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Concordance of left
ventricular volumes and function
measurements between
two human readers, a fully
automated AI algorithm, and
the 3D heart model
Peder L. Myhre1,2, Nicola Gaibazzi3*, Domenico Tuttolomondo3,
Daniele Sartorio3, Pietro Tito Ugolotti3, Marco Covani3,
Alberto Bettella3 and Sergio Suma3

1Department of Cardiology, Akershus University Hospital, Lørenskog, Norway, 2K.G. Jebsen Center of
Cardiac Biomarkers, University of Oslo, Oslo, Norway, 3Cardiology Department, University Hospital of
Parma, Parma, Italy
Background: Echocardiography is essential in cardiovascular medicine for
screening, diagnosis, and monitoring. Artificial intelligence (AI) has the
potential to improve echocardiography by reducing variability and analysis
time. While 3D echocardiography is becoming more accurate, 2D imaging still
dominates clinical care. We aimed to evaluate agreement in measures of left
ventricular (LV) volumes and function between human readers, a fully
automated AI 2D algorithm, and the 3D Heart Model.
Methods: A retrospective analysis was conducted on 109 patients who
underwent 2D and 3D transthoracic echocardiography. LV end-diastolic and
end-systolic volumes (LVEDV, LVESV) and ejection fraction (LVEF) were
measured by two operators, a commercially available AI algorithm (US2ai), and
the 3D Heart Model. Global longitudinal strain (GLS) was measured by the
integrated semi-automated software and the AI algorithm. Outcomes included
measures of agreement [bias, limit of agreement and Pearson’s correlation (R)]
Results: For LV volume measurements, the AI algorithm was strongly correlated
with the average of the human operators (r=0.89 for LVEDV and r=0.92 for
LVESV), which was higher than between the operators (r=0.74 and r=0.84,
respectively, p <0.01). The same trend was seen for measures of reliability with
respect to LVEDV, but not LVESV. AI demonstrated comparable performance to
human operators in measuring LVEF, while the 3D Heart Model had a weaker
correlation and reliability compared with human operators and AI measurements.
The correlation between human operators and AI for GLS was only moderate.
Conclusion: This study demonstrates AI-based echocardiography as a promising
tool for accurately assessing LV volumes and LVEF in clinical practice. AI-based
measures demonstrated a significantly lower inter-operator variability, thereby
improving the consistency and reliability of these assessments. Moreover, AI
may prove particularly effective for conducting retrospective bulk analyses,
offering a valuable tool for comprehensive evaluations of past data.
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Introduction

Echocardiography holds a pivotal role in multiple aspects of

cardiovascular medicine, encompassing screening, prevention

(e.g., in patients undergoing cardiotoxic cancer treatments),

diagnosis, risk stratification or monitoring for structural and

functional abnormalities (1–3). The integration of artificial

intelligence (AI) has already proven its value in various cardiac

imaging modalities and has the potential to significantly

enhance or simplify echocardiography as well. By eliminating

intra-operator and inter-operator variability, AI may minimize

the need for extensive training programs for operators, or AI

can expedite the analysis time required to interpret collected

images, leading to more efficient diagnosis and decision-making

processes (4–6).

Although 3D echocardiography is becoming increasingly

easy and accurate, 2D imaging is still the work horse of

everyday echocardiography primarily due to technical

limitations and availability of 3D echocardiography. However,

automatic measurements of 3D datasets using near real-time

machine learning techniques have revolutionized the clinical

applicability of 3D echocardiography, especially in quantifying

chamber volumes and ejection fraction. Nonetheless, these

methods are often vendor-specific and primarily available in

top academic centers.

Automated AI algorithms that are capable of accurately

analyzing standard 2D echocardiography are highly desirable, both

for routine clinical practice and for retrospective automated

analysis of the large amounts of echocardiograms stored in

electronic archives worldwide. By enabling automated analysis,

valuable and unexpected longitudinal variations in key parameters

and their trajectories could be revealed, reducing the necessity for

time-consuming assessments by expert human readers, opening

new roads for retrospective analyses of data. However, ensuring

that AI-based automatic measurements perform at least as good as

manual readings remains a critical requirement.

Our aim was to assess the agreement, correlation, and reliability

of measurements performed by (a) a fully automated commercially

available AI-algorithm (Us2ai) on 2D images, (b) the Heart Model

3D (HM3D) system and (3) human expert readers.
Methods

This was a retrospective analysis of 109 consecutive subjects

who underwent transthoracic echocardiography at the cardiology

echo lab of the University Hospital of Parma, a tertiary care

center, between November 1 and December 1, 2022. The study

protocol was approved by the institutional review board.
Transthoracic image analyses

All patients underwent a resting transthoracic echocardiogram

according to international guidelines (7). 2D and 3D ultrasound
Frontiers in Cardiovascular Medicine 02
imaging was performed using an EPIQ machine and ×5

transducer by Philips Healthcare. The HM3D images were

obtained by employing wide-angle acquisition in “full-volume”

mode, optimizing the frame rate by minimizing sector depth

and width. Images were later analyzed off-line by two

experienced operators who were blinded to each other and

clinical data. In particular, experienced operator had EACVI

transthoracic echocardiography certification or an

echocardiography experience of more than 10 years. Left

ventricular end-diastolic volumes (LVEDV), left ventricular end-

systolic volumes (LVESV) and left ventricular ejection fraction

(LVEF) were calculated using the modified Simpson’s rule

according to the 2015 American Society of Echocardiography

(ASE)/European Association of Cardiovascular Imaging

(EACVI) guidelines for cardiac chamber quantification (7). Peak

R wave and end of T wave on ECG were used to identify end-

diastole and end-systole, respectively, for manual measurements

(each reader used these same criteria, also when repeating

measurements for intra- inter-observer variability), while 2D AI

and 3D heart model systems identify end-diastole and end-

systole with proprietary methods. We selected only cineloops

not comprising arrhythmias from analyses, to avoid potential

confounders. Global longitudinal strain (GLS) was calculated as

the average Legrangian strain from the apical 4-chamber (A4C),

apical 3-chamber (A3C) and apical 2-chamber (A2C) views

using the conventional software Autostrain (Philips Healthcare),

which is semi-automated (i.e., operators acquiring the images

adjust the endocardial border tracings if needed) (8).

The semi-automated 3DHM algorithm was used to determine

3D measures of LVEDV, LVESV with the aim to calculate

only LVEF, since 3D volumes were deemed not comparable to

2D volumes.

Briefly, 3D datasets were acquired in a single beat during a

breath hold lasting a few seconds, ensuring optimal temporal

and spatial resolution. The volumetric datasets were

immediately evaluated on-board using the DHM software

(Heart Model, Philips Healthcare), which automatically

identifies LV endo- and epicardial borders at end-diastole and

LA borders at end-systole, allowing prompt quantification of

the volumes of these chambers In our study, 3DE images were

analyzed using the default settings of the boundary detection

sliders (end-diastolic default position = 60/60; end-systolic

default position = 30/30).

The fully-automated 2D AI-based analyses were performed

by the commercially available algorithm from Us2ai (Us2ai,

Singapore, Singapore), which automatically calculated LV

volumes, LVEF and GLS without any manual correction. The

algorithm is based on a deep learning workflow, as previously

described for 2D videos and GLS (9, 10). In brief, the AI

algorithm classifies the 2D video clips into either A4C, A3C or

A2C view and automatically excludes low-quality images.

Then, automated contouring of the endocardial border for

every frame from the A4C, A3C and A2C views are performed

by a convoluted neural network (CNN) model. Automated

identification of the end-diastolic and the end-systolic frames

based upon video-level volume curves with confirmation by an
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accompanying electrocardiogram, if available. The strain module

uses the annotated and endocardium-traced video clips of LV

produced in the conventional 2D echo module to measure the

circumferential lengths of a traced endocardium for each frame

and are projected as drift corrected strain curves based on the

cardiac cycle identified by video level volume curves.
TABLE 1 clinical characteristics of the studied population.

Age, years (mean ± SD) 56 ± 15

Females (n, %) 77 (71%)

Family history of CVD (n, %) 59 (54%)

Cigarette smoking history (n, %) 42 (39%)

Arterial hypertension 45 (41%)

Diabetes mellitus (n, %) 17 (16%)

Obesity (n, %) 31 (28%)

Dyslipidemia (n, %) 45 (41%)

Biplane LVEFa (mean ± SD) 63 ± 8

CVD, cardiovascular disease; LVEF, left ventricle ejection fraction.
aThe average of two human operators.

FIGURE 1

Correlation plots and bland-altman plots of left ventricular end diastolic volu
AI-based measures and the average between the human operators (right).
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Statistical methods

Unless otherwise specified, data are presented as mean +/−
SD or n (%). Group comparisons were performed using the

Student’s t-test or a Mann–Whitney U test for continuous

data and categorical data were compared with chi-squared

(χ2) test. Bland-Altman plots were utilized to assess

methodological agreement, including bias (difference in

mean measurement) and 95 percent limits of agreement

(LoA, mean of the two measurements ± 1.96 × SD) between
TABLE 2 LVEDV, LVESV, LVEF and GLS mean values (standard deviation)
for human operators, AI and 3DHM.

Human operators
and Autostrain

AI 3DHM

LVEDV (ml) 93.01 (28.34) 90.21 (28.25) 129.21 (3,917)

LVESV (ml) 39.60 (17.61) 33.81 (16.54) 53.01 (21.91)

LVEF (%) 57.63 (6.65) 63.31 (7.73) 59.40 (6.11)

GLS (%) −18.25 (3.35) −22.14 (3.55)

me (LVEDV) measures between two human operators (left) and between
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TABLE 3 Bias, correlation and reliability for measures of left ventricular volume, ejection fraction and global longitudinal strain by human operators, 2D
AI algorithm and 3D heart model.

Agreement Bland and Altman Correlation Reliability (intraclass correlation coefficient)

BIAS LOA 1.96 SD Pearson’s r Single rating Average of K

LVEDV, ml
Between 2 operators 7.2 43.4 0.736 (0.635–0.811) 0.735 (0.636–0.811) 0.847 (0.777–0.896)

Mean Operators vs. 2D AI 2.8 26.3 0.888 (0.840–0.922) 0.888 (0.840–0.922) 0.941 (0.913–0.959)

Same reader 2 measures −0.4 27.9 0.893 (0.847–0.925) 0.894 (0.848–0.926) 0.944 (0.918–0.962)

-LVESV, ml
Between 2 operators 5.7 20.8 0.840 (0.774–0.888) 0.834 (0.766–0.883) 0.910 (0.868–0.938)

Mean Operators vs. 2D AI −11.9 37.6 0.924 (0.891–0.948) 0.428 (0.262–0.570) 0.600 (0.415–0.726)

Same reader 2 measures −1.1 15.9 0.904 (0.862–0.933) 0.899 (0.856–0.930) 0.947 (0.922–0.964)

LVEF, %
Between 2 operators −2.4 11.5 0.684 (0.569–0.773) 0.683 (0.568–0.771) 0.812 (0.725–0.871)

Mean Operators vs. 2D AI −5.2 11.2 0.697 (0.586–0.783) 0.692 (0.579–0.778) 0.818 (0.734–0.875)

Same reader 2 measures 1 11 0.745 (0.648–0.818) 0.737 (0.637–0.812) 0.849 (0.778–0.896)

Mean Operators vs. 3D HM −0.6 13.4 0.623 (0.485–0.731) 0.608 (0.468–0.719) 0.756 (0.637–0.836)

3D HM vs. 2D AI −4.4 11.4 0.689 (0.542–0.794) 0.668 (0.516–0.779) 0.801 (0.681–0.876)

Fully automated LV GLS, %
Autostrain1 2D vs. AI strain 4 6.3 0.552 (0.401–0.674) 0.552 (0.402–0.673) 0.711 (0.573–0.804)

Correlation and reliability data and (95% confidence interval).

FIGURE 2

Correlation plots and Bland-Altman plots of left ventricular end systolic volume (LVESV) measures between two human operators (left) and between
AI-based measures and the average between the human operators (right).
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the methods. Paired t-tests were conducted to determine the

significance of the biases. Measurement variability was

expressed as the mean absolute difference (MAD) between

corresponding pairs of repeated measurements within each

patient throughout the study group. Correlations were

assessed using the Pearson coefficient (r). Reliability was

evaluated using the interclass correlation coefficient, which

considers the average of K to determine the degree of

reliability among the different methods.

P-value < 0.05 was considered statistically significant.
Results

The human operators and the AI algorithm successfully

analyzed all 109 (100%) 2D echocardiographic studies included

in our study, while the 3DHM algorithm was able to analyze 99

of the studies (89%). The clinical characteristics of the study

population are presented in Table 1.

Absolute mean values for each measurement performed

with different methods (LVEDV, LVESV, LVEF, GLS) are

presented in Table 2.

For measurements of LVEDV, the correlation between the two

operators was r = 0.74 (95% CI 0.64–0.81, p < 0.001), with a

reliability of k = 0.85 (Figure 1; Table 3). The average bias

between the operators was 7.2 ml (LoA ± 43.4 ml). Comparing
FIGURE 3

Correlation plots and Bland-Altman plots of left ventricular ejection fracti
AI-based measures and the average between the human operators (middl
operators (left).
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the average of the operators with AI, the correlation was r = 0.89

(0.84–0.92, p < 0.001), with a reliability of k = 0.94. The average

bias was 2.8 ml (LoA ± 26.3 ml).

For measurements of LVESV, the correlation between the two

operators was r = 0.84 (0.77–0.89, p < 0.001), with a reliability of

k = 0.91 (Figure 2; Table 3). The average bias was 5.7 ml

(LoA ± 20.8 ml). Comparing the average of the operators with

AI, the correlation was r = 0.92 (0.89–0.95, p < 0.001) with a

reliability of k = 0.60. The AI algorithm measured higher LVESV,

with an average bias of 11.9 ml (LoA 37.6 ml).

For LVEF the two different operators had a correlation of

r = 0.68 (0.57–0.77, p < 0.001) with a reliability of k = 0.81

(Figure 3; Table 3). The bias was 2.4% (LoA ± 11.5%).

Comparing the average of the operators with AI, the correlation

was r = 0.70 (0.57–0.77, p < 0.001) with a reliability of k = 0.82.

The bias was −5.2% (LoA ± 11.2%). Additionally, we evaluated

the performance of the average of the operators compared to

3DHM technology for the ejection fraction. The correlation was

r = 0.62 (0.49–0.73, p < 0.001) with a reliability of k = 0.76. The

bias was −0.6% (LoA ± 13.4%).

GLS was successfully analyzed by human operators and the AI

algorithm in 103 subjects (Figure 4). The two methods exhibited a

correlation of r = 0.55 (0.85–0.92, p < 0.0001) with a reliability of

k = 0.71 and with and average bias of 4% (LoA ± 6.3%).

Table 3 reports also reports full data for intra-operator

variability for LVEDV, LVESV and LVEF.
on (LVEF) measures between two human operators (left) and between
e) and between 3D heart model and the average between the human
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FIGURE 4

Correlation plots and Bland-Altman plots of left ventricular global
longitudinal strain (GLS) measures between AI-based measures and
semi-automated measures (autostrain).

Myhre et al. 10.3389/fcvm.2024.1400333
Discussion

In this real-world study of consecutive subjects who underwent

transthoracic echocardiography for various clinical indication, we

found good correlations and reliability, and a low bias, for

measures of LV volumes and LVEF between human operators

and a fully automated AI algorithm. The feasibility of the AI

algorithm was high, as all images were successfully analyzed. The

3DHM was able to analyze LVEF in 89% of images, which is in

agreement with the feasibility reported in the literature (11), and

the accuracy, with human operators as the reference, was inferior

to that of the AI model.

AI-based measurements of LVEDV showed superior

correlation, agreement, and reliability compared to human

operators analyzing identical images. This finding may

suggest that AI can mitigate the inherent inter-operator

variability that affects the accuracy of conventional

echocardiography by standardizing the measurements. The

same findings were confirmed for LVESV with respect to

correlation, but with a higher bias and a lower reliability for

the AI-based measurements. This discrepancy may be
Frontiers in Cardiovascular Medicine 06
attributed to different approaches including myocardial

trabeculae in, which become particularly elevated from the

pars compacta in end-systole. However, as there were no

such differences between measures of LVEDV and LVESV in

three larger datasets using the same algorithm, the

discrepancies may also be by chance (9).

LVEF is perhaps the most important variable for clinical

decision-making. Our data suggest that the agreement,

correlation, and reliability of the AI-based algorithm compared

to the mean of two operators are nearly identical to those

observed between the two operators themselves. This implies

that the AI-based algorithm can be considered as reliable and

consistent as an experienced operator in measuring LVEF. We

also compared the performance of AI-based algorithm with

another tool for assessing LVEF, the 3DHM. The 3DHM

system exhibited slightly inferior agreement, correlation, and

reliability in LVEF measurements compared to the AI-based

algorithm when compared to the mean of the two experienced

operators. This observation does not justify the added

complexity and reduced feasibility associated with automatic

3DHM imaging compared to 2D imaging by the AI-based

algorithm. Importantly, 3D measures of LV volumes differ

substantially from 2D measures, with 3D and3DHM volumes

being closer to LV volumes as measured by cardiac magnetic

resonance (11, 12). This may be biased against the 3DHM

model, as the reference LVEF was based on 2D-images by

human operators.

The correlation between semi-automated and AI-based

measures of GLS was modest (r = 0.55) and lower than what has

previously been reported in larger datasets by the same algorithm

(r = 0.84 in a real-world dataset and r = 0.76 in an echo core lab

study of patients with HFpEF) (10). However, as the bias and

reliability of the measurements were good, the modest correlation

may relate to the narrow range of GLS in this study (majority

between −15% and −20%).
Our study has some limitations. This was a retrospective

analysis which may have introduced selection bias. We did not

validate the findings in an independent cohort, however, the

algorithms used have previously been tested in other

populations (9, 10). The population studied is rather small with

a tight range of LV volumes and EF, mostly within the normal

range. The results are representative only for this specific

population and can not be generalized to the entire LV volumes

and EF range which can be encountered in clinical practice.

The images were acquired by equipment from one vendor

(Philips Healthcare) and although the AI software is labeled as

vendor-independent the findings can not necessarily be

extrapolated to other vendors.
Conclusions

Chamber quantification in echocardiography is crucial for

making informed decisions in everyday cardiology practice. Our

analysis strongly suggests that an AI-based method for

quantifying left ventricle volumes and LVEF can be effectively
frontiersin.org
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employed in clinical practice, as it demonstrates good agreement

and correlation when compared to assessments made by two

experienced human operators.
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