A polynomial

function, typically a straight line, is fitted to each segment of

the cumulative sum, ys[n]).

5. Calculate the q-th order fluctuation function: The q-th order

deviations of the data points from the corresponding

polynomial fit are calculated for each segment,

Fq(s) ¼ 1
N

XN
n¼1

(y[n]� ys[n])
q

 !1
q

, q [ R (2)

If the time series under analysis have fractal properties, the Fq(s)

should follow a power-law of the form:

Fq(s) � sH(q), (3)

where H(q) can be conceptualized as an extension of the Hurst

exponent, with the equivalence H(2) ; a of the DFA exponent.
M fluctuations (gray line). The lower panel offers a zoomed-in view of the
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If H(q) remains constant regardless of changes in q, the studied

time series exhibits monofractal characteristics. Conversely, if

H(q) varies with q, indicating a diverse scaling behavior, the

time series possesses multifractal attributes. When q assumes

positive values, H(q) represents the scaling behavior of the

segments with large fluctuations. Conversely, for negative q

values, H(q) characterizes the scaling dynamics of segments with

small fluctuations.

The conventional approach to present the results of MF-DFA

involves a two-step conversion process. First, H(q) is transformed

into the q-order mass exponent (t(q)), and subsequently, t(q) is

further transformed into the q-order singularity exponent (h)

and the q-order singularity dimension (D(h)) (37, 38). This

process finishes in the creation of a graphical representation

known as the multifractal spectrum, where D(h) is plotted

against h. This is:

t(q) ¼ qH(q)� 1, (4)

h ¼ dt(q)
dq

, (5)

D(h) ¼ qh� t(q): (6)
2.4 Time and frequency domain indices of
HRV

We calculated temporal and frequency indices of HRV to

establish a benchmark in line with current research standards.

These indices serve as important reference points, as there is a

well-established link between these indices and the function of

the parasympathetic and sympathetic branches of the ANS. The

sleep time was partitioned into four non-overlapping segments,

named Q1, Q2, Q3 and Q4. This segmentation was done to

effectively capture the variations that occur during different

moments of sleep. We adopted this strategy in order to

overcome the usual sleep staging based on EEG and provide

parameters able to quantify sleep characteristics in a simpler way

along the night. We then calculated the indices separately for

each of these segments.

Time domain indices:

• meanRR, representing the average of the RR intervals.

• sdRR, which measures the deviation of the RR intervals with

respect to meanRR.

• rmsRR, which calculates the root mean square of the time

differences between consecutive normal heartbeats.

• meanMM, which represents the average MM fluctuation; it can

be correlated with respiratory behavior.

• sdMM, which measures the deviation of the MM fluctuations

with respect to meanMM.

Frequency domain indices:

The Power Spectral Density (PSD) was computed using the

Welch method. Specifically, the signal was segmented into eight

parts with a 50% overlap, and each segment was windowed using
Frontiers in Cardiovascular Medicine 06
a Hamming window. The periodograms of these segments were

then averaged to obtain the final PSD estimate, from which the

following indices were calculated.

• Low frequency (LF), the power within the frequency band from

0.04 Hz to 0.15 Hz.

• High frequency (HF), the power within the frequency band

from 0.15 Hz to 0.5 Hz; it is particularly associated with

parasympathetic activity and respiration.

• LF/HF ratio, a traditional indicator of sympathovagal balance

that provides insight into the balance between sympathetic

and parasympathetic activity. However, the context of the

recording must be considered for proper interpretation and, in

particular the possible shift of the HF component towards the

LF frequency range, may lead to erroneous interpretation; On

the other hand, the LF/HF ratio was frequently used in sleep

studies where the respiration frequency is more regular

making the interpretation more robust (39, 40).

To ensure a meaningful comparison between different sleep

segments and participants, we normalized the power of the PSD

that belongs to the HF and LF bands with respect to the power

of both the low and high-frequency bands. In essence, the

summation of the power in the low and high-frequency bands

approaches unity.
2.5 Multifractal analysis of the MM
fluctuations

The multifractal spectrum was derived from the MM

fluctuations of the RR intervals. This was done using the

Multifractal Detrended Fluctuation Analysis (MF-DFA) method

with linear detrending. The analysis included a spectrum of

scales ranging from 16 to 2,048 and involved the evaluation of

different q-orders, specifically [� 5, � 3, � 1, 0, 1, 3, 5]. From

the multifractal spectrum, we extracted the multifractal indices,

including the position argmaxh D(h) and the width of D(h)

shown in Figure 4.

Generating surrogate data is a common technique used in time

series analysis to test hypotheses and assess the significance of

observed patterns by comparing them to randomized versions of

the original data. There are several methods (random shuffle,

phase randomization, iterative amplitude adjusted Fourier

transform, etc.) for generating surrogate data, each designed to

preserve certain characteristics of the original time series while

destroying the ones to be tested. In this study, the random

shuffle method was chosen, which consists of randomly shuffling

the original data points to destroy any temporal correlation in

the signal while preserving the distribution of the values (mean

value, variance). Thus, this is useful to evaluate the presence of

temporal structure or autocorrelation in the data, both in the

short and in the long time scales. In general, the procedure

involves: (a) taking the original time series, and (b) randomly

permute the order of the data points. This process could be

repeated many times to generate multiple surrogate data sets.

When the surrogated data show lower correlation with respect to
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the original one we may conclude that measured correlations are a

feature characterizing the signal.

Thus, to assess the type of multifractality, we calculated

surrogate MM fluctuations. This involved analyzing the MM

fluctuations that were computed from the same RR intervals but

in different order. In the shuffling procedure, the RR interval

values were randomly reordered, which effectively destroyed all

correlations related to the sleep stages. The MM fluctuations

were then calculated and resampled at 4 Hz.
2.6 Statistics and classification

We calculated temporal and spectral indices of HRV within

different sleep segments, each corresponding to one-quarter of

the total sleep duration (designated Q1, Q2, Q3, and Q4).

We then performed a two-way mixed Analysis Of Variance

(ANOVA) for each HRV index, considering PREGNANCY as a

three-level between-subject factor (non-pregnancy, early-

pregnancy, and middle-pregnancy) and SLEEPQ as a within-

subject factor with four levels (Q1, Q2, Q3, and Q4). For each

index, we first analyzed the interaction PREGNANCY*SLEEPQ;

if the interaction was found significant, we analyzed simple main

effects. Conversely, in the absence of a significant interaction, the

main effects of PREGNANCY and SLEEPQ were evaluated

separately. In case of significant differences from the above

evaluations, pairwise multiple comparisons (i.e., post-hoc tests)

were made using the Bonferroni correction to account for the

increasing type-I error due to multiple testing. The effect of

PREGNANCY was also analyzed on the multifractal indices

derived from the MM fluctuations by means of a one-way

ANOVA, followed by the appropriate Bonferroni-corrected post

hoc analysis in case significant differences were found. The

analyzed data distributions were checked for approximate

normality and homogeneity of variance using the Shapiro-Wilk

and Levene tests, respectively. The sphericity assumption for the

mixed ANOVAs was tested through the Mauchly test; if not met,

the Greenhouse-Geisser correction was applied to the degrees of

freedom of the within-subject analysis. A p-value less than 0.05

was considered statistically significant for every analysis. The

presence of outliers that may introduce severe bias in the results

was established by inspecting boxplots of data grouped by

PREGNANCY and SLEEPQ. In general, subjects were considered

outliers if their data points appeared distant from the range

[Qlow � 1:5 � IQR, Qup þ 1:5 � IQR], with IQR, Qlow, and Qup

indicating the interquartile range, the lower, and upper quartiles,

respectively. Only the most distant outliers were excluded from

the analysis, and no more than one subject per group of

PREGNANCY (i.e., less than 6% of the original data). The

statistical analysis was carried out in SPSS Statistics (IBM, U.S.A.).

2.6.1 Classification
In the field of biomedical engineering, it is of great

importance to determine whether information derived from

physiological signals contributes to the automatic detection of

medical conditions. Given the pressing need to explore novel
Frontiers in Cardiovascular Medicine 07
features that can improve the classification process across

different states in women, it is useful to investigate whether

HRV indices, even in the absence of sleep stage annotations,

can serve as discriminative features.

To understand this, we evaluated the separability among

groups by plotting the following indices from the different sleep

quarters:

(a) three of the HRV indices that were statistically different

among the three groups.

(b) the first three scores obtained from the PCA applied to the

whole set of HRV indices.

PCA is a method used for dimensionality reduction. The primary

objective is to transform the original variables into a new set of

variables, the principal components, which are orthogonal and

capture the maximum variance in the data.

Given a dataset X consisting of n observations and p variables,

the steps involved in PCA are:

1. Compute the Covariance Matrix:

S ¼ 1
n� 1

(X � �X)T(X � �X) (7)

Here, �X is the mean-centered data matrix.

2. Eigenvalue Decomposition: Solve the eigenvalue problem for S:

Sv ¼ lv (8)

Where l are the eigenvalues and v are the corresponding

eigenvectors.

3. Order and Select Principal Components: Arrange the

eigenvalues in descending order and choose the first k

eigenvectors corresponding to the largest k eigenvalues to

represent the k principal components.

4. Compute Scores: The scores represent the projection of the

original data onto the principal components. For the ith

observation xi, the scores zij for the jth principal component

is given by:

zij ¼ xTi vj (9)

Here, vj is the jth eigenvector.

5. Transform Data: Transform the original data X into the new

coordinate system using the selected principal components:

Y ¼ XVk (10)

Where Vk contains the first k eigenvectors.

In this context, the scores provide a representation of each

observation in terms of the principal components. They capture

the essential information from the original data in a reduced

dimensionality space.
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3 Results

This section presents the results of the statistical analysis

conducted on heart rate fluctuations across the three

PREGNANCY groups and the four sleep quarters (SLEEPQ).

These results include the multifractal analysis combined with

an examination of the surrogate MM time series. Subsequently,

classical HRV indices and their temporal evolution during

sleep are presented. Finally, the separability of the three groups

in the original feature space of the HRV indices and after PCA

is investigated.
3.1 Multifractal analysis of MM fluctuations

Figure 3 provides a representative illustration of the results

obtained by applying the MF-DFA method, with q-orders

¼ {� 5, 0, 5} root-mean-square (RMS), to the RR intervals

extracted from a full night recording of an early-pregnant subject

(please see Figure 2 for the original RR intervals). These results

(Figures 3A,B) are contrasted with those obtained after shuffling

the same RR intervals (Figures 3C,D). When the actual sequence
FIGURE 3

Example of MF-DFA applied to RR intervals during sleep in an early-pregnan
and the corresponding regression for both (A) the original RR intervals and
spectrum for the original RR intervals, while (D) shows the multifractal spec
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of RR intervals is considered, the regression lines of the different

q-orders show a similar slope (Figure 3A, time series with a

structure close to 1=f noise), which does not allow observing the

multifractality of time series. Thus, as shown in Figure 3B, the

multifractal spectrum is concentrated within a small interval of h

close to one. Figure 3C shows the regression lines of the MF-

DFA of the shuffled RR intervals also at different q-orders

¼ {� 5, 0, 5} RMS. Again, all slopes of the regression lines are

close to h � 0:5, indicating a random white noise. The

Figure 3D shows multifractal spectrum small D(h) width with

singular exponents h concentrated around 0.5 and multifractal

dimension close to 1.

Figure 4 shows the results of applying the MF-DFA method to

the MM fluctuations obtained from the same sleep recording (see

Figure 2 for the original MM fluctuations). Again, the MF-DFA

was performed for q-orders ¼ {� 5, 0, 5} RMS, and the results

are shown in Figure 4A. This time, the regression lines of the

different q-orders do not show a similar slope, which implies

that the scaling behavior is different depending on the q-order,

around the 1=f noise. The multifractal spectrum spans over a

wide interval of h (see Figure 4B). On the other hand, the

regression lines of the MF-DFA of the surrogate MM intervals
cy recording. The figure includes plots of Fq(s) for different q-orders RMS
(C) the shuffled RR intervals. (B) shows the corresponding multifractal

trum for the shuffled RR intervals.

frontiersin.org

https://doi.org/10.3389/fcvm.2024.1404055
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


TABLE 2 Mean and standard deviation of the indices extracted from the
multifractal spectrum D(h). No statistically significant differences were
observed among groups.

Index Non-
pregnancy

Early-
pregnancy

Middle-
pregnancy

argmaxh D(h) 1.07 + 0.04 1.06 + 0.03 1.08 + 0.05

Width D(h) 0.78 + 0.13 0.77 + 0.18 0.80 + 0.14

FIGURE 4

Example of MF-DFA applied to MM intervals during sleep in an early-pregnancy recording. The figure includes plots of Fq(s) for different q-orders RMS
and the corresponding regression for both (A) the MM fluctuations and (C) the surrogate MM fluctuations. (B) shows the corresponding multifractal
spectrum for the MM fluctuations, while (D) shows the multifractal spectrum for the surrogate MM fluctuations.
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are shown in Figure 3C. The slopes of these regression lines are

around h � 0:5, indicating that the surrogate series tends to have

a random white noise behavior. As can be seen in Figure 3D, the

multifractal spectrum is centered at 0.5, but the long-term

correlations are not completely destroyed.

Table 2 shows the mean and standard deviation of the indices

computed from the multifractal spectrum, including the width of

D(h) and argmaxh D(h), grouped by PREGNANCY. The Hurst

exponent H(q ¼ 2), as defined by the monofractal DFA,

characterizes the overall fractal structure of the time series and

correlates with argmaxh D(h), which represents the central

tendency within the multifractal spectrum. The width of the

multifractal spectrum, on the other hand, represents the

deviation from the average fractal structure for segments with
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both large and small fluctuations. Both the width and central

tendency of the multifractal spectrum provide important insights

into the characteristics of the time series and can help to

understand changes within the time series. For the groups

under study (non-pregnancy, early-pregnancy, middle-pregnancy),

the calculated D(h) widths and argmaxh D(h) were found

approximately normally distributed and homoscedastic. The

effect of PREGNANCY was found not significant for both D(h)

width (F(2, 54) ¼ 0:149, p ¼ 0:862, partial h2 ¼ 0:005) and

argmaxh D(h) (F(2, 54) ¼ 1:346, p ¼ 0:269, partial h2 ¼ 0:047),

meaning no statistically significant changes among groups were

observed in the MM fluctuations during sleep.

Figure 5 illustrates the behavior of the Hurts exponent for MM

fluctuations at various q-order RMS values. These values are

derived from both RR series and shuffled RR series, organized by

group: non-pregnancy, early-pregnancy, and middle-pregnancy.

The Hurts exponent of MM fluctuations is shown in a distinctive

background color (Original), while the corresponding values

from surrogate MM fluctuations are shown in gray (Surrogate).

The main objective here is to identify the underlying

multifractality nature of the time series data. If HSurrogate(q) ¼ 0:5,

this suggests that the surrogate time series comes from a time
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FIGURE 5

Behavior of the Hurts exponent of the MM fluctuations at different q-order RMS, obtained from the RR series and the shuffled RR series, shown by
groups. The black color represents the results of the MM fluctuations computed from the original RR intervals, while the grey color represents the
results of the MM fluctuations computed from the shuffled RR intervals. The first column shows the Hurts exponent for different values of
q-orders, and the second column shows the probability distribution of the Hurts exponent independent of q.
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series with multifractality due to different long-range correlations.

Conversely, when HOriginal(q) ¼ HSurrogate(q), it implies that the

independence between samples remains unchanged and the

multifractality arises from the probability density.

The first column in Figure 5 shows H(q) values against

different q-order RMS. The second column shows the probability

of occurrence for different H(q) values, independent of q. In

particular, HOriginal(q) has values roughly between 1.5 (for

negative q ¼ �5) and 0.8 (for positive q ¼ 5). The peak in the

probability density of HOriginal(q) is observed around

HOriginal(q) � 1, suggesting that most of the curves have similar

values of HOriginal(q ¼ 2).

When analyzing the behavior of HSurrogate(q), a similar trend to

HOriginal(q) is observed, but with values approximately in the range

of 0.7 (for negative q) and 0.4 (for positive q). The maximum in the

probability density of HSurrogate(q) occurs around HOriginal(q) � 0:5,
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indicating a white noise structure independent of the q-order.

Furthermore, there is less dispersion in the HSurrogate(q) values.

This behavior is consistent for all three groups. Statistical

analysis was carried out and showed significant differences

between HOriginal(q) and HSurrogate(q) at each q-order, (p-value

less than 0.05).
3.2 Analysis of the HRV indices

Table 3 shows the results of the HRV indices calculated by

sleep time quarter (Q1, Q2, Q3, and Q4) for the non-, early- and

middle-pregnancy groups. To ensure normality of the

distributions and homogeneity of variance across the three

groups of PREGNANCY for each SLEEPQ level, extreme outliers

were identified using the approach described in Section 2.6.
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TABLE 3 Mean and standard deviation (SD) of the MM and RR indices reported for all combinations of SLEEPQ (Q1, Q2, Q3, Q4) and PREGNANCY (non-
pregnancy, N = 20; early-pregnancy, N = 17; middle-pregnancy, N = 17) levels. Values are reported as mean + SD. Pairwise differences are indicated for
indices reporting a significant interaction SLEEPQ*PREGNANCY.

Index/time

Non-pregnancy Early-pregnancy

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
meanMM (s) 4.02 + 0.35 4.06 + 0.34 4.14 + 0.37 4.19 + 0.37 3.67 + 0.41 3.71 + 0.36 3.76 + 0.39 3.83 + 0.36

sdMM (s2) 1.21 + 0.17 1.33 + 0.22 1.45 + 0.27 1.49 + 0.29 0.94 + 0.12 1.08 + 0.14 1.10 + 0.12 1.12 + 0.14

meanRR (s) 0.90 + 0.10a,b,d 0.93 + 0.10a,b,d 0.97 + 0.11c,d 0.99 + 0.12c,d 0.83 + 0.12a,b 0.84 + 0.11a,b 0.87 + 0.12 0.89 + 0.13

sdRR (s2) 0.072 + 0.022 0.075 + 0.021 0.087 + 0.028 0.095 + 0.030 0.062 + 0.023 0.074 + 0.021 0.079 + 0.024 0.088 + 0.031

rmsRR (s) 0.044 + 0.017 0.046 + 0.019 0.054 + 0.023 0.056 + 0.021 0.046 + 0.024 0.045 + 0.021 0.050 + 0.023 0.057 + 0.025

HF (nu) 0.64 + 0.10 0.63 + 0.10 0.63 + 0.11 0.61 + 0.12 0.76 + 0.07 0.71 + 0.05 0.69 + 0.06 0.71 + 0.07

LF (nu) 0.36 + 0.10 0.37 + 0.10 0.37 + 0.11 0.39 + 0.12 0.24 + 0.07 0.29 + 0.05 0.31 + 0.06 0.29 + 0.07

LF/HF 0.60 + 0.24 0.63 + 0.33 0.64 + 0.30 0.69 + 0.34 0.33 + 0.13 0.42 + 0.11 0.46 + 0.14 0.43 + 0.14

a 0.89 + 0.06 0.91 + 0.06 0.93 + 0.04 0.94 + 0.05 0.87 + 0.07 0.95 + 0.04 0.93 + 0.04 0.94 + 0.05

Middle-pregnancy
Index/time Q1 Q2 Q3 Q4

meanMM (s) 3.72 + 0.41 3.74 + 0.43 3.81 + 0.39 3.86 + 0.41

sdMM (s) 0.97 + 0.20 1.09 + 0.18 1.16 + 0.22 1.19 + 0.21

meanRR (s) 0.78 + 0.13 0.79 + 0.12 0.79 + 0.11 0.80 + 0.10

sdRR (s) 0.056 + 0.025 0.059 + 0.022 0.063 + 0.021 0.067 + 0.022

rmsRR (s) 0.035 + 0.019 0.034 + 0.019 0.034 + 0.014 0.037 + 0.017

HF (nu) 0.74 + 0.08 0.70 + 0.09 0.69 + 0.11 0.70 + 0.09

LF (nu) 0.26 + 0.08 0.30 + 0.09 0.31 + 0.11 0.30 + 0.09

LF/HF 0.36 + 0.15 0.44 + 0.18 0.49 + 0.26 0.45 + 0.19

a 0.92 + 0.06 0.94 + 0.06 0.95 + 0.07 0.97 + 0.09

aSignificantly different from Q3 sleep quarter within the same pregnancy group, p , 0.05.
bSignificantly different from Q4 sleep quarter within the same pregnancy group, p , 0.05.
cSignificantly different from early-pregnancy in the same sleep quarter, p , 0.05.
dSignificantly different from middle-pregnancy in the same sleep quarter, p , 0.05.
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Specifically, three subjects, one for each PREGNANCY group, were

excluded from the analysis because they showed outliers for some

frequency-domain HRV indices. Therefore, the number of subjects

included was 20 for the non-pregnancy, 17 for the early-pregnancy,

and 17 for the middle-pregnancy group.

The interaction PREGNANCY*SLEEPQ was significant only for

meanRR (F(4.474, 114.083) = 4.032, p = 0.003, partial h2 ¼ 0:137),

with the subsequent post hoc analysis of simple main

effects pointing out significant differences between non-pregnant

and middle-pregnant women in every sleep time quarter

(Q1: p ¼ 0:005, Q2: p ¼ 0:001, Q3: p , 0:001, Q4: p , 0:001)

and between non-pregnant and early-pregnant subjects in Q3

(p ¼ 0:027) and Q4 (p ¼ 0:038). In both cases, non-pregnant

women showed significantly increased meanRR compared to early-

and middle-pregnant ones. Pairwise significant differences were also

detected between sleep time quarters within the non-pregnancy

(Q1–Q3: p , 0:001, Q1–Q4: p , 0:001, Q2–Q3: p , 0:001,

Q2–Q4: p , 0:001) and early-pregnancy groups (Q1–Q3:

p ¼ 0:035, Q1–Q4: p ¼ 0:003, Q2–Q3: p ¼ 0:005, Q2–Q4:

p ¼ 0:002), but not within the middle-pregnancy one suggesting

that heart rate changes during the night are reduced in advanced

pregnancy stages. As for the other HRV indices reported in

Table 3, no statistically significant interactions were found between

pregnancy groups and sleep time quarters. Therefore, only the main

effects of PREGNANCY and SLEEPQ are analyzed in the following,

with the relevant Estimated Marginal Means (EMM) reported in

Table 4. sdRR revealed significant main effects of both

PREGNANCY (F(2, 51)¼ 4:132, p¼ 0:022, partial h2 ¼ 0:139) and
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SLEEPQ (F(2:218, 113:116)¼ 28:748, p, 0:001, partial h2 ¼ 0:360).

Specifically, significant differences were found between the EMMs

of the non-pregnancy and middle-pregnancy groups (p¼ 0:020)

and between the EMMs of all sleep time quarters (Q1–Q2:

p¼ 0:013, Q1–Q3: p, 0:001, Q1–Q4: p, 0:001, Q2–Q3:

p, 0:001, Q2–Q4: p, 0:001, Q3–Q4: p¼ 0:010). In particular, the

sdRR of the non-pregnant subjects was significantly higher

compared to the middle-pregnant and was found to significantly

increase over time during sleep.

rmsRR showed significant main effects of both PREGNANCY

(F(2, 51)¼ 3:380, p¼ 0:042, partial h2 ¼ 0:117) and SLEEPQ

(F(2:100, 107:084)¼ 11:014, p, 0:001, partial h2 ¼ 0:178), but

significant pairwise differences were found only between sleep

time quarters (Q1–Q4: p¼ 0:002, Q2–Q3: p¼ 0:006, Q2–Q4:

p, 0:001, Q3–Q4: p¼ 0:010). In particular, rmsRR was

significantly higher during the last sleep time quarter (Q4)

compared to previous ones, and during Q3 with respect to Q2.

Since the LF and HF powers were evaluated in normalized units

(n.u.), the same statistical results apply to both. Specifically, these

features showed significant main effects of both PREGNANCY

(F(2, 51) ¼ 8:283, p , 0:001, partial h2 ¼ 0:245) and SLEEPQ

(F(2:548,129:946)¼5:704,p¼0:002,partialh2¼0:101), with the

non-pregnancy group showing significant pairwise differences

compared to both the early-pregnancy (p¼0:002) and middle-

pregnancy (p¼0:005) ones. Specifically, HF power was

significantly lower in the non-pregnant subjects compared to the

early- and middle-pregnant. Besides, a significant difference

emerged between Q1 and Q3 sleep time quarters (p¼0:008), with
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TABLE 4 Estimated Marginal Means (EMMs) and model standard error (SE) for the evaluation of SLEEPQ (Q1, Q2, Q3, Q4) and PREGNANCY (non-
pregnancy, N = 20; early-pregnancy, N = 17; middle-pregnancy, N = 17) main effects on the MM and RR fluctuations. Values are reported as EMM +
SE. Pairwise differences are indicated for indices reporting significant main effects. Blank lines mark indices that showed a significant interaction
SLEEPQ*PREGNANCY, requiring simple main effects to be evaluated instead (see Table 3).

Index

EMMs by SLEEPQ EMMs by PREGNANCY

Q1 Q2 Q3 Q4 Non-pregnancy Early-pregnancy Middle-pregnancy
meanMM (s) 3.80 + 0.05b,c 3.84 + 0.05b,c 3.90 + 0.05 3.96 + 0.05 4.10 + 0.08d,e 3.74 + 0.09 3.78 + 0.09

sdMM (s) 1.04 + 0.02a,b,c 1.17 + 0.03b,c 1.24 + 0.03 1.26 + 0.03 1.37 + 0.04d,e 1.06 + 0.04 1.10 + 0.04

meanRR (s) – – – – – – –

sdRR (s) 0.063 + 0.003a,b,c 0.069 + 0.003b,c 0.076 + 0.003c 0.083 + 0.004 0.082 + 0.005e 0.076 + 0.005 0.061 + 0.005

rmsRR (s) 0.042 + 0.003c 0.042 + 0.003b,c 0.046 + 0.003c 0.050 + 0.003 0.050 + 0.004 0.050 + 0.005 0.035 + 0.005

HF (nu) 0.72 + 0.01b 0.68 + 0.01 0.67 + 0.01 0.67 + 0.01 0.63 + 0.02d,e 0.72 + 0.02 0.71 + 0.02

LF (nu) 0.29 + 0.01b 0.32 + 0.01 0.33 + 0.01 0.33 + 0.01 0.37 + 0.02d,e 0.28 + 0.02 0.29 + 0.02

LF/HF 0.43 + 0.03b 0.50 + 0.03 0.53 + 0.03 0.52 + 0.03 0.64 + 0.04d,e 0.41 + 0.04 0.44 + 0.04

a 0.90 + 0.01a,b,c 0.94 + 0.01 0.94 + 0.01 0.95 + 0.01 0.92 + 0.01 0.92 + 0.01 0.95 + 0.01

aSignificantly different from Q2 sleep quarter, p , 0.05.
bSignificantly different from Q3 sleep quarter, p , 0.05.
cSignificantly different from Q4 sleep quarter, p , 0.05.
dSignificantly different from early-pregnancy, p , 0.05.
eSignificantly different from middle-pregnancy, p , 0.05.
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Q1 reporting significantly higher HF power than Q3. Due to the

above normalization, LF powers showed the same effects as HF but

in the opposite direction.

LF/HF revealed significant main effects of both PREGNANCY

(F(2, 51) ¼ 9:668, p , 0:001, partial h2 ¼ 0:275) and SLEEPQ

(F(3, 153) ¼ 4:044, p ¼ 0:008, partial h2 ¼ 0:073). The post hoc

analyses pointed out significant pairwise differences between

non-pregnant and both early- (p , 0:001) and middle-pregnant

(p ¼ 0:003) subjects, as well as significant differences between

the Q1 and Q3 sleep time quarters (p ¼ 0:022). Specifically, the

LF/HF of the non-pregnant women was higher than that of

early- and middle-pregnant ones, and Q3 showed a significant

increase in this index compared to Q1.

As for the a calculated with the DFA, only the main effect of

SLEEPQ was found significant (F(2.379, 121.317) = 13.907,

p < 0.001, partial h2 ¼ 0:214), with the post hoc analysis showing

a significant increase of a over sleep time quarters compared to

Q1 (Q1–Q2: p , 0:001, Q1–Q3: p , 0:001, Q1–Q4: p , 0:001).

MM fluctuations reported statistically significant differences

in both meanMM and sdMM indices, showing significant

main effects of PREGNANCY (meanMM: F(2, 51) = 5.560,

p = 0.007, partial h2 ¼ 0:179, sdMM: F(2, 51) = 19.391, p < 0.001,

partial h2 ¼ 0:432) and SLEEPQ (meanMM: F(2.583, 131.728) =

16.024, p < 0.001, partial h2 ¼ 0:239, sdMM: F(2.385, 121.658) =

32.716, p < 0.001, partial h2 ¼ 0:391). The subsequent pairwise

comparisons highlighted statistically significant increases in

meanMM and sdMM in non-pregnant subjects compared to

both early- (meanMM: p ¼ 0:012, sdMM: p , 0:001) and

middle-pregnant (meanMM: p ¼ 0:031, sdMM: p , 0:001) ones.

Besides, these indices showed significant differences across pairs

of sleep time quarters, with both distinguishing Q1 from Q3

(meanMM: p ¼ 0:003, sdMM: p , 0:001) and Q4 (meanMM:

p , 0:001, sdMM: p , 0:001) and Q2 from Q3 (meanMM:

p ¼ 0:008, sdMM: p ¼ 0:002) and Q4 (meanMM: p , 0:001,

sdMM: p ¼ 0:006). Specifically, both meanMM and sdMM were

found to increase during Q3 and Q4 compared to Q1. In

addition, sdMM showed a significant increase in Q2 compared to
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Q1 (p , 0:001). meanMM and sdMM could be correlated with

respiratory behavior since they are extracted from the maxima of

the RR intervals, where the high frequency is influenced by the

respiratory cycle. In particular, sdMM is expected to increase

throughout the night because more time is generally spent in

REM, where oscillatory breathing is known to be less stable. This

fact explains the significant differences we observed between the

first two sleep time quarters and the next ones.
3.3 Class separation

Figure 6 shows the scatter plot for three HRV indices with

statistical significance, together with the scatter plot of the three

features with the highest explanatory value after PCA

transformation of the original feature set. Each feature was

normalized with respect to its variance. Each data point represents

an individual subject and is color-coded for clarity: the non-

pregnant group is labeled red, the early-pregnant group is

presented in green, and the middle-pregnant group is shown in blue.

Upon examination, the original feature space shows a clear

separation of the early-pregnancy group from the others. However,

there is an overlap between the non-pregnant and middle-pregnant

groups, suggesting a potential limitation in the classification process.

To address this, it is useful to explore alternative feature combinations

that may improve separability. Implementing a classification

procedure coupled with feature selection may be a viable approach.

Interestingly, after applying PCA, the transformed feature space

shows a clear distinction between all three groups. This suggests

that a simple classification method, perhaps even a simple linear

discriminant analysis or the use of simple thresholds, may be

sufficient for effective classification in this transformed space.
4 Discussion

In our study, we investigated the dynamics of HRV during

sleep at different stages of pregnancy and compared them to
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FIGURE 6

Feature space of original HRV indices with statistical significance and feature space of HRV indices transformed by PCA for the groups of non-
pregnancy, early-pregnancy, and middle-pregnancy. The circles are the individual subjects with red color for non-pregnancy, green color for
early-pregnancy, and blue color for middle-pregnancy.
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non-pregnant conditions. To this end, we calculated both

traditional temporal and spectral HRV indices and investigated

the multifractal characteristics of MM fluctuations. Our main

findings can be summarised as follows: (1) The multifractal

structure of MM fluctuations persist throughout pregnancy, (2)

The multifractal characteristics of MM fluctuations are associated

with long-term correlations generated by the sleep process, and

(3) separating the three study groups (non-, early- and middle-

pregnancy) based on HRV appears feasible.

Our results showed that cardiac autonomic regulation

undergoes significant changes during normal pregnancy. In

particular, the most significant changes occur during the early

stages, with similar levels observed during middle-pregnancy.

These findings are consistent with previous research by (8, 20, 41),

where there are reported cardiovascular adaptations during

early-pregnancy. In particular, our study parallels the

observations of the latter study by assessing nocturnal heart

rates at different stages of pregnancy. We found a significant

decrease in RR intervals, which is consistent with the findings

of the aforementioned research, but it is better expressed in

the last sleep quarter of the sleep time.

From a different perspective, a reduction in the complexity of

the HRV serves as an indicator of potential cardiovascular

dysfunction, suggesting an increased risk of physiological and

physical deterioration (13). While cardiovascular function is

expected to adapt during pregnancy, leading to a reduction in

HRV, it is important to recognize that this pattern may differ

from the norm in complicated pregnancies (42, 43). This

abnormality in HRV changes in complicated pregnancies could

manifest in different properties of the HRV time series, such as

mean value and regular or irregular patterns. In particular,
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autonomic abnormalities measured by HRV indices have been

associated with pregnancies complicated by hypertensive

disorders. In contrast, in patients with diabetes, assessments of

autonomic dysfunction based on heart rate show no significant

differences compared with healthy pregnancies (44). However,

the potential for predicting clinical outcomes in pregnancy using

HRV measurements warrants further investigation, especially

during longer recordings in specific conditions such as sleep. It’s

worth noting that previous studies have typically analyzed short

segments of HRV (e.g., 5 min), which is sufficient to evaluate the

chosen indices. However, monitoring HRV during sleep could

provide a more comprehensive view of cardiovascular function

and its relationship to different processes that typically occur

during sleep, such as different sleep stages. This approach holds

promise for a more holistic assessment of women’s health

during pregnancy.

It is interesting to note that, within our study sample, the

observed tendency of the HRV indices as a function of the sleep

structure remains consistent across the different stages of

pregnancy. In particular, the observed increases in the RR

intervals, together with the associated variances and trends in

HRV indices, show similarity between the non-, early- and

middle-pregnancy groups. This remarkable consistency implies a

parallel behaviour of the ANS during sleep, regardless of the

specific stage of pregnancy. Furthermore, from a different

perspective, our multifractal spectral analysis provides compelling

evidence for the presence of comparable self-affinity given long-

term correlations at different scales and power levels that are

consistently observed across the different stages of pregnancy.

These findings provide valuable insights into the enduring

complexity of heart rate dynamics throughout pregnancy.
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They highlight the crucial role of multifractal analysis in

elucidating the significance of long-term correlations within these

dynamic fluctuations, thus providing a deeper insight into the

intricate interplay of physiological processes during pregnancy.

However, further analysis in diverse pathological populations

may be required to provide greater clarity for a fuller understanding

of the clinical applicability of our findings.

It is important to note that understanding the multifractality

nature of the time series could also contribute to a better

understanding of the source. Thus as described by Kantelhardt

et al. (38), it is possible to categorize multifractality in time series

into two different types:

1. Multifractality arising from a broad probability density

function: In this scenario, multifractality arises from a broad

probability density function associated with the values within

the time series. Importantly, this form of multifractality

cannot be eliminated by shuffling the series, as the

underlying probability distribution remains unchanged.

2. Multifractality due to different long-range correlations: In

contrast, this type of multifractality arises due to different

long-range correlations exhibited by small and large

fluctuations in the time series. Here, the probability density

function governing the values may be regular and have finite

moments, such as a Gaussian distribution. When the series is

shuffled, all these long-range correlations are broken,

resulting in non-multifractal scaling.

Our results show that the MM fluctuations exhibit

multifractality arising from distinct long-range correlations. This

type of multifractality is expected during regular sleep, as the

emergence of sleep cycles and stages introduces specific patterns

within the RR intervals. These patterns are potentially valuable

for automated classifications of sleep stages, as demonstrated in

previous studies (45). However, to gain a fuller understanding of

MM fluctuations and their behaviour, further analysis is

imperative, especially in the context of pathological conditions

where the normal sleep structure is disrupted, potentially leading

to changes in multifractality.

A limitation of our study is the relatively small number of

records available for analysis. However, we anticipate that, in the

coming years, we will be able to build up a more extensive

database with a sufficient number of records at different stages of

pregnancy and from non-pregnant women. This expansion will

not only increase the robustness of our findings but will also

facilitate a more comprehensive evaluation of the clinical

applicability of our proposed methods. Whilst we have a greater

volume of data from pregnant women, we are constrained by the

limited number of non-pregnant data sets currently available for

analysis. Therefore, we made a conscious decision to maintain a

balanced representation by keeping a similar number of records

for each group.

Another point worth acknowledging is the simplified

annotation modality we adopted for sleep staging. Since in real-

life scenarios, particularly for home monitoring applications, the

aim is to minimize the number of sensors to ensure comfort and

compliance with daily sleep monitoring routines, we decided to
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categorise sleep time into quarters, despite the possibility of

creating a more granular sleep profile based on HRV indices

with a segment resolution of five minutes or less. This decision is

in line with practical considerations for real-world applications

and a possible simplification of the sleep evaluation from a

visualization point of view.

It is important to note that another option for analyzing the

multifractality of HRV is by decomposing the signal into classical

components (HF, LF, VLF) and analyzing each component

individually (30). Techniques such as filtering, wavelets, and

empirical mode decomposition could be used for this purpose.

Furthermore, to understand multifractality at different scales, the

multifractal-multiscale method could be used (26). Thus, there is

room for improvement in analyzing and understanding the ANS

mechanisms involved during sleep in pregnancy from a

multifractal perspective.

Separability across different groups of pregnancy stages seems

possible. However, as noted by Stein et al. (8), it is important to

recognize that each woman starts with a unique cardiovascular

baseline and each pregnancy represents a different physiological

journey. Therefore, implementing a normalization process based

on the non-pregnancy stage for each woman could potentially

produce more robust classification results. Thus, a more effective

approach is to assess individual-level changes in different HRV

indices at different stages of pregnancy. This approach is

particularly valuable because, although HRV typically decreases

in the early stages of pregnancy, there is considerable individual

variation in the magnitude and direction of these changes as

pregnancy progresses. Much of our current knowledge of

changes in cardiac autonomic regulation during pregnancy is

based on pairwise comparisons between short-term or Holter-

based heart rate data and single-point assessments of HRV

during pregnancy, contrasted with non-pregnancy baseline

values. Therefore, it is important to shift our perspective away

from generalized metrics to a personalized, longitudinal approach

that considers pairwise comparisons between successive stages of

pregnancy. This approach allows for a comprehensive exploration

of cardiovascular adaptability as a unique and personalized

phenomenon, moving beyond generic benchmarks.

Finally, with the intention of answering the question posed in

the introduction, we may say that the application of MF-DFA on

MM fluctuations, along with time and frequency domain

analyses of HRV during sleep provides new insights into the

physiological changes that occur during pregnancy in several

important ways: (a) Revealing Multifractal Characteristics: MF-

DFA allows the detection of complex HRV patterns that are not

apparent using traditional linear methods. This analysis can

identify multifractality in the MM fluctuations, indicating

multifractal characteristics of the regulation of the autonomic

nervous system during pregnancy, which are dynamically

modified along pregnancy; (b) Detailed temporal and spectral

analysis: The computation of classical temporal and spectral

HRV indices at quarterly intervals during sleep provides a

dynamic view of HRV changes throughout the sleep.

This temporal resolution captures the fluctuations in HRV due to

different sleep cycles and provides insight into how pregnancy
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affects these patterns, and (c) Applicability: the calculated features

are particularly suitable for continuous monitoring and may find

application in the home evaluation of maternal health through

the quantitative analysis of multifractal properties and significant

HRV changes during pregnancy during sleep in the home

setting. Understanding the distinct HRV patterns associated with

different stages of pregnancy may lead to more personalized

healthcare interventions tailored to the specific needs of pregnant

individuals at different stages of pregnancy.
5 Conclusions

We investigated the dynamics of HRV during sleep at different

stages of pregnancy and contrasted them with non-pregnant

conditions. By calculating traditional temporal and spectral HRV

indices and exploring the multifractal characteristics within the

MM fluctuations, we observe significant changes in cardiac

autonomic regulation during normal pregnancy, with the most

pronounced changes occurring in early pregnancy, followed by

stabilization in middle-pregnancy. We also observed a significant

reduction in RR intervals, which was particularly pronounced in

the last quarter of sleep. While such a decrease in HRV is

expected during pregnancy due to adaptive cardiovascular

changes, it is important to recognize that this pattern may

deviate from the norm in complicated pregnancies. In addition, a

consistency in sleep structure was observed across different stages

of pregnancy, with similarities in MM fluctuations, variances,

and HRV trends between non-pregnant, early-pregnant, and

middle-pregnant groups. This finding suggests an overloading of

the sleep function that produces similar behavior of the ANS

during sleep, regardless of the specific stage of pregnancy.

However, to gain a more complete understanding of MM

fluctuations and their behavior, where normal sleep structure

may be disrupted, further analysis is essential. The results

contribute to a broader understanding of the health of women

during this critical stage of life and highlight the importance of

multifractal analysis and extended HRV monitoring during sleep

in gynecological and obstetrical settings.

The main novelties of our study could be summarized as:

• Application of Multifractal Analysis to Pregnancy HRV: This

study uniquely applies Multifractal Detrended Fluctuation

Analysis to HRV patterns during pregnancy. Previous research

has primarily focused on linear methods, which need proper

signal segmentation in stationary fragments. This multifractal

approach is innovative in the context of maternal health

monitoring. The use of Multifractal Analysis allows a

completely automatic estimation of parameters which are

related to long-term dynamics, with no need of complex pre-

processing or operator-dependent data segmentation. For this

reason, the proposed method could be particularly suitable for

monitoring through simple wearable devices and automatic

analysis. In addition, it could provide a single index across

each night, able to summarize the status of the woman,

allowing simple comparisons and evaluations.
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• Comprehensive temporal and spectral HRV analysis during

sleep: By calculating classical temporal and spectral HRV

indices at quarterly intervals during sleep, this research

provides a dynamic understanding of HRV changes

throughout the sleep time in pregnant women, a perspective

that has not been extensively explored before.

• Separability analysis using PCA: The use of Principal

Component Analysis to achieve separability between groups

demonstrates the relevance of the modifications induced in

the HRV controlling mechanisms by pregnancy. Our results

demonstrate clear differences in comparison with non-

pregnant women and between pregnancy stages (early- and

middle-pregnancy).

• Implications for Pathology Identification: The findings of our

study on HRV hold promise for identifying or characterizing

pathologies related with pregnancy, such as diabetes or sleep

apnea. Future studies will focus on these aspects, with potential

diagnostic and therapeutical applications. This adds a

significant level of novelty and practical relevance to the research.
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