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Patient-specific in silico 3D
coronary model in cardiac
catheterisation laboratories
Mojtaba Lashgari1, Robin P. Choudhury2 and Abhirup Banerjee1,2*
1Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford,
United Kingdom, 2Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of
Oxford, Oxford, United Kingdom
Coronary artery disease is caused by the buildup of atherosclerotic plaque in the
coronary arteries, affecting the blood supply to the heart, one of the leading
causes of death around the world. X-ray coronary angiography is the most
common procedure for diagnosing coronary artery disease, which uses
contrast material and x-rays to observe vascular lesions. With this type of
procedure, blood flow in coronary arteries is viewed in real-time, making it
possible to detect stenoses precisely and control percutaneous coronary
interventions and stent insertions. Angiograms of coronary arteries are used to
plan the necessary revascularisation procedures based on the calculation of
occlusions and the affected segments. However, their interpretation in cardiac
catheterisation laboratories presently relies on sequentially evaluating multiple
2D image projections, which limits measuring lesion severity, identifying the
true shape of vessels, and analysing quantitative data. In silico modelling,
which involves computational simulations of patient-specific data, can
revolutionise interventional cardiology by providing valuable insights and
optimising treatment methods. This paper explores the challenges and future
directions associated with applying patient-specific in silico models in
catheterisation laboratories. We discuss the implications of the lack of patient-
specific in silico models and how their absence hinders the ability to
accurately predict and assess the behaviour of individual patients during
interventional procedures. Then, we introduce the different components of a
typical patient-specific in silico model and explore the potential future
directions to bridge this gap and promote the development and utilisation of
patient-specific in silico models in the catheterisation laboratories.
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1 Introduction

Coronary artery disease (CAD) is a pathological process characterised by

atherosclerotic plaque accumulation in the epicardial coronary arteries. There are

several clinical manifestations of this disease, including chronic stable angina and acute

coronary syndromes. According to the World Health Organisation’s global health

estimates and global burden of disease data (estimates for 2019), CAD is the most

commonly diagnosed heart disease worldwide. It is estimated around 200 million people

are living with CAD, and it kills an estimated 9 million people each year (1).
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Investigation of CAD includes functional evaluations, such as

stress echocardiography, perfusion stress magnetic resonance

imaging, and nuclear scintigraphy in myocardial perfusion

imaging. In addition, computed tomography coronary angiography

and invasive x-ray angiography can be used to evaluate the

coronary arteries directly. Invasive x-ray coronary angiography is

particularly valuable in patients with more severe disease,

informing treatment decisions including the possibility of

revascularisation through percutaneous coronary intervention

(PCI) or bypass surgery. Coronary angiography provides high-

resolution images of the coronary arteries that are widely used for

stent implantation. It is often augmented with additional

techniques, such as pressure wire evaluation of fractional flow

reserve (FFR), intravascular ultrasound (IVUS), and intravascular

optical coherence tomography (IOCT).

Although x-ray angiography is one of themost invaluable tools, it

does have some drawbacks. First of all, it is an invasive procedure

with potential vascular injury, haemorrhage, and embolisation.

Furthermore, this procedure involves the use of x-ray contrast

media that can cause or exacerbate renal dysfunction and cause

adverse allergic reactions. For example, the US National

Cardiovascular Data Registry reported that 7.1% of patients

undergoing elective and urgent coronary intervention experienced

contrast-induced acute kidney injury (2). In addition, there are

issues of ionising radiation exposure for both the patient and the

operator (3). Finally, the interpretation of the angiographic images

is partially subjective and is prone to misinterpretation or variable

interpretation (4). It is estimated that 70% of treatment decisions

still depend on the visual assessment of angiographic stenosis

within clinical settings, which has limited accuracy (about

60%–65%) in predicting FFR < 0.80, as reported by Hae et al. (5).

To overcome such vagaries, additional physiological studies

including FFR or intravascular imaging are often utilised. For

example, Jones et al. (6)’s large observational study confirms that

IVUS and IOCT-guided PCI reduces in-hospital major adverse

cardiac event rates and improves long-term survival when

compared with standard x-ray angiography-guided PCI.

However, they are expensive and time-consuming (7).

Patient-specific in silico models have shown their capability to

enhance qualitative assessment by introducing quantitative

elements into the diagnostic, interventional, and prognostic

processes in different cardiovascular diseases (8–10). With in silico

techniques, coronary arteriography could be more accurately

assessed in real-time, with fewer views, less radiation, less contrast,

and easier administration, all of which would benefit clinical

practice. Using artificial intelligence (AI)-assisted in silico models,

cardiologists only need two series of x-ray angiography sequence to

generate the 3D structure of a coronary arterial tree, as shown by

(11), thus reducing the time of x-ray exposure and dye injection

while providing an accurate quantitative assessment. Additionally,

it offers the computation of haemodynamic metrics such as FFR

non-invasively, through blood flow simulation over the 3D

structure, using mechanistic (12, 13) or data-driven (14) approaches.

In this paper, we review the key components needed to create a

patient-specific in silico coronary model, as shown in Figure 1.

After acquiring comprehensive and high-quality x-ray
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angiography sequences of a patient, the coronary arteries can be

segmented using automated approaches discussed in Section 2.

Detailed anatomical 3D digital twins of the patient’s coronary

tree can then be generated using the techniques discussed in

Section 3. In the next steps, the digital twins of coronary arteries

can be used for blood flow simulations, detailed in Section 4,

which can be applied for computions of quantitative

haemodynamic metrics to detect coronary stenoses and assess

their severity (Section 5). Finally, Section 6 comprehensively

discusses how patient-specific in silico models can be utilised to

optimise the patientcare pathway in the catheterisation laboratory

(cath. lab.). The paper concludes in Section 7.
2 Coronary vessels segmentation

3D reconstruction of the coronary arteries, discussed in detail in

Section 3, often relies on the back-projection model-based methods,

which require accurate skeletal representation and radius of

coronary arteries as the inputs. The skeleton and radius of the

vessels are typically obtained by segmenting the blood vessels. This

section provides a comprehensive overview of different coronary

vessel segmentation methods used for this purpose.
2.1 Non-temporal methods

2.1.1 Traditional statistical and machine learning
based
• Image thresholding is a simple image segmentation method in

which grayscale images are turned into binary images by

categorising each pixel according to its intensity level

concerning a threshold value. To improve the result of image

thresholding in x-ray angiography, the coronary vessels are

usually enhanced by utilising different imaging filters (16–19).

• Vessel tracking is another form of segmentation that involves

extracting a path along a vessel from a designated starting

point (20). Some techniques focus on isolating individual

paths with defined start and endpoints, while others can

identify the entire vessel tree and adeptly manage vessel

branching (21–25).

• Edge detection identifies and extracts a set of points

representing changes in brightness on an image, commonly

referred to as an edge contour, arising from variations in

grayscale between vessels and the background (26–29).

• In region growing method, seed pixels are used to create

regions, and neighbouring pixels meeting specific criteria are

added to those regions (30). To improve the results of region

growing for vessel segmentation, different approaches have

been proposed such as incorporating directional information

(31–33), integrating with different methods such as random

forest (34), and variable searching method of the pixels (35).

• Graph-cut uses a graph model to represent the image, where

nodes represent pixels and edges represent the relationships

between pixels in a graph. It divides the image into segments

based on certain criteria, such as colour or intensity, to find the
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FIGURE 1

Overview of a patient-specific in silicomodel in the cath. lab. Adapted with permission from (15), © The Foundation Acta Radiologica 2021, https://doi.
org/10.1177/0284185120983977.
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optimal cut in the graph (36). Hernandez-Vela et al. (37), Sun

et al. (38), Mabrouk et al. (39) developed automated multi-scale

vessel extraction algorithms using the graph-cut method.

• Fuzzy inference uses the human-like reasoning style and offers

potent and adaptable universal approximations, allowing

interpretable IF-THEN rules (40). Sun et al. (41) used fuzzy

mathematical morphology operations to extract coronary

arteries, while Shoujun et al. (42) proposed a tracking

approach that relied on both probabilistic vessel tracking and

fuzzy structure pattern inference.

• In deformable models, a segmentation objective function

(or energy function) is optimised through the calculus of

variation. Image data constructs an energy function;

minimising it yields segmentation results. These models use

the original image for initial and boundary value problems.

The contour, initially set as the desired region’s boundary,

evolves based on geometric image regions (43). Different

variations of deformable models have been used for

coronary vessels segmentation, such as parametric active

contours (44, 45), geometric active contours (32, 46, 47),

gradient vector flow active contour (48), region-based active

contour (49), etc.
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• Methods based on machine learning models leverage intricate

algorithms and training on diverse datasets to enhance the

ability to discern intricate coronary vessels structures from a

complex background of x-ray angiography. The machine

learning methods used for coronary vessels segmentation

include marginal space learning paradigm and probabilistic

boosting trees (50), random forest (51), robust principal

component analysis (PCA) (52, 53), etc.

2.1.2 Neural network based
Neural networks, modelled after the human brain, consist of

interconnected neurons organised into layers. During training,

they adjust connection strengths between neurons to minimise

prediction errors using a method called backpropagation. Once

trained, neural networks make predictions by passing new data

through the network based on learned patterns. Success depends

on training data quality, network architecture, and parameter

selection. Neural networks generally segment images by

classifying pixels into specific categories, such as objects or

boundaries. This process involves leveraging patterns and features

within the image data to accurately delineate different regions.

One of the oldest applications of neural networks for identifying
frontiersin.org
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coronary vessels in x-ray angiograms was done by Sun (54),

pioneering the use of neural networks in medical imaging for

precise vessel localisation and analysis.

• Convolutional neural networks (CNNs), a type of deep

learning model, have been employed for tasks of coronary

vessels segmentation in multiple studies (55–58). CNNs, as

shown in Figure 2A, utilise layers to learn hierarchical features

through convolutional operations, pooling, and fully

connected layers, enabling automatic and adaptive spatial

feature learning from the input images.

• Encoder-decoder, illustrated in Figure 2B, is another type of deep

learning neural network used for coronary vessel segmentation

(59, 60). Encoding involves passing an image through a series of

convolutional and pooling layers, e.g., Figure 2A. In these layers,

spatial dimensions are downsampled while capturing the

important features, thus extracting hierarchical features while

condensing the input image. In the decoder, the spatial

dimensions are gradually reconstructed using upsampling

operations based on the feature map from the encoder.

• U-Net architecture, as shown in Figure 2C, is an example of

encoder-decoder architecture designed to segment images.

It was introduced by Ronneberger et al. (61) and has since

become a popular and effective neural network used for

coronary vessels segmentation (62–65). It is named after its

distinct U-shaped structure and differs from other encoder-

decoder networks because it uses skip connections to connect

the corresponding layers of encoding and decoding, thus

preserving fine-grained details during segmentation.

• Adversarial learning is another type of neural network applied

for coronary vessels segmentation (66). This network involves

training a model against adversarial examples generated to

deceive the model. The model learns to be more robust by
FIGURE 2

Overview of the basic neural network architectures used for coronary vesse
decoder; (C) U-Net; and (D) Generative adversarial network (GAN).
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experiencing and adapting to these adversarial inputs.

A popular branch of adversarial learning is generative

adversarial networks (GANs), which have been used for vessel

segmentation in x-ray angiography (67, 68). A GAN consists of

two structures, a generator and a discriminator, as presented in

Figure 2D. The generator generates data instances, while a

discriminator evaluates them. Both are trained simultaneously,

with the generator aiming to produce realistic data and the

discriminator aiming to distinguish between the real and

the generated data.

• Attention mechanism enables models to make predictions

while focusing on specific details of coronary vessels in images

(69). This mechanism is usually incorporated into various

deep neural networks such as encoder-decoder (70), U-net

(71), and adversarial network (66).

• Ensemble deep learning is intended to enhance the model’s

generalisation, robustness, and accuracy by leveraging the

diversity of multiple models. To improve the overall

performance of vessel segmentation, ensemble deep learning

models combine vessel predictions from multiple individual

neural network models such as combining style transfer with

dense extreme inception network and convolution block

attention (72), EfficientNet with U-Net (73), gradient-boosting

decision trees with deep forest classifiers (74), ensemble

encoder-decoder networks (75), U-Net with DenseNet-121

(76), and bi-directional ConvLSTM algorithm with U-Net and

DenseNet models (77).
More recently, advanced deep learning architectures namely

Nested U-Nets or UNet++ (78), graph neural network (79), etc.

have been utilised for acheiving state-of-the-art performance for

coronary vessels segmentation in x-ray angiography.
ls segmentation: (A) Convolutional neural network (CNN); (B) Encoder-
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2.2 Temporal methods

All the methods discussed in the previous subsection used a

single frame to segment the coronary vessels. Some studies in the

literature also utilised multiple invasive coronary angiography

(ICA) frames to capture temporal information for vessels

segmentation. These studies aimed at mitigating noise and

motion, enhancing overall contrast, and were robust to variations

in image quality, illumination, and other artifacts. Temporal

methods have been applied to improve segmentation quality over

a variety of techniques, including vessel tracking (80), region

growing (81), graph cut (82, 83), machine learning (84), as well

as neural network approaches of CNN (85, 86), encoder-decoder

(87), U-Net (88, 89), ensemble learning (90), etc.
3 3D reconstruction of coronary
arteries from ICA images

A patient-specific model relies heavily on 3D geometry of the

coronary vessels or the whole coronary arterial (CA) tree. This

helps cardiologists and medical professionals better understand the

anatomy, structure, and any potential abnormalities in the arteries

during the intervention, and guide catheters and devices to the

target area with greater accuracy. Additionally, the reconstructed

3D CA tree model allows for personalised treatment plans tailored

to the specific anatomy of the patient through simulating different

treatment scenarios, leading to optimised outcomes and reducing

the risk of complications. However, creating an accurate 3D model

of coronary arteries is a sensitive task and crucial to a successful

intervention as well as a personalised treatment plan. For example,

Solanki et al. (91) using arterial phantom models showed that

minor reconstruction errors led to clinically significant inaccuracies

in “virtual” fractional flow reserve (vFFR) computation.
FIGURE 3

Back-projection methods to reconstruct 3D coronary arteries: (A) Techniqu
centrelines in distinct 2D views and perform reconstruction through triang
response generate a 3D volumetric vesselness response from 2D vesselnes
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Çimen et al. (92) reviewed the leading methods for

reconstructing the 3D surface of coronary arteries using high-

contrast x-ray angiography. In this section, we explain briefly the

categories introduced by Çimen et al. (92) along with a brief

review of the most recent 3D CA tree reconstruction approaches.
3.1 Back-projection based methods

Though several different approaches have been proposed for

coronary artery reconstruction in the literature, back-projection

based methods remain the most common. Back-projection

methods fall into the model-based reconstruction categories,

which aim to create a 3D/4D binary model of coronary arteries,

typically comprising a centerline and sometimes the vessel

surface. In back-projection modelling, the CA tree is constructed

by projecting two-dimensional (2D) information derived from

ECG-gated projection images. There are two types of methods:

methods that rely on 2D feature matching and methods that use

back-projection of vesselness responses (92).

Methods based on 2D feature matching, depicted in

Figure 3A, begin by segmenting artery centerlines and identifying

key structures such as bifurcations within projection images.

Using epipolar geometry, correspondences between centerlines

are established between different views, and computer vision

algorithms are used to reconstruct 3D points representing the

CA tree. The accuracy of these methods relies heavily on

segmentation accuracy during centerlines extraction. Recently,

Çimen et al. (92) represented 3D coronary artery centerlines as a

mixture of Student’s t-distributions and performed a maximum-

likelihood estimation of model parameters using 2D x-ray image

segmentation. Unberath et al. (93) enhanced reconstruction

quality by effectively removing erroneously reconstructed points

on the centerline. Vukicevic et al. (94) used a robust genetic

algorithm optimiser to identify calibration parameters for x-ray
es relying on 2D feature matching establish correspondences between
ulation, (B) Approaches centered on the back-projection of vesselness
s responses for subsequent processing.
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angiography views. A partial-matching approach was applied to

establish correspondences between frames in x-ray acquisitions,

and the same matching method was applied to reconstruct vessel

centerlines efficiently. Galassi et al. (95) reconstructed the 3D

centerlines by intersecting surfaces from matching branches from

2D views. Then, the 3D luminal contours were created by

interpolating computed 3D boundary points with non-uniform

rational basis splines. In another work, Banerjee et al. (11) first

reduced angiographic motion artifacts for rigid and non-rigid

motion (96, 97), and then used an innovative point-cloud based

approach to 3D vessel centerline reconstruction by iteratively

minimising reconstruction error. These methods are beneficial to

non-calibrated systems since they can easily incorporate the

estimation of geometry parameters that relate to the projection

images used for reconstruction. The vascular start/end and

bifurcation points, which are extracted during segmentation, are

often used for this purpose. Although some works tried to match

these corresponding points (98–103), most of the 3D

reconstruction methods need clinicians to manually find these

corresponding points in the projected images.

In contrast, in methods based on back-projection of

vesselness responses, shown in Figure 3B, 2D projection images

are used to calculate vesselness responses, such as binary

segmentation (104), tubularity response (105), and distance map

to centreline (106). These responses are then back-projected

based on imaging geometry to generate 3D volumetric vesselness

responses. Following this, coronary artery reconstruction is

conducted using segmentation methods. One of the drawbacks of

these methods is that they may require more rotational x-ray

angiogrms in order to generate an accurate 3D reconstruction.
3.2 Forward-projection based methods

Another type of model-based reconstruction methods is

forward-projection that employs 3D models that adapt to vessel

structures in 2D x-ray projections. The forward-projection

reconstruction often relies on 3D parametric active contour

methods, where external and internal energy, computed from

images, are used to adjust 3D active contours (107–109). In CA

tree reconstruction, every artery branch has its active contour

model, which presents a challenge in designing energy

components. Cong et al. (107) compared common deformable

model based methods, namely potential energy (110), gradient

vector flow (111), and generalised gradient vector flow (112), on

a series of experiments on phantom and clinical data.
3.3 Tomographic reconstruction

Tomographic reconstruction creates coronary artery volumes

directly from x-ray coronary angiography images. As opposed to

binary model based reconstruction, it provides information on

x-ray absorption coefficients, as well. Due to the minimal

knowledge they require about the CA trees, these methods

accommodate atypical anatomies (e.g., collaterals, tortuous
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branches). As a result, they provide more detailed vessel surface

information without any preprocessing or manual inputs (113–115).

The drawbacks of these methods are they assume pre-

acquisition calibration of the x-ray imaging system and typically

require more x-ray images with wider angular coverage than

modelling based reconstructions. For coronary artery branches to

be visible, these methods require precise isocentering and

consistent injection of contrast. Moreover, they ignore the

propagation of contrast agents over time, assuming constant

contrast distribution over time. Finally, these approaches typically

require more computational resources than model based

reconstructions. Also, it is often necessary to hold breath during

coronary angiography to minimise respiratory motion to

reconstruct tomographic images (92).
3.4 3D+time (4D) model based
reconstruction

Model based methods can be extended to 4D coronary artery

reconstructions. The basic 4D strategy involves independent 3D

reconstructions for each cardiac phase, which requires vessels

segmentation for each phase. To avoid this, temporal constraints

which penalise differences between adjacent phases have been

utilised, and temporal correspondences have been established

through branch or tree-matching algorithms (116–118).
4 Simulation

The final component for completing the patient-specific model in

cath. lab. is to simulate hemodynamics in coronary arteries. The

patient-specific model of blood flow in the coronary arteries using

computed tomography has been well established due to fewer

challenges in the creation of a 3D model of coronary arteries

(12, 119). Some of the technological developments for blood flow

simulation using computed tomography can be used directly over

3D vascular models from x-ray angiography, as these methods are

often independent of imaging techniques. The following subsections

describe the developments for coronary blood flow simulation.
4.1 In silico flow computation approaches

The Navier-Stokes equations are a set of partial differential

equations that represent the physics of a fluid dynamic. However,

they are complex partial differential equations, which are difficult

to solve analytically and computationally expensive to simulate

accurately. There are two distinct approaches of mechanistic

modelling and data-driven modelling (Figure 4) to simulate

blood flow based on the Navier-Stokes equations, each with its

own set of characteristics and advantages.

4.1.1 Mechanistic approaches
This approach involves formulating mathematical equations

that represent these processes. This approach is commonly used
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FIGURE 4

Overview of in silico flow computation approaches.
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in fields where a deep understanding of the system is available, and

where the goal is to gain insights into the underlying processes,

optimise system performance, or test hypotheses. The

mechanistic models to solve Navier–Stokes equations can be

divided into four groups (12, 13).

(a) 3D models use numerical methods such as finite elements to

solve Navier–Stokes equations. Using this approach, circulation

geometry can be accurately represented, 3D pulsatile flow

(including turbulence) can be captured, and complex blood and

vessel material models can be incorporated (120).

(b) 1D models are created by averaging the Navier-Stokes

equations over a vessel’s cross-section. These models ignore

non-axial velocity components, assume an axial velocity

profile across locations of vessels, and maintain constant

pressure across the vessel cross-section. However, these

models are invalid near side branches, bifurcations, or

diseased segments, especially for serial lesions or lesions at

branches and bifurcations (120–123).

(c) The 0Dmodel or lumped parameter circulationmodel, developed

by Sagawa et al. (124), consolidates spatially varying properties

into discrete components. Considering the flow steady,

axisymmetric, unidirectional, and vessel segments as circular

cylinders, this model simplifies fluid resistance in vessels to a

single resistive element. It often results in a high level of

inaccuracy in blood flow in diseased coronary arteries, where no

steady or unidirectional flow occurs or no axisymmetry or

circular shape to vessel segments exist (122, 124–126).

(d) The hybrid models aim to reduce computational time while

providing more accurate simulation results. It includes a

combination of the different mechanistic approaches such

as 0D and 1D models (123, 125) and 1D and 3D models

(13, 127–129).

4.1.2 Data-driven approaches
Data-driven approaches extract patterns, relationships, or

trends from observed data without explicitly considering

underlying physical or mechanistic principles. The technique is

often used for modelling complex, unknown, time-consuming, or

difficult-to-model physical processes. There is, however, a lack of
Frontiers in Cardiovascular Medicine 07
sufficient training data for data-driven methods (130). To address

the lack of experimental data, two solutions exist: enhancing

deep learning through physics-based losses, known as physics-

informed neural networks (PINN) (131–134), or conducting

high-fidelity in silico simulations to implicitly make the model

sensitive to the underlying physics (135–139).

In the application of coronary blood flow using a large high-

fidelity dataset, Itu et al. (140) introduced a machine learning

model to predict fractional flow reserve (FFR), trained on a large

database of synthetically generated coronary anatomies with flow

parameters like velocity computed using the mechanistic

approaches. Carson et al. (141) compared the performance of

three AI models – feed-forward neural network (FFNN), long

short-term memory, and multivariate polynomial regression, to

measure FFR. Based on a 1D physics-based model, algorithms

were trained and compared on a single vessel, multi-vessel

network, as well as a virtual patient database, demonstrating the

outperformance of a FFNN over two other methods in all cases.

Gao et al. (142) proposed TreeVes-Net, a recurrent neural

network (RNN) that captures geometric details for blood-related

representation using a tree-structured representation encoder.

This tree-structured RNN creates long-distance spatial

dependencies, enhancing coronary flow modelling. Xie et al.

(143) suggested a physics-informed graph neural network for

FFR assessment, incorporating morphology and boundary

conditions as inputs to learn conditioned features. In another

work, Zhang et al. (144) proposed a PINN including a

morphology feature encoder and an attention network to

simulate the pressure and velocity along the centerline of the

vessels based on the morphology features of coronary arteries.
4.2 In silico flow computation based on
x-ray angiography images

Mechanistic model developed by Morris et al. (145), termed

virtual FFR (vFFR), was one of the first to accurately predict

coronary artery disease based on patients’ FFR using only x-ray

angiography images. The initial vFFR model necessitated over 24

hours of computation, employing a fully transient, 3D-0D coupled

model. Faster methods were introduced in 2017 (146) and 2023

(147), yielding results in just 3 min and less than 30 s, respectively,

while maintaining the accuracy of a full 3D model (148). Recently,

more studies have been developed to provide angiography-derived

FFR based on mechanistic modelling (149–156).

With Data-driven models, Zhao et al. (157), Xie et al. (143)

proposed deep neural networks based on CNN and graph

neural network to compute the FFR and coronary flow reserve

(CFR), respectively.
5 Quantitative hemodynamic metrics
for coronary artery assessment

Functional metrics for coronary lesion severity assessment can

be established through the development of patient-specific in silico
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models. Incorporating computational simulations with clinical data

allows to gain a more detailed understanding of the complex

dynamics inside coronary arteries, enabling better assessment

metrics. According to several studies (158–161), quantitative

measurements of arterial stenosis severity reduce unnecessary

surgeries and cardiac events in patients with coronary artery

disease. This section discusses the most important metrics used

for this purpose.

(i) Fractional flow reserve (FFR) traditionally has been used for

assessing the hemodynamics of coronary arteries. As part of

the cardiac catheterisation procedure, a special wire is

threaded through the coronary arteries, equipped with a

pressure sensor. FFR is then calculated by comparing blood

pressure before and after the stenosis as shown in Figure 5.

Using this ratio, clinicians can determine how much blood

flow to the heart has been impeded by the narrowing. FFR

can provide valuable insights into whether coronary stenosis

requires intervention, such as angioplasty or stent placement,

or can be treated medically (162).

(ii) Coronary flow reserve (CFR) is another diagnostic metric in

the decision-making process for coronary interventions. It is

calculated by comparing coronary blood flow during

maximal vasodilation and at rest. Three factors influence it:

vascular resistance in the small and large coronary arteries,

myocardial resistance, and factors that affect blood

composition. CFR provides valuable information for

evaluating coronary artery dilation ability and determining

whether coronary interventions are necessary (163). By

comparing the CFR of a stenotic coronary artery to a

reference segment, such as a non-stenotic segment or one

with minimal disease, relative CFR (rCFR) can be

calculated. It is particularly useful when evaluating the

functional implications of a coronary artery by comparing
FIGURE 5

Measuring blood pressure before and after stenosis.

Frontiers in Cardiovascular Medicine 08
the blood flow through a particular stenosis to that of

another less affected artery (158, 164, 165).

(iii) Index of microcirculatory resistance (IMR) was introduced

in 2003, where a pressure wire uses its sensor as a thermistor

and measures temperature. The tool functions as a

thermometer and measures the mean transit time of room-

temperature saline injected into a coronary artery using a

thermodilution curve. As part of the test, pressure and

temperature are measured in the heart’s small vessels, both

at rest and at maximum blood flow. It allows the clinician

to determine how well blood flows in the heart’s small

vessels (166–168).

(iv) Instantaneous wave-free ratio (iFR) is a test using a special

catheter to check the pressure in the heart’s blood vessels.

It looks at pressure during both the wave-free period and

the entire cardiac cycle. This helps doctors see how a

blockage affects blood flow. One of the advantages of iFR is

that it doesn’t need adenosine, a medicine used in other

tests to stress the heart and check blood flow (169–171).

(v) Resting full-cycle ratio (RFR) is a new index that is used to

evaluate the significance of coronary vessel lesions. In the

cardiac cycle, it is defined as the lowest ratio of distal

pressure to aortic pressure, measured at rest without the

introduction of hyperemia (172–174).

Table 1 summarises the quantitative hemodynamic metrics for

coronary artery assessment, along with the mathematical formula.
6 Discussion

The development of patient-specific models in the cath. lab.

can enhance patient care and improve outcomes in various ways.

A patient-specific model can provide detailed insight into
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TABLE 1 Summary of quantitative hemodynamic metrics for coronary
artery assessment.

Formula Usage
FFR ¼ Pd

Pp
To determine functional significance of a coronary stenosis
(162).

CFR ¼ Fh
Fr

To determine whether coronary arteries can dilate and
accommodate increased blood flow (163).

rCFR ¼ CFRStenosis
CFRReference

To evaluate the impact of a specific stenosis on blood flow
compared with a healthier or less affected reference region (158).

IMR ¼ Pd
Tmn

To provide information about the status of microcirculatory
resistance.

iFR ¼ Pdwave�free

Pawave�free
Similar to FFR, without the need to administer a hyperemic
agent, such as adenosine (169).

RFR ¼ Pd
Pa

Similar to FFR, without the need to administer a hyperemic
agent, such as adenosine (173).

Pd, pressure measured at the distal of a stenosis; Pp , pressure measured at the

proximal of a stenosis; Fh , coronary blood flow during maximal hyperemia; Fr ,

coronary blood flow at rest; Tmn , mean transit time of a specific flow and

temperature; Pdwave-free
, Pd measured at rest during a wave-free period;

Pawave-free
, Pa measured at rest during a wave-free period; Pa , aortic pressure.
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the anatomy and pathology of a patient’s vascular system. Clinicians

can use this information to plan and customise cardiac interventions

like angioplasty, stent placement, or other procedures. Furthermore,

physicians can anticipate challenges by simulating procedures on

patient-specific models before they are performed. In addition,

patient-specific models help with the selection and size of medical

devices, such as stents and catheters, based on accurate vessel

dimensions and measurements. Additionally, patient-specific

models enhance research by exploring new treatment strategies,

testing innovative devices, and understanding underlying physiology.

As illustrated in Figure 1, a variety of medical image analysis

methods should be employed to develop patient-specific models,

including segmenting coronary arteries, reconstructing 3D

geometry, and simulating blood flow to compute physiological

biomarkers to detect and assess stenosis severity. There are

potential sources of uncertainty in each stage of the modelling

process, which can potentially propagate to the subsequent

stages, resulting in an unreliable simulation result. For instance,

Solanki et al. (91) demonstrated that the errors arising from the

epipolar line projection method used to reconstruct 3D coronary

anatomy from x-ray angiography images are small but result in

clinically relevant errors in vFFR simulation, amounting to

approximately 40% of the total error associated with vFFR. In
TABLE 2 Summary of the best performance of different coronary vessels seg

Study Method Dataset size Di
Felfelian et al. (17) Thresholding 50 (Test) 72

Tsai et al. (24) Tracking 20 (Test) –

Mabrouk et al. (39) Graph-cut 91 (Test) 75

Lv et al. (46) Deformable model 4 (Test) 76

Jin et al. (52) PCA 223 (Test) 76

Zhu et al. (58) CNN 73 (Train), 36 (Test) 88

Iyer et al. (59) Encoder-decoder 370 (Train), 92 (Test) 86

Yang et al. (64) U-Net 2,642 (Train), 660 (Test) 89

Hamdi et al. (67) GAN 100 (Train), 50 (Test) 81

Tao et al. (70) Attention mechanism 104 (Train), 30 (Test) –

Gao et al. (74) Ensemble method 104 (Train), 26 (Test) 87
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the following paragraphs, we discuss the potential sources of

uncertainty at each stage of the analysis.

Segmentation: According to Table 2, deep learning methods

have significantly improved coronary vessels segmentation

accuracy. However, there exist three potential challenges that

limit the generalisation performance and result in discontinuity

in segmented vessels. The first challenge is the imaging artifacts

such as weak contrast between coronary arteries and the

background, unknown vessel tree shape, and shadows of

overlapping body structures. Secondly, due to the acquisition of a

complex 3D structure in 2D projection planes, the coronary

vessels overlap on x-ray angiography images, making

segmentation and vessel delineation difficult, especially in regions

where vessels are close together. Last but not least, the x-ray

angiography captures contrast agents flowing through vessels

during dynamic imaging. Hence, segmentation methods often

face challenges with temporal changes and vessel appearance

variations throughout the cardiac cycle. The recent advances in

AI and deep learning have shown promising results in addressing

some of these shortcomings, though they are often limited by the

training datasets.

3D reconstruction: In recent years, 3D reconstruction

methods for coronary arteries based on x-ray angiography have

gone through significant advances, though they still face some

challenges. First, the 3D surface reconstruction can be irregular

due to non-orthogonal contours to the vessel centerline and

difficulties defining its cross-sectional shape. The information

available from 2D x-ray angiography projections is often limited,

as they can only provide limited information at a finite number

of projection planes and may not provide a complete

representation of the vessel geometry. Secondly, movements in

coronary arteries mainly due to cardiac and respiratory motions

create difficulties in establishing correspondences between 2D

segmented vessels and, as a result, affect the vessel centerlines

reconstruction. Since correspondence is commonly based on

epipolar constraints, significant vessels overlap and

foreshortening may impact their performance.

The 3D vascular geometry can also be reconstructed using

IVUS and IOCT, which are both intravascular imaging

technologies to capture cross-sections of coronary arteries. In

contrast to x-ray angiography, IVUS and IOCT images reveal

external elastic membrane and plaque materials in addition to
mentation methods.

ce Sensitivity Specificity Precision Accuracy
.79 74.92 98.32 – 97.09

96.70 96.30 – 96.30

.60 76.60 – 77.60 –

.24 72.33 – 80.59 –

.97 71.25 83.95 – –

.40 87.30 – 90.10 –

.40 91.80 98.70 – 98.30

.60 89.30 – 90.60 –

.18 81.09 98.11 81.26 96.55

87.70 97.89 – 97.29

.40 90.20 99.20 85.70 –
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the coronary lumen. These approaches, however, are used to image

a single branch of non-bifurcated vessels, and they considerably

increase patient-care costs (175, 176). X-ray angiography, on the

other hand, provides a very accurate image of the entire coronary

arterial tree with minimal invasion, which makes it safer and

more useful for automated 3D reconstruction of coronary vessels.

Blood flow simulation: The development of sophisticated

computational fluid dynamics techniques has allowed researchers

to model blood flow in complex coronary arteries with greater

accuracy. There still exist some challenges and limitations.

Limitations in segmenting small or terminal vessels limit coronary

blood flow simulation in larger epicardial vessels. The boundary

conditions at the outlet of the terminal vessel approximate

downstream arterial circulation behaviour, and the lack of

segmenting terminal vessels leads to a wrong boundary conditions

assignment which invalidates assessment of the disease’s impact on

myocardial blood flow (177, 178). Gamage et al. (179) showed that

side branches downstream of stenosis result in a lower FFR, while

those upstream have minimal impact. Moreover, to estimate FFR

accurately, side branches with a diameter greater than one-third of

the main vessel diameter should be taken into account. In

addition, it is crucial to consider patient-specific boundary

conditions and the associated uncertainties. If the associated

parameters of the 3D inflow velocity profile cannot be specified,

the domain flow field can be significantly impacted (180). Further

research should try to calculate patient-specific boundary

conditions by estimating the blood velocity in coronary arteries

using cine x-ray angiographic sequence (181).
7 Conclusion

While coronary angiography remains a vital diagnostic tool in

the assessment of coronary artery disease, the limitations inherent

in the current interpretation methods call for a paradigm shift.

Patient-specific in silico models, with their ability to simulate and

analyse individualised data, present a promising avenue for

advancing interventional cardiology. By addressing the challenges

highlighted in this paper and accordingly embracing these

models in catheterisation laboratories, we can unlock the full

potential of in silico modelling. The integration of patient-specific

in silico models into routine practice has the potential to

revolutionise treatment optimisation, providing clinicians with

valuable insights and enhancing the precision of interventions.

Future research and development efforts should focus on

bridging the existing gap and promoting the widespread

adoption of these models in the cath. lab. settings.
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