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Engineered exosomes: a potential
therapeutic strategy for septic
cardiomyopathy
Lixia Mao1, Songtao Liu1, Yongxia Chen1, Huiyi Huang1,
Fenghua Ding2 and Liehua Deng1*
1Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang,
China, 2Outpatient Appointment Center, Affiliated Hospital of Guangdong Medical University,
Zhanjiang, China
Septic cardiomyopathy, a life-threatening complication of sepsis, can cause
acute heart failure and carry a high mortality risk. Current treatments have
limitations. Fortunately, engineered exosomes, created through bioengineering
technology, may represent a potential new treatment method. These
exosomes can both diagnose and treat septic cardiomyopathy, playing a
crucial role in its development and progression. This article examines the
strategies for using engineered exosomes to protect cardiac function and treat
septic cardiomyopathy. It covers three innovative aspects: exosome surface
modification technology, the use of exosomes as a multifunctional drug
delivery platform, and plant exosome-like nanoparticle carriers. The article
highlights the ability of exosomes to deliver small molecules, proteins, and
drugs, summarizing several RNA molecules, proteins, and drugs beneficial for
treating septic cardiomyopathy. Although engineered exosomes are a
promising biotherapeutic carrier, they face challenges in clinical application,
such as understanding the interaction mechanism with host cells, distribution
within the body, metabolism, and long-term safety. Further research is
essential, but engineered exosomes hold promise as an effective treatment for
septic cardiomyopathy.
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1 Introduction

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to

infection (1). Septic cardiomyopathy is a prevalent complication of sepsis unrelated to

ischemia, and has a high fatality rate (2). It commonly presents with symptoms such as

ventricular dilation, reduced contractility and/or ventricular dysfunction, coupled with a

diminished responsiveness to volume infusion (3, 4). Current treatment strategies

primarily involve supportive care, including antibiotics and hemodynamic improvement

(5, 6). Potential risk factors for septic cardiomyopathy encompass pathogen-associated

molecular patterns (PAMPs), cytokines, and nitric oxide (7). The exact pathogenesis

remains unclear, highlighting the need for more effective and safer therapeutic

approaches for septic cardiomyopathy.

Extracellular vesicles (EVs), which are nanoscale lipid bilayer membrane structures

secreted by cells (8), can be divided into two main categories based on their generation

mechanisms: endosome-origin exosomes and plasma membrane-derived ectosomes

(9, 10). Exosomes, as naturally occurring extracellular vesicles with diameters ranging
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from 30 to 200 nm, have garnered considerable interest in recent

years. Found in various biological fluids, almost all eukaryotes or

prokaryotes can release, these vesicles that carry a range of cellular

components, including lipids, proteins, DNA, and RNA (11–14).

They facilitate intercellular communication by being taken up by

distant cells, influencing the function and behavior of recipient

cells (15). Given their excellent biocompatibility, inherent stability,

low-immunogenicity, and capacity for targeted delivery and

immunomodulation (16, 17), exosomes have been as therapeutic

agents for various diseases’ studies and treatment (18–20).

However, naturally occurring exosomes carry different cargos,

and not all of them are effective in treating diseases. For

instance, certain cargoes like miR-1249-3p are known to alleviate

insulin resistance and inflammation in a type 2 diabetes mouse

model (21). Similarly, miR-144-3p can inhibit the growth,

migration, and invasion of osteosarcoma cells (22), while miR-

150-5p serves as a negative regulator of disease severity (23),

thereby slowing disease progression. Conversely, some cargoes,

such as miR-155-5p, contribute to severe acute pancreatitis-

related intestinal barrier damage (24). miR-30d-5p induces

macrophage M1 polarization and triggers macrophage pyroptosis,

playing a significant role in sepsis-related acute lung injury (25).

Additionally, miR-423-5p promotes cancer growth and metastasis

and can be a potential diagnostic and prognostic marker for

gastric cancer, posing potential risks to the body (26). Therefore,

it is necessary to carry out certain modifications to exosomes to

weaken their side effects and enhance the therapeutic function.

At the same time, we can also modify the surface of exosomes so

that they can target the heart and stay in the damaged heart for

a longer period, making their therapeutic effect more significant.

Research on engineered exosomes has shown their critical role in

modulating the immune response to inflammation (27, 28).

Furthermore, they contribute to cardiac protection by preventing

cardiomyocyte apoptosis (29, 30), boosting mitochondrial

function, and preserving myocardial contractility (31).

Engineered exosomes hold considerable promise as a novel

treatment strategy for septic cardiomyopathy, highlighting the

need for comprehensive investigative efforts in this area.

This article systematically reviews the pathophysiology of septic

cardiomyopathy, the characteristics of engineered exosomes, and

the connection between them. The article also discusses different

construction strategies of engineered exosomes in protecting

cardiac function and treating septic cardiomyopathy, and

analyzes the challenges faced in the development and utilization

of engineered exosomes, aiming to provide reference and

inspiration for future research.
2 Materials and methods

We systematically searched the PUBMED database and

manually scanned the reference lists of articles. We conducted a

search of the PubMed database for the most relevant articles

regarding engineering exosomes, sepsis, septic cardiomyopathy,

and the relationship between septic cardiomyopathy and

engineering exosomes. For the search formula, we used the
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following terms: “(((exosomes)OR (extracellular vesicle) OR

(EVs))) AND ((sepsis)OR (septic))”, “engineering exosomes”,

“sepsis and EVs”, “miRNA and exosomes”, “septic

cardiomyopathy”, “plant exosomes”. Initially, the PubMed

database showed 594 results. In this study, a thorough evaluation

of article titles was conducted to ascertain the inclusion of at

least one relevant search term. Articles that did not satisfy the

inclusion criteria or focused on subjects divergent from the

treatment of engineering exosomes in septic cardiomyopathy

were methodically excluded. Consequently, the final analysis

incorporated 148 studies. The schematic diagram of the article

was produced using Microsoft Office PowerPoint software. The

research was conducted from a holistic viewpoint, concentrating

on the treatment of engineering exosomes in sepsis.
3 Pathophysiology of septic
cardiomyopathy

Septic cardiomyopathy develops from a disordered immune

response to infection, a process that involves pathogen-associated

molecular patterns (PAMPs) and injury-associated molecular

patterns (DAMPs) that activate pattern recognition receptors and

triggers a variety of intracellular pathways, such as NF-κB and

mitogen-activated protein kinase pathways. Septic cardiomyopathy

presents as an inflammatory state, with evidence of inflammatory

cell infiltration in affected organs (32).

The field of septic cardiomyopathy research has some puzzling

phenomena. Earlier studies indicated increased cardiac output in

sepsis patients, suggesting that cardiac systolic function remained

intact. Yet, further research revealed a reduction in left

ventricular ejection fraction (EF) in these individuals (33).

Intriguingly, having a reversible decrease in EF correlates with

improved prognoses in contrast to maintaining stable EF levels

(34). Numerous studies are exploring the mechanisms behind

myocardial dysfunction in sepsis. These studies cover various

aspects, such as the emergence of circulating myocardial

inhibitory substances, the weakening of adrenergic pathways, the

production of nitric oxide and reactive oxygen species, abnormal

calcium regulation, mitochondrial dysfunction, disturbances in

the coronary microvasculature, and the suppression of genetic

expression for sarcomeric and mitochondrial proteins.

Patients with sepsis exhibit a non-ischemic myocardium,

supported by elevated plasma troponin levels (35, 36). Studies

have identified “myocardial inhibitory substances” in circulation,

such as tumor necrosis factor and IL-1β, which can suppress

cardiomyocyte function (37, 38). The formation of S-nitroso

albumin from DAMPs and nitric oxide (NO), along with various

other circulating mediators, may also contribute to the

pathogenesis of septic cardiomyopathy. Sepsis-induced PAMP

and DAMP signaling can initiate an inflammatory cascade via

Toll-like receptor activation (39). This activation may enhance

cytokine production, which can directly inhibit cardiomyocyte

contraction (40). These cytokines activate inducible nitric oxide

synthase (iNOS), resulting in an overproduction of NO that

causes vasodilation and hypotension (41). Oxidative stress,
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implicated in septic cardiomyopathy, can damage myocardial cell

membrane lipids, proteins, and DNA, leading to cellular

dysfunction and death. Free radical scavengers have been found

to improve cardiac function in sepsis mouse models (42).

Overstimulation of sympathetic nerves negatively impacts

myocardial performance and contractility. Inflammation-related

calcium responsiveness impairment may result in myocardial

contractile dysfunction (43). Severe mitochondrial dysfunction in

sepsis is strongly associated with poor outcomes (44). During

sepsis, local disturbances of the cardiac microcirculation may

trigger a compensatory metabolic closure in the region of

hypoperfusion, leading to abnormal cardiac function and energy

(45). Although septic cardiomyopathy may be very severe, it is

usually reversible for surviving patients (46).

Treatment of septic cardiomyopathy faces limitations,

primarily focusing on managing sepsis itself through infection

control, fluid resuscitation, and vasoactive drugs to maintain

hemodynamic stability. Therefore, we still need the development

of more comprehensive, safe, and effective treatment strategies

for septic cardiomyopathy.
4 Overview of exosomes

4.1 Exosome biogenesis

Cellular secretion includes a spectrum of extracellular vesicles,

with exosomes and ectosomes, each characterized by their unique

origins. Exosomes are extracellular vesicles derived from

endosomes with a diameter between 30 and 200 nm. The genesis

of endosomes is traced back to the plasma membrane’s internal

budding. Exosomes are composed of proteins from the plasma

membrane and Golgi apparatus, along with lipid and nucleic acid

contents, encompassing cytokines, molecular patterns linked to

pathogens and damage, and autoantigens. The process of

segregating proteins and RNA into exosomes is stringently

controlled, enabling cells to emit exosomes with varied properties

based on the molecular cues triggering their synthesis. Late-stage

endosomes within multivesicular bodies fuse with the cell’s outer

membrane, releasing their cargo, termed exosomes. Lysosomes

can lead to the breakdown of multivesicular bodies.

Subsequently, recipient cells internalize exosomes, which then

move the activated receptors to the cell’s surface or attach to

these receptors to initiate signaling pathways (47). Exosome-

transported mRNA can be converted into protein, while

exosome-delivered miRNA can specifically target mRNA

expression in the recipient cells (48).
4.2 Overview of the engineered exosomes

Engineered exosomes preserve the inherent properties of

natural exosomes while acquiring additional or enhanced

functions through bioengineering. These enhancements may

involve targeting particular diseased tissues or cells or

encapsulating specific drugs or functional RNA (49). Exosomes
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are primarily derived from animals, plants, and artificial

synthesis. The modification of exosomes can occur via genetic

engineering, chemical modifications (both covalent and non-

covalent), alterations to the cell membrane, and encapsulation

with biomaterials (50, 51) (Figure 1). For instance, autologous

exosomes can be engineered to carry specific ligands, enabling

the stable delivery of therapeutic agents (52). Exosome-loaded

drugs mainly include cell transfection, direct co-incubation,

sonication, electroporation, freezing and thawing, and extrusion.

When compared to other biological treatments like cell and viral

therapies, exosomes have the advantage of not being able to

divide or replicate. This characteristic could make engineered

exosome therapies comparatively safer in terms of tumorigenicity

and infectivity (53–55). Furthermore, engineered exosomes have

been demonstrated and well tolerated without significant side

effects. Furthermore, engineered exosomes are well tolerated in

without significant side effects. For instance, the study conducted

by Bellavia et al. demonstrated the ability of exosomes released

by HEK293T cells (Exo or IL3l-Exo) loaded with or without

Imatinib to reduce tumor growth tested in an in vivo tumor

xenograft model (56). Another toxicological study of MSC-Exo

showed that MSC-Exo were safe without significant side effects

when topical treatment on skin (57). In addition, the result of a

phase I study showed that autologous dendritic cell (DC)-derived

exosomes (DEX) loaded with MAGE tumor antigen were well

tolerated in patients with non-small cell lung cancer (NSCLC)

without evidence of severe toxicity (58).
5 The link between exosomes and
septic cardiomyopathy

Exosomes may be linked to septic cardiomyopathy. Initially

considered mere cellular waste disposal entities, they are now

recognized as nanoscale intercellular communication carriers.

Janiszewski et al. observed a 60% increase in platelet-derived

exosomes in the plasma of septic patients compared to healthy

controls. These exosomes exhibit pro-apoptotic NAD(P)H

oxidase activity and can produce reactive oxygen species (ROS)

via NADPH oxidase. An abundance of exosomes can lead to

endothelial damage and potentially affect nearby cardiomyocytes,

resulting in cardiac dysfunction (59).

Azevedo et al. analyzed blood samples from 55 septic shock

patients and 12 healthy individuals. The research revealed that

exosomes derived from platelets in patients with sepsis markedly

reduced the myocardium contractility and hindered its function

in isolated rabbit hearts (60). The NLRP3 inflammasome,

activated by TXNIP, has been studied by Wang et al. They

demonstrated that TXNIP-NLRP3 complexes embed in CD63

exosomes and transfer from monocytes to resident cardiac

macrophages. These complexes trigger the activation of caspase-

1, leading to the cleavage of IL-1β and IL-18 precursors. This

process results in the secretion of the active forms of IL-1β and

IL-18, contributing to the dysfunction of the inflammatory

response observed in sepsis (61). Moreover, exosomes play

additional roles. Zhou et al. proposed that exosomes of human
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FIGURE 1

The main origins of exosomes include animals, plants, and nanobiotechnology techniques. Exosomes can be derived from animal organs, tissues,
cells, and body fluids. Additionally, plants like apples, lemons, and ginger are capable of providing exosomes. Nanobiotechnology techniques, such
as forcing cells through membrane pores or using supramolecular chemistry methods, can also generate synthetic exosomes.
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mesenchymal stem cells (MSC) carry large amounts of mRNA that

provides the protein PINK 1 needed to avoid calcium overload.

Upon intraperitoneal injection of human MSC-derived exosomes,

these mRNAs can be transported to cardiomyocytes, enhancing

PINK1 expression, restoring calcium regulation, and improving

myocardial function (62).

Exosomes demonstrate considerable potential in disease

diagnosis (63–66). Released by nearly every cell type, these

entities transport numerous molecules and are found in all types

of bodily fluids. Exosomes are detectable in liquid biopsy

samples, such as blood, urine, and cerebrospinal fluid.

Undoubtfully, exosomes for diagnostic purposes have attracted

widespread attention. Some of the identified miRNAs, for

instance, miR-150-5p, miR-125b, and miR-495, may be potential

markers of cardiomyopathy (23, 67, 68), and their aberrant

expression is closely associated with cardiac inflammation and

injury (69). Wang’s study involving 214 sepsis patients assessed

serum miRNAs, identifying six with significant expression

differences between survivors and non-survivors: miR-223, miR-

15a, miR-16, miR-122, miR-193b*, and miR-483-5p. It was

observed that miR-15a, miR-122, miR-193b*, and miR-483-5p

were expressed at significantly higher levels in non-survivors,

while the expression of miR-223 and miR-16 decreased. Notably,

miR-193b* showed a higher predictive value for sepsis mortality

than SOFA scores and APACHE II scores (70). Currently, liquid

biopsy methods for detecting extracellular vesicle contents are
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utilized in prostate cancer diagnosis (71). Similarly, studies on

sepsis have demonstrated that mRNA, miRNA, or proteins found

in exosomes can be potential biomarkers (Supplementary

Table S1). Consequently, the detection of these miRNA can

augment the specificity of early septic cardiomyopathy diagnosis.
6 Exosomes for the treatment of septic
cardiomyopathy

Engineered exosomes offer significant potential for treating

septic cardiomyopathy (Table 1). Firstly, they can home in on

the heart, delivering drugs directly to affected areas, and

enhancing therapeutic efficacy while minimizing systemic side

effects (82–85). Secondly, engineered exosomes can modulate

immune responses, potentially inhibiting the cardiac

inflammatory response and reducing myocardial damage (86).

Moreover, they possess cell-protective and repair capabilities,

which could improve cardiac function by promoting

cardiomyocyte survival and regeneration (87–89).
6.1 Exosome surface modification methods

Exosomes can be genetically engineered to display specific

surface markers by modifying proteins or peptides (Figure 2).
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TABLE 1 Examples of engineered exosomes constructed in different ways to protect cardiac function.

Exosome origin Model Content Effect
M2 macrophages Mice with sepsis induced by intraperitoneal

injection of lipopolysaccharide (LPS)
miR-24-3p Improve cardiac function, reduce myocardial cell apoptosis and serum

inflammation in myocardial tissue (30).

Mesenchymal stem cells Mouse with sepsis induced by cecal ligation
and puncture (CLP)

miR-223-KO Drastically intensified the harm induced by sepsis. On the flip side, protective
qualities were evident in exosomes sourced from WT-MSCs (72).

Mesenchymal stem cells Mouse with sepsis induced by CLP miR-141 Improved heart muscle damage in mice with sepsis by delivering miRNA-141,
which modulates the PTEN/β-catenin signaling pathway (73).

Mesenchymal stem cells LPS-induced cardiomyocytes (H9C2 cells) in
vitro and mice with sepsis-induced in vivo

miR-146a-5p Offered protection to cardiomyocytes in inflammation models in vitro and
maintained the integrity of myocardial tissue in sepsis models in vivo (74).

Bone marrow stromal
cells (BMSCs)

Mouse with sepsis induced by CLP miR-126 Decreased the sepsis-induced upregulation of adhesion molecules and the
influx of immune cells such as macrophages and neutrophils in the cardiac
muscle of HSPA12B–/– mice (75).

Human umbilical vein
endothelial cells

Mouse with sepsis induced by CLP HSPA12B Downregulated the NF-κB pathway, thereby reducing mortality and
complications of septic cardiomyopathy (76).

HEK293T cells LPS endotoxemia mouse model and CLP
sepsis mouse model

super-repressor
IκB (srIκB)

Combated inflammatory responses, thereby ameliorating pro-inflammatory
cytokine storm and subsequent organ damage (77).

Cardiac progenitor cells H2O2-induced H9C2 cell miR-21 Reduced cardiomyocyte apoptosis (29).

Mesenchymal stem cells Mouse with myocardial infarction miR-22 Improved the viability of cardiomyocytes and reduced cardiac fibrosis (78).

Mesenchymal stem cells Mice with MI induced by ischemia-
reperfusion

miR-21, CD47 Effectively delivered to cardiomyocytes, resulting in notable anti-apoptotic
effects, and reducing cardiac inflammation (79).

HEK293T cells Mouse with myocardial infarction miR-21 Prevented cell death via apoptosis, culminating in a notable boost to cardiac
functionality (80).

Human cardiosphere-
derived cells

Rats and pigs with MI induced by ischemia-
reperfusion

miR-181b Diminishing levels of PKCδ mRNA and providing cardio-protection (81).

FIGURE 2

A schematic diagram of the construction of the exosome cardiac targeting system modified with targeting peptides and cell membranes. The cardiac
targeting peptides include sequences like WLSEAGPVVTARALRGTGSW, APWHLSSQYSRT, STSMLKA, and CSKTSMLKAC. When these sequences are
attached to the exosome membrane, the exosomes can be delivered to cardiomyocytes through intravenous injection. Additionally, exosomes
that have fused with the membranes of red blood cells, platelets, or immune cells show a greater tendency to adhere to damaged cardiomyocytes.

Mao et al. 10.3389/fcvm.2024.1399738
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TABLE 2 Comparison of characteristics among exosomes, liposomes and viral vectors.

Characteristics Engineered exosomes Liposome Viral vectors
Size 30–200 nm 20 nm up to several micrometers 20–100 nm

Targeting Good / Good

advantages Preserve the inherent properties of natural exosomes, including good
biocompatibility, low toxicity and immunogenicity, stability, and
biological barrier penetration ability (16, 17), while acquiring additional
or enhanced functions through bioengineering (49)

Flexible modification, sufficient
loading and high delivery efficiency
(108, 109)

Avoiding immune system detection,
self-replication, efficient transduction
(110, 111)

Limitations Multiple challenges remain in their clinical application (112) Rapid clearance, limited targeting
ability (109, 113)

Potential pathogenic, High
immunogenicity (111)

Mao et al. 10.3389/fcvm.2024.1399738
For instance, exosomes modified with myocardial-targeting peptides

or antibodies can enhance uptake by cardiomyocytes in vitro, reduce

apoptosis, and increase aggregation in myocardial tissue, thereby

improving treatment outcomes (83, 90). Myocardial-targeting

peptides such as WLSEAGPVVTARALRGTGSW (91, 92),

APWHLSSQYSRT (93, 94), STSMLKA (95, 96), CSKTSMLKAC

(84, 85, 97, 98), have specific targeted effects for cardiovascular

conditions. Yang et al. discovered that STSMLKA was preserved in

the ischemic myocardium after intravenous delivery. This result

suggests that the engineered exosome can target the infarcted

hearts after non-invasive intravenous injection, which may help

with recovery after myocardial infarction (96). In addition, CDCs-

EVs were engineered using a DOPE-NHS linker paired with

CSTSMLKAC. in one study. By targeting exosomes to the

infarcted heart, it could improve fibrosis and increase cell

proliferation and angiogenesis (84). Although the exact mechanism

of the interaction between CHP and myocardium is unclear, it can

amplify the role of exosomes by combining CHP with exosomes.

The comparison of the administration methods of engineered

exosomes are listed in Supplementary Table S2.

In research by Gupta et al., expressing tumor necrosis factor

receptor 1 (TNFR1) and interleukin 6 signaling protein (IL-6ST)

on extracellular vesicles significantly mitigated systemic

inflammation induced by lipopolysaccharide (LPS). These vesicles

with cytokine decoys outperformed clinically approved drugs

targeting TNF-α and IL-6 pathways in terms of therapeutic effects

(99). Experimental evidence confirms that the CD47-SIRPα

combination can activate the “don’t eat me” signal, thereby

inhibiting monocyte phagocytosis. Additionally, exosomes with

high CD47 expression can promote immune evasion and extend

their circulation half-life in mice (100, 101). MiR21-loaded CD47-

EVs were efficiently delivered to cardiomyocytes, resulting in

notable anti-apoptotic effects, and reduced cardiac inflammation

(79). Since proteins on exosome surfaces are pivotal for

biodistribution and cell targeting (102), their modification remains

a promising area for ongoing investigation.

Biomimetic nanocarriers coated with cell membranes, or

exosomes, leverage the native properties of the cell membrane to

achieve targeted localization with remarkable efficiency

(103, 104). Sources of cell membranes include red blood cells,

platelets, immune cells, cancer cells, and bacterial membranes.

Studies indicate that endothelial cell uptake of extracellular

vesicles fused with cell membranes is increased by 2–3 times,

and by 5 to 8 times in cardiomyocytes, compared to unmodified
Frontiers in Cardiovascular Medicine 06
vesicles (105). Platelet membrane-modified extracellular vesicles

not only mimic the binding properties of platelets and

monocytes but also facilitate endosomal escape following

macrophage endocytosis. They deliver miRNAs into the

cytoplasm and induce a shift from the M1 to the M2

macrophage phenotype. This transition decreases the production

of inflammatory factors and consequently aids in cardiac repair

(106). Monocyte membrane-decorated MSC also significantly

increases homing efficiency to the injured heart and improves

treatment outcomes (107).
6.2 Engineered exosomes as therapeutic
carriers for drug delivery

Traditional drug carriers include synthetic lipid nanoparticles

and virus vectors, but their targeting ability and loading

capability are relatively limited. As a source of cell nanovesicles,

exosome has several merits, including good biocompatibility,

stability, targeting, low immunogenicity, which make it a rare

natural carrier in the field of drug delivery (16, 17). The

comparison of engineered exosomes as therapeutic carriers for

drug delivery is provided in Table 2.

Engineered exosomes can traverse biological barriers and

transport bioactive components (Figure 3). These exosomes are

capable of ferrying poorly characterized molecules and drugs,

while also evading the P-glycoprotein drug efflux mechanism,

which can reduce issues with drug resistance (114, 115). Thus,

they are considered natural drug delivery vehicles (116–119).

6.2.1 Using exosomes to load nucleic acid
substances such as miRNAs

Research increasingly indicates that microRNAs (miRNAs) are

key in driving the healing properties of exosomes (120). The

dysregulation of miRNAs is linked to a variety of illnesses,

including but not limited to cancer, diabetes, obesity, viral

infections, and diseases of the cardiovascular system (121–123).

Real and co-authors observed a stark contrast in the miRNA

content of exosomes from those with septic shock compared to

healthy volunteers. For example, miR-27a levels in exosomes

from sepsis survivors were sixfold higher than in controls,

suggesting a possible role for exosomal miRNAs in sepsis

pathogenesis, including the inflammatory response, oxidative

stress, and cell cycle regulation (124). MiRNA-21 has been
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FIGURE 3

A schematic diagram of exosomes as delivery vehicles. Exosome delivery systems designed for cardiac therapy typically incorporate modifications with
nucleic acids, drugs, and proteins.
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shown to protect against sepsis-induced cardiac dysfunction, and

its upregulation could be a potential strategy for treating septic

cardiomyopathy (125). Exosomes can shield miR-21 from RNase

degradation and deliver it effectively to target cells, thus

decreasing PDCD4 protein levels, reducing apoptosis, and

promoting cardiac recovery (80).

Wang et al. demonstrated that miR-223-KO mesenchymal

stem cell exosome injection did not improve cardiac function or

survival rates in septic mice, highlighting the importance of miR-

223 in mediating the protective effects of mesenchymal stem cells

on septic cardiomyopathy by downregulating Sema3A and Stat

proteins (72). Pei et al. discovered that pre-injecting miR-141-

enriched mesenchymal stem cell exosomes could restore

myocardial function in a CLP sepsis mouse model, as evidenced

by improvements in left ventricular ejection fraction and short-

axis shortening (73). Additionally, Liu C et al. confirmed that

miR-146a-5p, carried by mesenchymal cell exosomes, has

protective effects in cardiomyocytes and myocardial tissue in

sepsis models by negatively regulating MYBL1 (74). Zhang et al.

also discovered that overexpression of miR-146 in exosomes from

bone marrow stromal cells reduced the expression of adhesion

molecules during sepsis. This led to a decrease in macrophage

and neutrophil accumulation in the myocardium and ameliorated

septic cardiomyopathy (75).

Moreover, overexpression of miR-181b has been found to

downregulate HMGB1 expression in septic rats, leading to

reduced inflammatory factors and myocardial damage, and

inhibited cardiomyocyte apoptosis (126). In another study, the

cardioprotective effects were attributed to the transfer of miR-

181b via exosomes from cardiosphere-derived cells (CDCs) to
Frontiers in Cardiovascular Medicine 07
macrophages, which subsequently reduced PKCδ transcript levels.

Notably, while exosomes from fibroblasts alone did not confer

protection in this model, those loaded with miR-181b were

capable of altering the macrophage phenotype and providing

cardioprotection. Conversely, inhibiting miR-181b in CDC

exosomes diminishes their cardioprotective properties (81, 127).

In addition, mRNA and other nucleic acid drugs have great

potential in the treatment of diseases. However, some

characteristics of RNA molecules, such as instability in the body

and difficulty in crossing cell membranes and blood-brain

barriers, hinder the further application of nucleic acid drugs.

Therefore, there are now studies on using exosomes to load

mRNA to treat diseases. In innovative research, the LiuM team

developed inhalable IL-12mRNA-loaded exosomes IL-12-Exo

(128); Kojima et al. focused on the treatment of Parkinson’s

disease and attempted to deliver catalase mRNA through

designed exosomes. to the brain (129); while Wang et al. used

exosomes to deliver HChrR6-encoding mRNA to HER2+ cells

(130); Similarly, Usman et al. experimented with red blood cell

extracellular vesicles filled with Cas9 mRNA and gRNA, targeting

the mir-125b-2 site to combat acute myeloid leukemia in

MOLM13 cells (131). These pioneering studies highlight the

versatility and potential of exosomes as carriers for mRNA

delivery in various therapeutic contexts.

Overall, these studies collectively illustrate the transformative

potential of exosome-based nucleic acid delivery systems in

various medical fields. Continued research and development in

this area could lead to significant breakthroughs in the treatment

of septic cardiomyopathy, offering new hope for patients. The

challenge now lies in optimizing these delivery systems for
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clinical use, ensuring their safety, efficacy, and scalability for

widespread application.
6.2.2 Using exosomes to load proteins
Engineered exosomes can be utilized to deliver proteins, such

as HSP60, which function as cytoprotective molecules to alleviate

cell damage caused by oxidative stress and inflammatory agents.

The study revealed that endothelial heat shock protein A12B

(HSPA12B) ameliorates cardiac dysfunction in sepsis and

decreases mortality (75, 76). Tu F et al. discovered that exosomes

enriched with endothelial cell-derived HSPA12B were shown to

inhibit NF-κB activation in LPS-stimulated macrophages. Choi H

et al. engineered exosomes (EXPLOR) carrying srIκB, a stable

form of IκBα, to create immunosuppressive exosomes. These

exosomes blocked NF-κB-mediated gene transcription in the

nucleus. In a sepsis mouse model, the application of Exo-srIκB

effectively decreased levels of inflammatory markers such as

TNF-α, IL-1β, and IL-6, be-sides reducing organ damage (77).

Additionally, delivering HSP60 and antioxidant enzymes via

exosomes has shown promise in preventing cardiomyocyte

damage (86).
6.2.3 Using exosomes to load chemical drugs
In treating septic cardiomyopathy, exosomes can be engineered

to transport anti-inflammatory drugs or antioxidants directly to the

damaged myocardium, thereby reducing the effects of

inflammatory mediators and protecting cardiac cells from further

injury (16). Kang JY and his colleagues genetically modified the

parent cells of extracellular vesicles (EVs) to display a cardiac

targeting peptide (CTP) on the exosome surface. They loaded

curcumin into CTP-modified EVs, which delivered curcumin

specifically to the heart. These curcumin-loaded EVs exhibited

increased bioavailability and enhanced cardio-protection (94).

They also co-delivered curcumin and miR-144-3p using CTP-

EVs, which not only preserved cardiac targeting capabilities but

also significantly improved therapeutic outcomes both in vitro

and in vivo. In another study, Zheng et al. used folic acid-

functionalized macrophage-derived exosomes to co-load two

anti-inflammatory drugs (resveratrol, strobilurin) to inhibit LPS-

induced sepsis and protect against Lung function, exosomes

showed strong anti-inflammatory and immunosuppressive

activities, and multiple administrations significantly enhanced the

protective effect and resisted the second hit of LPS (132).

Several drugs have been identified to ameliorate septic

cardiomyopathy at the molecular level. Puerarin mitigates

inflammation and oxidative stress in myocardial tissues, and

inhibits apoptosis and ferroptosis in cardiomyocytes (133).

Emodin reduces the inflammatory response and pyroptosis in

cardiomyocytes by suppressing the activation of the NLRP3

inflammasome (134). Capsaicin enhances 14-3-3γ-mediated

autophagy, alleviating LPS-induced myocardial injury and

dysfunction (135). Therefore, we have high hopes for the

treatment of septic cardiomyopathy using drugs that are loaded

with these beneficial effects on cardiac function.
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6.3 Using plant-derived exosome-like
nanoparticles as therapeutic vehicles

The source of the exosomes greatly influences their

effectiveness. Exosomes from inflammatory cells have different

biological functions compared to those from mesenchymal stem

cells (MSCs). Research has revealed that MSC-derived exosomes

have immunomodulatory and regenerative properties akin to

MSCs themselves. They can improve the viability of

cardiomyocytes post-ischemia/reperfusion injury and exhibit low

immunogenicity (78). Numerous studies are currently developing

therapeutic drugs based on MSC-EVs (124, 136).

Due to the limited production of exosomes from mammalian

cells, researchers have begun to isolate exosomes from fruits or

vegetables, such as grapefruits, broccoli, and ginger. These plant-

derived exosomes are being explored for treatment of diagnosed

diseases (137–139). While the application of plant exosomes for

septic cardiomyopathy treatment remains unexplored, current

research highlights their ability to deliver a wide range of

therapeutic agents—including chemotherapy drugs, siRNA, DNA

expression vectors, and proteins—to target cells, demonstrating

therapeutic benefits in mouse models (140). Xu XH and his

colleagues discovered that exosome nanovesicles derived from

ginseng (G-Exos) can serve as efficient and safe carriers for

delivering active miRNAs to BMSCs and inducing their

differentiation into neural cells. This study has shown promising

results in promoting nerve regeneration and repairing conduction

function both in vitro and in vivo (141). Additionally, according

to Teng et al., ginger-derived exocrine-like particles contain small

RNA that can affect the intestinal microflora of mice, thereby

improving intestinal barrier function and reducing the incidence

of colitis (138). Ju et al. pointed out that exocrine-like nanoparticles

extracted from grape dregs can avoid the degradation of digestive

enzymes in mice and promote the proliferation of intestinal

epithelial cells after entering the intestine, thus accelerating the

recovery of colitis (142).

In conclusion, plant-derived exosome-like nanoparticles may

hold therapeutic potential for septic cardiomyopathy. Therefore,

further exploration and validation of the role of plant exosomes

in septic cardiomyopathy treatment are warranted.
7 Discussion

Exosomes, either inherently or as drug delivery carriers, have

garnered wide-spread attention in the diagnosis and treatment of

sepsis and cardiovascular diseases (25, 143–145), spearheading a

new trend in the biopharmaceutical industry. Engineered

exosomes, modified through biotechnological techniques, not

only retain their original biological properties but are also

endowed with specific functions, enhancing their original

capabilities. This positions them as potentially valuable in

treating septic cardiomyopathy. This review systematically

summarizes the research progress of engineered exosomes in

septic cardiomyopathy, innovatively discussing their applications
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in exosome surface modification techniques, as multi-functional

drug delivery platforms, and plant exosome-like nanoparticle

carriers. It emphasizes the potential of exosomes in delivering

small molecules, proteins, and drugs, and summarizes a

collection of RNA, proteins, and drugs beneficial for treating

septic cardiomyopathy.

However, despite advances in developing engineered exosomes,

multiple challenges remain in their clinical application (112).

Enhancing the efficiency and purity of exosome culture, isolation,

and purification processes is critical. Large-scale production,

quality control, improved targeting, and increased drug loading

efficiency must be addressed to meet clinical standards (146).

Additionally, standardizing production and storage conditions is

essential to maintain exosome stability and biological function.

Determining suitable delivery methods and ensuring the

biocompatibility and safety of these biomaterials in the human

body is also required (147).

Further investigative work is crucial to uncover the interaction

mechanisms between exosomes and host cells, their distribution,

metabolism, and long-term safety (148). Current knowledge gaps

regarding exosome dynamics and targeting in different organisms

add to the uncertainty of their clinical translation. Researchers

are actively seeking solutions to develop engineered exosomes

into effective therapeutic tools.

Engineered exosomes are an innovative biotherapeutic carrier

with significant potential in septic cardiomyopathy treatment

research. They offer modulation of inflammatory responses,

enhancement of myocardial repair, and targeted drug delivery.

These capabilities suggest engineered exosomes as a promising

direction for new therapeutic strategy development.
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