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Performance of federated
learning-based models in the
Dutch TAVI population was
comparable to central strategies
and outperformed local strategies
Tsvetan R. Yordanov1,2*, Anita C. J. Ravelli1,2, Saba Amiri3,
Marije Vis2,4,5, Saskia Houterman6, Sebastian R. Van der Voort1,2

and Ameen Abu-Hanna1,2 on behalf of the NHR THI
Registration Committee
1Department of Medical Informatics, Amsterdam University Medical Centers, University of Amsterdam,
Amsterdam, Netherlands, 2Amsterdam Public Health Research Institute, Amsterdam University Medical
Centers, University of Amsterdam, Amsterdam, Netherlands, 3Informatics Institute, University of
Amsterdam, Amsterdam, Netherlands, 4Department of Cardiology, Amsterdam University Medical
Centers, University of Amsterdam, Amsterdam, Netherlands, 5Amsterdam Cardiovascular Sciences
Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands,
6Netherlands Heart Registration, Utrecht, Netherlands
Background: Federated learning (FL) is a technique for learning prediction models
without sharing records between hospitals. Compared to centralized training
approaches, the adoption of FL could negatively impact model performance.
Aim: This study aimed to evaluate four types of multicenter model development
strategies for predicting 30-day mortality for patients undergoing transcatheter
aortic valve implantation (TAVI): (1) central, learning one model from a
centralized dataset of all hospitals; (2) local, learning one model per hospital;
(3) federated averaging (FedAvg), averaging of local model coefficients; and (4)
ensemble, aggregating local model predictions.
Methods: Data from all 16 Dutch TAVI hospitals from 2013 to 2021 in the
Netherlands Heart Registration (NHR) were used. All approaches were internally
validated. For the central and federated approaches, external geographic
validation was also performed. Predictive performance in terms of discrimination
[the area under the ROC curve (AUC-ROC, hereafter referred to as AUC)] and
calibration (intercept and slope, and calibration graph) was measured.
Results: The dataset comprised 16,661 TAVI records with a 30-day mortality rate of
3.4%. In internal validation the AUCs of central, local, FedAvg, and ensemblemodels
were 0.68, 0.65, 0.67, and 0.67, respectively. The central and local models were
miscalibrated by slope, while the FedAvg and ensemble models were miscalibrated
by intercept. During external geographic validation, central, FedAvg, and ensemble
all achieved a mean AUC of 0.68. Miscalibration was observed for the central,
FedAvg, and ensemble models in 44%, 44%, and 38% of the hospitals, respectively.
Conclusion: Compared to centralized training approaches, FL techniques such
as FedAvg and ensemble demonstrated comparable AUC and calibration. The
use of FL techniques should be considered a viable option for clinical
prediction model development.
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1 Introduction

The increasing adoption of electronic health records (EHRs)

across healthcare facilities has led to a wealth of data that can be

harnessed for developing prediction models for various medical

applications. Such models may improve patient stratification,

inform clinical decision-making, and ultimately enhance patient

outcomes. In the field of cardiovascular medicine, combining

records from multiple centers has successfully been used in

training clinical prediction models (CPMs) (1). Such multicenter

models tend to generalize better and are more robust than those

derived from individual centers. Although models trained on

data from a single center may perform well within their local

hospital settings, they require a large number of records for

training, and their performance often deteriorates when applied

to new centers or other patient populations. However, sharing

patient data between centers is not always straightforward.

Concerns about patient privacy, the implementation of new

regulations such as the General Data Protection Regulation

(GDPR), and the challenges of integrating data from different

centers all pose significant challenges. There is a growing need to

implement strategies for training prediction models on multiple

datasets without sharing records between them.

Federated learning (FL) has emerged as a promising approach

to address this challenge. FL is a machine learning approach that

enables multiple parties to build a shared prediction model

without needing to exchange patient data.

However, implementing FL comes with its own set of

challenges. Aside from logistical and communication issues, an

important question is whether FL has a detrimental impact on

the quality of learned models (2). While promising, the impact

of FL on model quality has yet to be thoroughly examined in

various areas of medicine.

Understanding the potential benefits and limitations of FL in

developing multicenter prediction models helps facilitate a more

effective and privacy-preserving use of electronic patient data in

risk prediction. To that end, our analysis investigates the

potential of FL as a viable strategy for multicenter prediction

model development.

FL has rarely been studied in the cardiovascular context (3–5)

and not yet in the transcatheter aortic valve implantation (TAVI)

population, which is the focus of this study. TAVI is a relatively

new and minimally invasive treatment for severe aortic valve

stenosis. The Netherlands Heart Registration (NHR) is a

centralized registry that holds records of all cardiac interventions

performed in the Netherlands, including those of TAVI patients

who are treated in the 16 hospitals performing this operation.

Across these 16 hospitals, the TAVI patient population could

vary for a number of reasons, such as regional population

demographic differences.

Risk prediction models for TAVI patients have been developed

using data originating from a single hospital (6) or combining

records from multiple centers (1, 7, 8). In a previous study, we

evaluated the performance of one such centralized, multicenter

TAVI early-mortality CPM and observed the model to have a

moderate degree of external performance variability, most of
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which could be attributed to differences in hospital case-mix (9).

However, the performance of such models in an FL approach,

compared to a centralized or local approach, remains unknown.

We aimed to evaluate the impact of two important FL

techniques: federated averaging (FedAvg) (10) and mean

ensemble (henceforth referred to as ensemble) (11), explained

further in the Materials and methods section, on the predictive

performance of TAVI risk prediction models. This performance

is compared to a centralized model and local center-specific

models (Table 1).
2 Materials and methods

This study adhered to the Transparent Reporting of a

Multivariable Prediction Model for Individual Prognosis or

Diagnosis (TRIPOD) statement (12). This study meets all five of

the CODE-EHR minimum framework standards for the use of

structured healthcare data in clinical research (13).
2.1 Dataset

In this nationwide retrospective multicenter cohort study, we

included all patients who had a TAVI intervention in any Dutch

hospital for the 9-year period from 1 January 2013 to 31

December 2021. Data were collected by the NHR (14).

Permission was granted for this study to use the data and

include a pseudonymized code indicating the center in the

dataset (Supplementary Appendix A).

The outcome of interest was the 30-day post-operative mortality.

Mortality data were obtained by checking the regional municipal

administration registration, Basisregistratie Personen (BRP).

Patients lacking the outcome measurement of 30-day mortality

were excluded.

No ethical approval was needed according to the Dutch central

committee of Human Research, as the study only used previously

collected cohort registry data. All data in this study were fully

anonymized before we accessed them. Approval for this study

was granted by the Committee of Research and Ethics of the

Netherlands Heart Registry on 2 February 2021.
2.2 Model strategies

Four different model development strategies (henceforth referred

to as models) were considered in our experiments (Table 1). A

central model was derived using the combined records from all

hospitals (Supplementary Figure S1). The derivation of such a

model consists of two steps: (1) performing variable selection from

the list of candidate predictor variables (explained further in

Section 2.3); and (2) fitting predictor variable coefficients.

Leveraging the entire dataset enables capturing relationships

between predictors and outcomes across multiple centers. Due to

the nature of the central design, all data between hospitals are

shared, including individual patient record variables.
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TABLE 1 Method overview of model development strategies with respect to types of data sharing and validation performance evaluation (the main
differences and similarities between the four model strategies used in the current experiments are shown).

Federated learning

Model strategy Central Local FedAvg Ensemble

Aspect No
recalibration

Recalibration No
recalibration

Recalibration

Sharing Predictor data Yes (by design) No No No No No

Outcome data Yes (by design) No No Yes No Yes

Model parameters Yes (by design) No Yes Yes No No

Predictions Yes (by design) No No Yes Yes Yes

Optional: other
model parameters

Central imputation No Local imputation Local imputation; central
recalibration

Local imputation Local imputation; central
recalibration

Calibration Yes (by design) Yes (by design,
per center)

No No No No

Recalibration No No No Local, central, federated No Local, central, federated

Validation Stacking predictions
CV

Per (test) fold Per (test) fold
per centera

Per (test) fold Per (test) fold Per (test) fold Per (test) fold

Stacking predictions
LCOA

Per external center Not Applicable Per external center Per external center Per external center Per external center

Obtaining
performance

On stacked
predictions

On stacked
predictions

On stacked
predictions

On stacked predictions On stacked
predictions

On stacked predictions

Clarifications—Sharing of predictor data: the predictor variable values of records from a center dataset. Sharing of outcome data: the outcome variable value of records

from a center dataset. Sharing of model parameters: the weights and intercepts (coefficients) from a center-learned model. Sharing of predictions: the predicted

probabilities from a center-learned model. Sharing of other model parameters (optional): imputation model for missing values, recalibration model. Calibration: does

the model fitting process also calibrate the model predictions? Recalibration: recalibration (of any kind) applied to the model after its fitting? Stacking predictions CV:

during CV, how were the model predictions from the test folds stacked (combined) before computing performance metrics? Stacking predictions LCOA: during LCOA,

how were the model predictions from the test centers stacked (combined) before computing performance metrics? Obtaining performance: when computing

performance metrics for a model, what set of predictions were used?
aIn the case of local models, for each individual center, the model predictions from all of its test folds during CV were stacked together. Each set of these stacked

predictions was then used to obtain the per-center local model performance measures. Pooled performance across all center local models was then calculated with a

REMA pooling of the individual center performance results.
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In the next strategy, multiple local models were trained, one for

each hospital’s dataset (Supplementary Figure S2). The derivation

of each center local model would follow in much the same steps

as in the centralized model strategy. As the local models are

specific to each hospital, they avoid the need to share any data

between centers.

In addition to these baselines, we considered two popular FL

techniques: FedAvg and an ensemble model. To conceptualize the

idea behind FedAvg, one can think of averaging the knowledge of

a classroom where students train on their schoolwork and then

share their key learnings with a central teacher who combines

them to create a better understanding for everyone. In the case

of the current study, each participating center trains a local

model for one epoch (that is, one pass on all the data) and

shares its model parameters with a central server (10). Once each

center has shared model parameters, model updates are

aggregated by the central server (Supplementary Figure S3). This

new aggregated model is then sent back to the centers for further

local training in the next epoch. This process continues until

convergence or a pre-specified number of epochs is reached.

The ensemblemodel approach is similar to combining votes from

a diverse group, where the final prediction is the most popular choice

(similar to how a majority vote wins an election). For the ensemble

model in this case, a local model is fitted on each center’s data. The

ensemble’s prediction for each patient is then formed by averaging

the predictions of each local model from all hospitals

(Supplementary Figure S4) (15). With this strategy, only hospital-

level models are transmitted between the centers.
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For all model development strategies, we fitted logistic

regression models with Least Absolute Shrinkage and Selection

Operator (LASSO) penalization. This approach results in

automatically selecting variables deemed predictive of the outcome.

2.2.1 Model recalibration
Table 1 provides a framework for summarizing, among others,

the aspect of model recalibration. Ensuring a model is well-

calibrated before its application in practice is critical. If a

decision is to be made based on a predicted probability from a

model, then the predicted probability should be as close as

possible to the true patient risk probability. This is what

calibration performance measures.

The recalibration aspect describes the addition of a final step to

the model derivation process, where recalibration of the intercept

and slope of the linear predictor is performed using the model’s

predictions on the training data. The derived recalibration

function is used thereafter whenever the model makes

predictions. Specifically, in recalibration, we align the true

outcomes from the different centers with their corresponding

model predictions followed by fitting the recalibration function.

This is done by fitting a logistic regression model in which the

predicted 30-day mortality probability is the sole covariate to

predict the true 30-day mortality outcome. As listed in Table 1,

recalibration could be done in a local, central, or federated

manner. In the local case, a recalibration function would be

learned for each individual hospital and then used for adjusting

model predictions for patients belonging to the corresponding
frontiersin.org
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hospital. In the central case, a single recalibration function would

be learned on the combined training dataset predictions from all

hospitals. In the federated recalibration approach, a federated

learning strategy (such as FedAvg) would be used to derive a

single recalibration function while also avoiding the need to

share the uncalibrated predictions between centers.

In our main analysis, we focused on the results from the FL

techniques with central recalibration and did not investigate

all options, such as learning the recalibration function in a

federated manner.
2.3 Candidate predictor variables

The TAVI dataset included variables for patient characteristics

(e.g., age, sex, and body mass index), lab test results (e.g., serum

creatinine), relevant medical history (e.g., chronic lung disease),

and procedure characteristics (e.g., access route and use of

anesthesia) (Supplementary Table S1). All 33 candidate

predictors were collected prior to the intervention. Threshold

values for the body surface area (BSA) were used in summarizing

patient characteristics.

In all model strategies, we used LASSO to perform automatic

variable selection. In the case of FedAvg, LASSO was first used

on each hospital dataset. Later, the selected predictors from each

hospital-local LASSO were aggregated via center-weighted voting

and a center agreement strength hyperparameter (Supplementary

Methods S1).
2.4 Experimental evaluation

We adopted two primary evaluation strategies to fit the type of

evaluation: a 10-fold cross-validation (CV) approach for the

internal validation and leave-center-out analysis (LCOA) for the

geographic validation.

In some cases, a hospital-local model could not be fitted due to

the insufficient number of records for the prevalence of outcomes.

We compared the performance of the local model to the other

models only in cases where a local model was successfully

derived and reported the cases where fitting a local model failed.

2.4.1 Cross-validation
For cross-validation, we first randomly partitioned the entire

dataset into ten equal subsets, stratified by the outcome. In each

iteration of the CV, we utilized nine subsets (90% of the records)

for model training and held out the remaining subset (10% of

the records) for testing. This process was repeated 10 times, each

with a different test set. In the case of local, FedAvg, and

ensemble, the entire dataset was first partitioned by hospital, and

thereafter each hospital dataset was randomly partitioned into 10

equal subsets stratified by the outcome.

2.4.2 Leave-center-out analysis
For the federated strategies, we conducted a LCOA for a more

robust external geographic validation (9). In this approach, we
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created as many train/test dataset pairs as there were hospitals in

the dataset. For each pair, the training set encompassed records

from all hospitals but one (the excluded hospital), while the test

set solely contained records from the excluded hospital. This

method allows us to evaluate how well each model performed

when applied to a new center.

2.4.3 Pooling results
In the context of CV, mean metric values and confidence

intervals (CIs) for a model were derived from the individual

metric results per test set. During this process, the predictive

performance of each model was computed separately for each

test set, generating 10 metric values. These 10 values were then

averaged to arrive at the mean pooled metric, and their standard

deviation was used to compute a 95% CI.

During the LCOA, performance was calculated per external

hospital and then pooled via random effects meta-analysis

(REMA) with hospital as the random effect to give a mean

estimate and 95% CI.

2.4.4 Performance metrics
Discrimination was evaluated using the area under the ROC

curve (AUC-ROC, henceforth referred to as AUC). The AUC

metric summarizes a model’s ability to discriminate between

events and cases. It involves sensitivity (also called recall in

information retrieval) and specificity across all possible threshold

values. Calibration was evaluated by the Cox method using the

calibration intercept and slope and their corresponding 95% CIs

(16). A model’s predictions were deemed to be miscalibrated if

either (1) the 95% CI for its Cox calibration intercept did not

contain the value zero (miscalibration by intercept) or (2) the

95% CI of its intercept did contain the value zero, but the 95%

CI for its Cox calibration slope did not contain the value one

(miscalibration by the slope) (16).

In addition, calibration graphs showing a model’s predicted

probabilities vs. the observed frequencies of positive outcomes

were drawn for visual inspection.

Net reclassification improvement (NRI) was calculated between

the predictions of any two models in either validation strategy (CV

and LCOA) (Supplementary Methods S2).

2.4.5 Significance testing
Bootstrapping with 3,000 samples was used to test for a

difference in (paired) AUCs between two prediction models (17).

This test was run per AUC of each test fold dataset during CV.

Analogously, the test was applied per AUC of each external

center dataset in the LCOA.

2.4.6 Sensitivity analyses
Apart from the main experimental setup, we considered two

additional modifications to it in the form of sensitivity analyses.

First, to see what effect the recalibration step was having on the

two FL approaches (FedAvg and ensemble), we evaluated their

performance without recalibration in a sensitivity analysis. In a

second sensitivity analysis, we excluded hospitals with a low

TAVI volume from the dataset and re-evaluated the models’
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performance results. In this case, we defined a low TAVI volume to

be any hospital that performed fewer than 10 TAVI procedures in

any year of operation after its first year.
2.5 Hyperparameter optimization

Hyperparameters for LASSO and FedAvg were optimized

empirically on the training data (Supplementary Methods S3).

For LASSO, we optimized the regularization parameter lambda,

while for FedAvg, we optimized on the learning rate, number of

training epochs, and variable selection agreement strength

(Supplementary Methods S1).
2.6 Handling of missing data

Variables with more than 30% missing values were not

included as predictors.

The remaining missing values were assumed to be missing at

random and were imputed using the Chain Equations (18). As

shown in Table 1, imputation was done on the center-combined

dataset for the central model, while for the other models,

imputation was handled separately per-center dataset. In both

validation strategies (CV and LCOA), missing values were

imputed separately on the training and test sets (further

information is provided in Supplementary Methods S4).
2.7 Fitting final models

From each of the four strategies, a “final” version of their model

was fitted using records from the complete dataset. We used the

resulting final models to report on and compare the predictor

variables selected by each model strategy. In the case of central

and FedAvg, the “final” model comprised of just one single

logistic regression model, while for local, the “final” model was a

set of h hospital-local models (where h is the number of

hospitals in the dataset). The ensemble produced a “final” model

comprised of h local models and one top-level model, which

averaged the predictions from the h hospital-level models.
2.8 Software

All statistical analyses were performed in the R programming

language (version 4.2.1) and R studio (version 2023.03.1). The

metamean function from the meta package was used for

conducting the REMA, and the roc.test function from the pROC

package was used for the bootstrap testing for the difference in

AUCs between two models. The “mice” package in R was used for

imputing missing values (mice version 3.14.0). All the source code

used in this analysis was documented and made openly available

on GitHub (https://github.com/tsryo/evalFL). Experiments were

carried out on a desktop machine with 16 GB of memory and an

i7-10700 2.9 GHz processor and took approximately 2 days to run.
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3 Results

The results in this section are structured into four sub-sections.

First, we provide summary statistics of the TAVI dataset and its

pre-processing. We then report on the models’ predictive

performance measures from cross-validation and LOCA. Third,

we report on selected predictor variables in each model type.

Finally, we present results from the sensitivity analyses. Figure 1

provides a graphical overview of the experimental setup,

methods, and key findings from our analyses.

Between 2013 and 2021, there were 17,689 patients with a

TAVI intervention in one of the 16 Dutch hospitals (labeled A–

P). In total, 1,028 patients lacked an outcome measurement;

therefore, these patients were excluded from the analysis.

The final TAVI dataset consisted of 16,661 records with an

average outcome prevalence of 30-day mortality of 3.4%. The

prevalence ranged from 1.2% to 5.8% between hospitals, with an

intra-quartile range (IQR) of 2.8%–3.9% (Supplementary

Table S2). From the list of all 33 candidate predictor variables,

only the variable of frailty status was excluded for having more

than 30% of its records missing.
3.1 Model performance

Predictive performance results for each model across both

internal validation (CV) and external validation (LCOA) are

reported in the following.

Due to the lower volume of TAVI records and low outcome

prevalence, fitting a hospital-local model failed in some iterations of

the CV analysis. From the 10 folds during CV, a local model could

not be fitted in 100% of folds in centers L and P, 90% of folds in

center M, 70% in center I, 60% in center K, 40% in N, 20% in C

and J, and 10% in centers F and O (Supplementary Table S3).

3.1.1 Discrimination
3.1.1.1 Cross-validation
The central model had the highest mean AUC during internal

validation (0.68, 95% CI: 0.66–0.70), followed by FedAvg (0.67,

95% CI: 0.65–0.68), ensemble (0.67, 95% CI: 0.66–0.68), and local

(0.65, 95% CI: 0.63–0.67) (Figure 2A, Supplementary Table S4).

Comparing model AUCs for significant differences with the

bootstrap method showed central to outperform local and

FedAvg in two (20%) and 1 (10%) out of 10 folds, respectively

(Supplementary Table S5). AUC results of local models ranged

from 0.52 to 0.84 across centers (Supplementary Table S6).

3.1.1.2 Leave-center-out
The meta-analysis pooled mean AUC from the LCOA was 0.68

(95% CI: 0.66–0.70) for the central model (Figure 2B,

Supplementary Table S4), and AUC values ranged from 0.62 to

0.76 between external centers (Supplementary Table S7). FedAvg

also had a mean AUC of 0.68 (95% CI: 0.65–0.70), and its AUC

values for the individual centers ranged from 0.56 to 0.80. For

the ensemble, the mean AUC was 0.67 (95% CI: 0.65–0.70), and

AUC values ranged from 0.46 to 0.76 between external hospitals.
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FIGURE 1

Graphical summary of the dataset used, prediction models considered, validation strategies employed, and main findings for the current study on 30-
day mortality risk prediction models for TAVI patients. Key questions are as follows: In the context of multicenter TAVI risk prediction models, what is
the impact on model performance from adopting two federated learning strategies (FedAvg and ensemble) compared to central and local-only model
strategies? Key findings are as follows: Both federated learning strategies (FedAvg and ensemble) had comparable performance, in terms of
discrimination and calibration, to that central models and outperformed the local-only models. Take-home message is as follows: Use of
federated learning techniques should be considered a viable option for TAVI patient clinical prediction model development.
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Bootstrap AUC testing from LCOA showed that both FedAvg

and ensemble outperformed central in one hospital (P)

(Supplementary Table S8). In another two centers (C and N),

FedAvg outperformed ensemble, and in one hospital (H), central

outperformed ensemble.

3.1.2 Calibration
Calibration performance results varied across the different

models and validation strategies.

Calibration graphs showed that all models suffered from over-

prediction in the higher-risk ranges. To better inspect the lower-

risk probabilities (found in the majority of the records),

calibration graphs for a model were visualized excluding the top

2.5% of highest predicted probabilities.

3.1.2.1 Cross-validation
From CV, all models showed miscalibration by slope when

evaluated via the Cox method, and only ensemble showed

miscalibration from its intercept (Figure 3A, Supplementary

Table S9). Central had a calibration intercept of −0.003 (95% CI:

−0.03 to 0.02) and a calibration slope of 0.89 (95% CI: 0.80–

0.98). Local models had a mean calibration intercept in CV of
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−0.01 (95% CI: −0.04 to 0.01) but had a poor calibration slope

of 0.54 (95% CI: 0.40–0.67). From the 14 hospitals where local

models could be fitted (88% of all the hospitals in the dataset),

miscalibration occurred in 13 of them (93%) (Supplementary

Table S10). For FedAvg, the calibration intercept was −0.04 (95%

CI: −0.07 to −0.02), and the calibration slope was 0.86 (95% CI:

0.78–0.93). Ensemble models showed a calibration intercept of

−0.04 (95% CI: −0.06 to −0.01) and a calibration slope of 0.89

(95% CI: 0.82–0.96). Calibration graphs of the four models

showed central to most closely resemble the ideal calibration

graph, followed by local (Figure 3A).

3.1.2.2 Leave-center-out
In the LCOA, the mean meta-analysis pooled calibration intercept

for the central model was −0.01 (95% CI: −0.16 to 0.15) and the

calibration slope was 0.88 (95% CI: 0.76–1.01) (Supplementary

Table S9). Miscalibration was detected in 44% of external

hospital validations for the central model (Supplementary

Table S11). In FedAvg, the calibration intercept was 0.01 (95%

CI: −0.16 to 0.18), the calibration slope was 1.04 (95% CI: 0.89–

1.19), and miscalibration occurred in 44% of the external

hospitals. The ensemble model had a calibration intercept of 0.01
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FIGURE 2

AUCs from cross-validation (A) and leave-center-out analysis (B) of
TAVI patient 30-day mortality risk prediction models. Next to each
model’s name, its mean AUC is given.

FIGURE 3

Calibration graphs from cross-validation (A) and leave-center-out
analysis (B) results. The calibration graphs are shown after
trimming the 2.5% highest predicted probabilities to focus on the
bulk of the sample. The legend shows the calibration intercept and
slope of each model, respectively, as obtained from the Cox
method (16). Mean values for cross-validation were obtained by
computing performance metrics on the combined predictions
from all corresponding test sets. An asterisk (*) is placed after the
names of the models where miscalibration was detected by way of
the Cox method, and a hat (^) symbol is placed if miscalibration
occurred in the calibration slope. The calibration intercept and
slope values shown in the legend are calculated from all the
predictions, including the 2.5% highest predicted probabilities.
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(95% CI: −0.14 to 0.16), the calibration slope was 0.97 (95% CI:

0.82–1.12), and miscalibration was seen in 38% of centers.

Similar to the calibration graph from CV, the calibration graph

in LCOA showed central to most closely follow the line of the ideal

calibration graph (Figure 3B).

3.1.3 Net reclassification improvement
NRI comparison results showed central models to outperform

the rest in predicting positive outcomes during CV and LCOA.

From CV, local models were superior to the rest for predicting

negative outcomes, while during LCOA, central models showed a

higher NRI than the rest for negative outcomes. In both CV and

LCOA, FedAvg beat ensemble in the case-negative group. In the

LCOA case-positive group, ensemble had a better NRI than

FedAvg. Full results from comparing model predictions using

NRI can be found in Supplementary Results S1.
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3.2 Predictors selected

From the final models fitted using the whole dataset, FedAvg

and ensemble both used the same set of 20 variables

(Supplementary Tables S12, S13).
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The hospital-local models used between 2 and 14 variables

(IQR 4–9). Selected variables occurring in at least 50% of all

local models were age, left ventricular ejection fraction (LVEF),

body mass index (BMI), BSA, and procedure access route. In the

case of two hospitals (L and P), no local model could be trained

due to insufficient TAVI record volumes with a positive outcome.

The central model selected 19 predictor variables

(Supplementary Table S12), which comprised 13 predictors

already selected by the other strategies, plus an additional 6 new

predictors [Canadian Cardiovascular Society (CCS) class IV

angina, critical preoperative state, dialysis, previous aortic valve

surgery, previous permanent pacemaker, and recent myocardial

infarction]. More information on the considered and selected

variables can be found in Supplementary Table S14.
3.3 Sensitivity analyses

In such an analysis, where the recalibration step from model

training was skipped for FedAvg and ensemble models, we saw

that both performed significantly worse in calibration but not in

AUC. In the second sensitivity analysis, where three low-volume

heart centers (P, O, and N) were excluded from the analysis, the

performance of the ensemble model remained mostly unchanged,

while AUC was negatively affected for the other models. From

this same analysis, an improvement was observed in calibration

during CV for FedAvg and a worsening for central was observed

during LCOA. Full results from the two sensitivity analyses are

available in Supplementary Results S2.
4 Discussion

4.1 Summary of findings

In this study, we investigated the performance of two FL

approaches compared to central and local approaches for

predicting early mortality in TAVI patients. We showed that

FedAvg and ensemble models performed similarly compared to a

central model. The hospital-local models were worse in terms of

average AUC compared to the other approaches.

Testing for AUC differences showed the central model to

outperform local and FedAvg models but not ensemble during

internal validation. The local models, however, did not

significantly outperform the federated ones, suggesting that the

AUC performance of FedAvg and ensemble lied somewhere

between that of the central and local models.

Central and federated models performed similarly well in terms

of calibration, whereas local model predictions were more

frequently miscalibrated. Furthermore, in two cases, the local

models could not be fitted due to the low number of positive

outcome records in their datasets. Although local models were

calibrated by design to their corresponding hospital-local training

datasets (Table 1), this was often not sufficient to produce a

good calibration on their corresponding test sets. While the

federated models may not have been calibrated by design, they
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offered more options for recalibration (such as global, local, or

federated recalibration). This could provide model developers

with more fine-grained control over tradeoffs between

maintaining data privacy and improving model calibration.

In the main experiments, the choice was made to use the

central recalibration strategy (as opposed to local or federated)

for the federated approaches. Although this approach requires

the sharing of patient outcome data and model predictions

between centers, it does offer the most promising recalibration

approach of the three options.

In terms of NRI, there was an observed improvement from

local to FedAvg and ensemble to central when looking at the

outcome-positive group of records during internal validation

(Supplementary Results S1).

When comparing the two federated approaches, it is difficult to

say that one strategy was better than the other, as both had strengths

and weaknesses. In terms of discrimination, FedAvg seemed to be

slightly superior to the ensemble model. For model calibration

during internal validation, FedAvg and ensemble showed near-

identical results; however, in the external validation, the ensemble

approach was miscalibrated in fewer external hospitals.

From an interpretability standpoint, the FedAvg model would

be preferred to the ensemble one, as it delivers a single

parametric model with predictor variables and their coefficients.

The ensemble, on the other hand would, comprise a list of

parametric models (which may not all use the same variables),

plus a top-level parametric model that combines the outputs

from the aforementioned list. While the ensemble model is not as

easily interpretable immediately, techniques like metamodeling

could be useful to bridge this gap (19).

It is worth noting that, although easily interpretable, the FedAvg

model was more costly to develop than the ensemble one regarding

computing resources. Depending on the number of hyperparameter

values considered, we saw that the training times for the FedAvg

model could easily become orders of magnitude larger than those

for the ensemble model. In the current experiments, we developed

our in-house frameworks for both federated approaches and

encountered more hurdles with the FedAvg strategy—these

included issues such as model convergence problems and the need

to use a more elaborate variable selection strategy, which

introduced the need for an additional hyperparameter.
4.2 Strengths and limitations

Our study has several strengths. It is the first study on

employing federated learning in the TAVI population and one of

the very few FL studies in cardiology. It is also based on a large

national registry dataset consisting of all 16 hospitals performing

TAVI interventions in the Netherlands. In addition, we provided

a framework (in Table 1) of the various important elements to

consider when adopting FL strategies in this context. We also

considered multiple aspects of predictive performance and

employed two validation strategies to prevent overfitting and

optimism in the results. Finally, two sensitivity analyses were

conducted to understand the robustness of our findings.
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Our research also has limitations. We looked at FL prediction

models for TAVI patients, considering only one outcome: the 30-

day mortality. However, early post-operative mortality is a

relevant and important clinical outcome in the TAVI patient group.

From a privacy perspective of local hospitals, we did not

evaluate additional techniques that could be used to preserve

patient privacy at local centers (such as differential privacy).

We also considered only one type of ensemble approach (mean

volume-weighted ensemble) and only one type of federated

aggregation approach (FedAvg),although a number of alternatives

are available in both cases (11, 20). Although relatively small, the

group of patients excluded from the analysis due to missing

outcome values could have somewhat biased our results in model

performance. Changes over time in TAVI intervention modalities

and patient selection protocols could also have impacted model

performance estimates (21).

Finally, we did not extensively tune hyperparameters, which

might have affected the performances of the FedAvg and

ensemble models (22).
4.3 Comparison with literature

Few studies have investigated the impact of FL in the

cardiology domain (23–25). In only one study, the authors look

at risk models for TAVI patients (23). In this study, Lopes et al.

developed non-parametric models for predicting 1-year mortality

after TAVI on a dataset from two hospitals. They compared

hospital-local model performance against that of federated

ensemble models and found the ensemble models to outperform

the local ones. Our findings on the ensemble model’s superior

performance align with the study by Lopes et al. However, we

expanded on their findings, first, by evaluating predictive

performance with a much larger number of hospitals (16 vs. 2);

second, by considering model calibration performance and NRI

in addition to AUC; third, by performing additional geographic

validation; and finally by considering a centralized model strategy

as a baseline in addition to local and federated ones.

Another study by Goto et al. looked at training FL models to

detect hypertrophic cardiomyopathy using ECG and

echocardiogram data from three hospitals (24). The authors

considered the AUC metric for discrimination and looked at

FedAvg and local hospital models. They reported that the FL

models outperform local models in terms of AUC, something we

also observed in the current study.

In other medical domains, FL models have previously been

evaluated on their performance compared to models derived

from non-FL techniques.

A similar study to ours that described the benefits of using

centralized models compared to federated and local ones is that by

Vaid et al. (26). In their study, the authors developed prediction

models for COVID-19 patient 7-day mortality outcomes and

reported that in five out of five hospital datasets, the models

derived from a central development strategy outperformed both

local and federated models in terms of AUC. This finding was

corroborated in our study for the local models but not for the
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federated models, which performed on par with the central ones.

Differences in the domain of application and in the datasets may

explain this. From inspecting the NRI of our models, however, it

became clear that the central models offered an improvement on

the federated ones, albeit not a statistically significant one. The

findings from Vaid et al. (26), namely, that local models tended to

underperform compared to central and federated models (in AUC

but also in calibration), align with our findings.

Sadilek et al. (2) looked at eight previous studies of prediction

models that used a centralized model approach and attempted to

reproduce these eight models with the modification of using FL in

their development strategies. From the eight models they

evaluated, only one looked at hospital as the unit of the

federation and reported a coefficient estimate for

extrapulmonary tuberculosis in individuals with HIV. This

coefficient differed significantly between the centralized and

federated approaches. However, in a different setting, we

observed similar findings with respect to the coefficients of our

federated and centralized TAVI risk models.
4.4 Implications and future studies

For clinicians wanting to adopt a federated learning approach

for developing prediction models for TAVI patients, our

recommendation would be to use the ensemble strategy if

predictive performance is most important, while the FedAvg

strategy should be considered if one is willing to sacrifice a bit of

model performance for better interpretability.

From the federated learning aspects overview (Table 1),

possible model strategy setup options were described. While we

attempted to make a comprehensive experimental setup, the

purpose of this study was not to evaluate all possible options

from this table. This methods’ overview could thus be further

used to guide an evaluation of how predictive performance

would change if one explored the various setup options.

Further studies should be done to refine the FedAvg and

ensemble models, focusing on the use of additional techniques to

enhance privacy-preservation and hyperparameter tuning (22).

The evaluation of model performance should also be considered

for other outcomes in addition to the 30-day post-operative

mortality, as well as for other FL models in addition to the two

types considered here. Future research could also investigate

further aspects of model predictive performance by incorporating

additional metrics, such as model’s sharpness, the area under the

precision-recall curve (AUC-PR), and the F1 score. In addition,

the questions of investigating model performance in terms of

scalability and computing resource requirements are important

and merit future research.

The limitation of fitting a local model in centers with an

insufficient number of case records emphasizes an issue that has

not been extensively covered. This area represents a potential

direction for future research to improve predictive modeling in

such contexts.

Our experiments focused on parametric models, or more

precisely models that use logistic regression. It is unclear whether
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the current findings would translate into federated learning for

non-parametric or deep learning models.

Performance variations observed across different models

emphasize the importance of selecting the appropriate model

development strategy for each individual setting. Finally,

examining the potential benefits and limitations of federated

learning in cardiology, in general, merits future research.
5 Conclusion

Both the FedAvg and ensemble federated learning models had

comparable AUC and calibration performance to the central risk

prediction model of TAVI patients. This suggests the FedAvg and

ensemble models are strong alternatives to the central model,

emphasizing their potential effectiveness in the multicenter dataset.

The heterogeneity in performance across different hospitals

underscores the importance of local context and sample size.

Future research should further explore and enhance these

distributed learning methods, particularly focusing on

the robustness of federated learning models across diverse

clinical settings.
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