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Cellular and extracellular
proteomic profiling of paradoxical
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stenosis myocardium
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Aims: Patients with severe aortic stenosis (AS), low transvalvular flow (LF) and low
gradient (LG) with normal ejection fraction (EF)—are referred to as paradoxical
LF-LG AS (PLF-LG). PLF-LG patients develop more advanced heart failure
symptoms and have a worse prognosis than patients with normal EF and high-
gradient AS (NEF-HG). Despite its clinical relevance, the mechanisms
underlying PLF-LG are still poorly understood.
Methods: Left ventricular (LV) myocardial biopsies of PLF-LG (n= 5) and NEF-HG
patients (n= 6), obtained during transcatheter aortic valve implantation, were
analyzed by LC-MS/MS after sequential extraction of cellular and extracellular
matrix (ECM) proteins using a three-step extraction method. Proteomic data
are available via ProteomeXchange with identifier PXD055391.
Results: 73 cellular proteins were differentially abundant between the 2 groups.
Among these, a network of proteins related to muscle contraction and
arrhythmogenic cardiomyopathy (e.g., cTnI, FKBP1A and CACNA2D1) was found
in PLF-LG. Extracellularly, upregulated proteins in PLF-LG were related to ATP
synthesis and oxidative phosphorylation (e.g., ATP5PF, COX5B and UQCRB).
Interestingly, we observed a 1.3-fold increase in cyclophilin A (CyPA),
proinflammatory cytokine, in the extracellular extracts of PLF-LG AS patients
(p < 0.05). Consistently, immunohistochemical analysis confirmed its extracellular
localization in PLF-LG AS LV sections along with an increase in its receptor,
CD147, compared to the NEF-HG AS patients. Levels of core ECM proteins,
namely collagens and proteoglycans, were comparable between groups.
Conclusion: Our study pinpointed novel candidates and processes with
potential relevance in the pathophysiology of PLF-LG. The role of CyPA in
particular warrants further investigation.
KEYWORDS

paradoxical low-flow low-gradient aortic stenosis, normal ejection fraction
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proteomics, transcatheter aortic valve implantation (TAVI)
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GRAPHICAL ABSTRACT
Introduction

Paradoxical low-flow low-gradient aortic stenosis (PLF-LG) is

a challenging clinical entity that affects approximately one-third

of patients with degenerative severe aortic stenosis (AS) and

appears to be more frequent in females and in older patients

(1, 2). PLF-LG patients develop more advanced heart failure

(HF) symptoms and have a lower survival rate than patients

with normal ejection fraction, high-gradient AS (NEF-HG) (3,

4). Unlike NEF-HG, PLF-LG patients show contradicting

echocardiographic parameters with a low mean aortic valve

gradient (Pmean) <40 mmHg despite the small aortic valve area

(AVA) <1 cm2, and a low stroke volume index (SVI) ≤35 ml/m2

in the setting of a normal left ventricular (LV) ejection fraction

(EF) ≥50%. This condition is mainly the result of pronounced

LV concentric remodeling, a small LV cavity, myocardial

fibrosis, elevated chamber stiffness and a restrictive filling

pattern (5). In addition, the presence of other confounders such

as uncontrolled systemic hypertension, mitral regurgitation and

atrial fibrillation influence the low-flow state, resulting in a

challenging assessment of the AS severity and potential delay of

the appropriate intervention. This may negatively influence

PLF-LG patient outcomes (6, 7). PLF-LG is also described as a

form of valvular HF with preserved EF, i.e., HFpEF of AS, due

to the high clinical and pathophysiological similarities between

the two entities (8). The treatment options for all different

hemodynamic subtypes of severe AS are generally limited to

valve replacement—the current gold standard therapy—to
Frontiers in Cardiovascular Medicine 02
mechanically unload the heart. With respect to PLF-LG, this

therapeutic intervention is associated with a relatively poor

clinical outcome as compared to other AS entities (9, 10),

which underscores the continuing need to improve

management strategies for these patients. For this, a better

understanding of the molecular differences between

hemodynamic subtypes of AS is essential. In recent years, major

effort has been made to develop an extensive diagnostic workup

using multiple diagnostic modalities and comprehensive clinical

data interpretation for the accurate identification and diagnosis

of PLF-LG (11, 12). Further research revealed that PLF-LG is

not the end stage of NEF-HG but rather a separate

hemodynamic entity characterized by progressive maladaptive

LV remodeling (13).

To date, the molecular mechanisms driving PLF-LG are still

poorly understood. This is to some extent due to the lack of

available pre-clinical models as well as the difficulties involved in

obtaining human myocardium samples. At the University

Medical Center Goettingen (UMG), we have access to LV tissue

samples from AS patients which were obtained during

transcatheter aortic valve implantation (TAVI) (4). For the

present study, we used these samples to analyze and compare the

proteomic profile in LV myocardium of PLF-LG vs. NEF-HG,

differentiating between the cellular and extracellular matrix

(ECM) proteome via a three-step extraction method as recently

described (14). The aim was to identify novel human targets and

processes involved in the pathophysiology of PLF-LG with a

distinct focus on the ECM proteins.
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TABLE 1 Patient characteristics.

NEF-HG
(n = 6)

PLF-LG
(n= 5)

P value

Demographics
Age (years) 83 ± 2.70 81 ± 3.30 0.562

Female, n (%) 5 (83.33%) 4 (80%) >0.999

BMI (kg/m2) 28 ± 1.61 29 ± 1.15 0.548

Echocardiography
LV EF (%) 60.98 ± 2.70 57.28 ± 4.36 0.473

SVI (ml/m²) 41.10 ± 2.37 26.64 ± 1.90 0.001

AVA (cm²) 0.71 ± 0.04 0.72 ± 0.06 0.965

Indexed AVA (cm²/m² BSA) 0.38 ± 0.02 0.37 ± 0.03 0.849

Vmax (m/s) 4.37 ± 0.17 3.19 ± 0.14 <0.001

Peak gradient (mmHg) 46.17 ± 4.81 23.60 ± 2.48 0.003

LVMI (g/m² BSA) 151.1 ± 15.0 107.6 ± 14.7 0.070

IVS (mm) 17.83 ± 0.65 13.80 ± 0.58 0.001

LVEDD (mm) 41.00 ± 2.64 41.60 ± 3.14 0.886

Laboratory measures
NT-proBNP (pg/ml) 4,203 ± 2,087 1,786 ± 619 0.389

Creatinine (mg/dl) 0.85 ± 0.08 1.10 ± 0.24 0.328

Medical history, n (%)
Hypertension 6 (100%) 5 (100%) >0.999

AF 2 (33.33%) 3 (60%) 0.567

CAD 3 (50%) 4 (80%) 0.545

Diabetes 2 (33.33%) 2 (40%) >0.999

NYHA II 1 (16.66%) 0 (−) >0.999

NYHA III 5 (83.33%) 5 (100%) >0.999
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Material and methods

Patients

The study population included patients with severe AS who

underwent transfemoral transcatheter aortic valve implantation

(TAVI) at the University Medical Center Goettingen, as was

recently described (4). Indication for TAVI was based on heart

team consensus according to current guidelines (15). At baseline,

transthoracic and transesophageal echocardiography (TTE and

TEE), 6-min-walking test (6mwt), Minnesota Living with Heart

failure Quality of life questionnaire (MLHFQ), New York Heart

Association (NYHA) status and plasma N-terminal pro-brain

natriuretic peptide (NT-proBNP) levels were recorded. Based on

the current guidelines (15, 16) and as recently described (4),

patients with an AVA ≤1.0 cm2, LV EF ≥50%, Vmax ≥4 m/s or

Pmean ≥40 mmHg were defined as NEF-HG, and those with an

AVA ≤1.0 cm2 and indexed AVA ≤0.6 cm2/m2, LV EF ≥50%,
Vmax <4 m/s, Pmean <40 mmHg and a SVI ≤35 ml/m2 were

categorized as PLF-LG. For this study, LV myocardial biopsies

from 5 PLF-LG and 6 NEF HG patients with NYHA classes II

and III were analyzed (Table 1).

This investigation conforms with the principles outlined in the

Declaration of Helsinki and was approved by the institutional ethics

committee (approval number: 10/5/16). All patients provided

written informed consent prior to participation in this study.

Cardiac amyloidosis
(Congo red staining)

0 (−) 0 (−) –

Continuous variables are expressed as mean ± SEM, and categorical variables as numbers

(percentages), Unpaired Student’s t-test (for continuous variables) and Fisher’s exact test (for
categorical variables) were used for statistical analysis. BMI, body mass index; LV EF, left

ventricular ejection fraction; SVI, stroke volume index; AVA, aortic valve area; BSA, body surface

area; Vmax, aortic jet velocity; LVMI, left ventricular mass index; IVS, intraventricular septum;

LVEDD, left ventricular end-diastolic diameter; NT-proBNP, N-terminal pro-B-type natriuretic
peptide; AF, atrial fibrillation; CAD, coronary artery disease; NYHA, New York Heart Association.

Parameters with significant differences across groups are labelled in bold.
Cardiac biopsy sampling

LV biopsies were performed as previously described (4).

Briefly, they were obtained during TAVI from the basal

anteroseptum using a biopsy forceps (Proflex-Bioptom 7 F,

Medical Imaging Systems). One of five biopsies was fixed for

24 h in 4% paraformaldehyde (Roti® Histofix 4%, Carl Roth),

washed with Dulbecco’s Phosphate-Buffered Saline (Gibco,

14190-094) and fixed with paraffin for subsequent histological

analyses. The other four biopsies were immediately preserved in

liquid nitrogen and kept at −80°C.
Proteomic profiling

For quantitative analyses of the cellular, newly synthesized

and/or loosely bound ECM, and core ECM proteome, frozen

cardiac biopsies from NEF-HG (n = 6) and PLF-LG (n = 5) were

consecutively incubated with 0.5 mol/L sodium chloride (NaCl),

0.08% sodium dodecyl sulfate (SDS), and 4 mol/L guanidine

hydrochloride (GuHCl) as previously described (14). Thus, from

each cardiac biopsy we were able to isolate newly synthesized

matrix proteins or loosely bound factors in the extracellular space

(using 0.5 mol/L NaCl) before the tissues were decellularized (using

0.08% SDS) and integral ECM components were solubilized

(using 4 mol/L GuHCl). Decellularization and ECM extraction

yielded three extracts per sample: NaCl (enriched with newly

synthesized and/or loosely bound ECM proteins), SDS (enriched
Frontiers in Cardiovascular Medicine 03
with cellular proteins) and GuHCl (enriched with insoluble,

highly integrated ECM proteins such as cross-linked collagens,

proteoglycans and glycoproteins). Of note, due to the very small

size of the obtained cardiac biopsies, protein extraction by NaCl

and GuHCl was unsuccessful for one NEF-HG sample, resulting in

an n-number of five (instead of six) for these analyses.

Digested samples from each extract were labeled with TMT10

plex Isobaric Mass Tag following the manufacturer’s instructions

(Thermo Scientific, 90406) and analyzed by liquid

chromatography coupled with tandem mass spectrometry (LC-

MS/MS). TMT labelling enables accurate quantification of

complex protein mixtures, allowing assessment of expression

changes across a wide dynamic range with excellent accuracy

(17). A summary of the three-step extraction method and TMT

labelling is illustrated in Supplementary Figure S1. Proteins were

searched by Proteome Discoverer software. To define ECM and

ECM-associated proteins in the NaCl and GuHCl extracts, the

web platform “The Matrisome Project”, i.e., an open access

database of core matrisome and matrisome-associated proteins

(18), was utilized. As shown in Supplementary Figure S2A, the

NaCl extracts were enriched with ECM/ECM-associated proteins,
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which were likely to be more soluble, in particular ECM-affiliated

proteins and secretory factors. In contrast, the strongly bound

ECM core proteins were predominant (68%) in the GuHCl

extracts (Supplementary Figure S2B), confirming the successful

overall coverage of the ECM components in the patient samples.

A detailed method description is available in the online

Supplementary File.

The mass spectrometry proteomics data included in this study

have been deposited to the publicly available ProteomeXchange

Consortium (19) through the PRIDE (20) partner repository with

the dataset identifier PXD055391. Data visualization and quality

assessment were performed using the PRIDE Inspector (21).
Histological analysis of endomyocardial
biopsies

Fixed biopsies were embedded in paraffin. Three μm paraffin

sections were stained using Masson’s trichrome (Sigma, HT15-

1KT) for assessment of myocardial fibrosis or Alcian blue

(Abcam, ab150662) to detect proteoglycans according to the

manufacturers` instructions. Myocardial fibrosis was assessed by

the same operator blinded to study groups and to clinical data

using quantitative morphometry (Olympus Software cell-Sens

1.6). For immunohistochemistry, sections were deparaffinized and

hydrated through graded series of ethanol. Antigen retrieval was

performed by high temperature treatment with citrate buffer,

pH = 6.0 (Dako, S2369) in a microwave. The slides were

extensively washed with distilled water and the endogenous

peroxidase was inhibited with 0.3% H2O2. Sections were rinsed

with 1× PBS and then blocked with normal horse serum. Slides

were incubated overnight at 4°C using either an anti-Cyclophilin

A (Abcam, ab58144, 1:100), or an anti-EMMPRIN (Abcam,

ab108308, 1:100) primary antibody. The following day, slides

were rinsed in PBS and incubated in a horse anti-mouse/rabbit

biotinylated IgG secondary antibody (VECTASTAIN Elite ABC

Kit, Vector Laboratories, PK-6200). Sections were rinsed again,

then incubated with an avidin/biotinylated enzyme complex

(VECTASTAIN Elite ABC Kit, Vector Laboratories, PK-6200),

rinsed again, and incubated with the 3-Amino-9-Ethylcarbazole

(AEC) substrate chromogen (Sigma, 958D-30) for 5 min. The

sections were then counterstained with hematoxylin (Vector

Laboratories, H-3404), rinsed in tap water, and finally mounted

in permanent mounting media. All sections were stained in the

same histological sample run.
Statistical analysis

Statistical analyses were performed with GraphPad Prism

version 7.03 (GraphPad Software, Boston, USA). Two-tailed

unpaired Student’s t-test and Fisher’s exact test were used where

appropriate. All experiments were performed and analyzed in a

blinded design, and data are presented as mean ± SEM unless

otherwise noted. The criteria for identifying differentially abundant

proteins (DAPs) between the investigated groups varied based on
Frontiers in Cardiovascular Medicine 04
the type of extracts analyzed. DAPs were identified based on an

adjusted p-value < 0.05, with fold changes ≥1.2 or ≤0.86 in the

cellular extracts, and ≥1.1 or ≤0.9 in the ECM extracts (NaCl and

GuHCl). Identification of ECM proteins in the NaCl and GuHCl

extracts was done using a web platform (http://matrisomeproject.

mit.edu/; last accessed on 17th July 2023) (18). Network analysis

was constructed by STRING (https://string-db.org/; last accessed

on 15th August 2023). Network visualization was carried out

using the Cytoscape version 3.9.0. The protein-protein interaction

network for the differentially abundant proteins was created

utilizing the Cytoscape stringApp (22). Identification of network

subclusters was performed using the Markov Clustering (MCL)

algorithm implemented in the clusterMaker2 Cytoscape app (23).

Functional overrepresentation analysis for the differentially

abundant proteins was carried out using the R version 4.2.2.

(https://www.R-project.org/; last accessed on 15th August 2023)

and the enriched gene ontology (GO) function from clusterProfiler

package version 4.2.2 (24). GraphPad Prism version 7.03

(GraphPad Software) was used to generate volcano plots.
Results

Patient characteristics

The demographics and clinical characteristics of patients

included in the proteomic analysis are shown in Table 1.
Cellular proteomic profiling in PLF-LG

Analysis of the cellular proteome in the SDS extracts yielded

1,689 proteins with at least two unique peptides per protein in

each sample. By global statistical analysis, the quantified protein

list was reduced to 73 differentially abundant proteins (DAPs)

with a p value < 0.05 and a fold change cutoff of ≥1.2 increase or

≤0.86 decrease between the two groups. Of these DAPs, 50

proteins were upregulated and 23 proteins were downregulated in

PLF-LG compared to NEF-HG (Supplementary Excel S1). The

DAPs distribution, i.e., up- and downregulated in PLF-LG vs.

NEF-HG, is presented as a volcano plot in Figure 1A. Subsequent

GO analysis of downregulated proteins in PLF-LG demonstrated

that these were mainly localized in the sarcolemma, intercalated

disc and cell-cell contact zone (Figure 1B). In contrast, no GO

terms were found to be enriched among the upregulated proteins.

To gain further insight into the biological relevance of the DAPs,

a network analysis was performed. About 68.5% of the DAPs

were connected by direct or indirect interactions, forming ten

major clusters. The largest cluster consisted of 24 protein nodes,

including cardiac troponin I (cTnI), prolyl isomerase FKBP1A

(FKBP1A), sarcolemmal membrane-associated protein (SLMAP),

Delta-sarcoglycan (SGCD) and voltage-dependent Ca2+ channel

subunit alpha-2/delta-1 (CACNA2D1), which suggests that

processes such as muscle contraction, ion transport and calcium

signaling are involved (Figure 1C).
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FIGURE 1

Proteomic profiling of cellular protein extracts from PLF-LG and NEF-HG patients. (A) Volcano plot of the quantified TMT labelled cellular proteins
following SDS extraction. The X-axis represents the log2 fold change ratio (PLF-LG/NEF-HG) plotted against its significance level (p value). The
blue and the grey dots represent the up- and downregulated proteins in PLF-LG vs. NEF-HG. n= 5 (PLF-LG) and 6 (NEF-HG). Proteins of interest
with essential cardiac functions are additionally highlighted as red dots. (B) GO cellular component enrichment analysis of downregulated proteins
in PLF-LG vs. NEF-HG. Y-axis represents the enriched GO terms, X-axis the number of downregulated DAPs. The color indicates the p value
following Benjamini-Hochberg correction. (C) Protein-protein interaction network of differentially abundant proteins (DAPs) in PLF-LG vs. NEF-
HG. Network nodes represent proteins and edges reflect physical and/or functional interactions of proteins. Node color reflects the protein
abundance ratio (log2 fold change) ranging from low (blue) to high (red). Node size is proportional to node degree (i.e., number of edges adjacent
to the node). Border color indicates cluster membership of each node.

Elkenani et al. 10.3389/fcvm.2024.1398114
ECM proteomic profiling in PLF-LG

To evaluate the ECM content, cardiac biopsies were first

stained for Masson’s trichrome and alcian blue to quantify the

level of ECM protein accumulation, in particular collagens

(cardiac fibrosis) and proteoglycans, respectively. In line with

previous studies (4, 25), no difference in total fibrosis between
Frontiers in Cardiovascular Medicine 05
NEF-HG and PLF-LG could be detected (4.50 ± 1.765 vs. 6.80 ±

3.121; p=0.519) (Figures 2A,B). The amount of accumulated

proteoglycans was also comparable in both groups as shown by

alcian blue staining (16.03 ± 2.542 vs. 14.63 ± 3.550; p = 0.757)

(Figures 2C,D), indicating no major difference in the core

abundant ECM content (collagens and proteoglycans) between

the two groups.
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FIGURE 2

ECM proteomic profiling in LV biopsies from PLF-LG and NEF-HG patients. (A) Representative histological sections using Masson’s trichrome staining
(MTS) to assess fibrotic regions (blue). Scale bar: 100 μm. (B) Quantification of fibrotic area (% area). Data are presented as mean± SEM, unpaired
Student’s t-test was used for statistical analysis, n. s., not significant. (C) Representative images of alcian blue staining showing proteoglycan
accumulation (blue color). Scale bar: 50 μm. (D) Quantification of total accumulated proteoglycans (% area). Data are presented as mean± SEM,
unpaired Student’s t-test was used for statistical analysis, n. s., not significant. (E) Volcano plots of the NaCl extraction. The X-axis represents the log2
fold change ratio (PLF-LG/NEF-HG) plotted against its significance level (p value). The blue and the grey dots represent the up- and the downregulated
proteins in PLF-LG. n=5 (PLF-LG) and 5 (NEF-HG). Proteins of interest with essential cardiac functions are additionally highlighted as red dots.

Elkenani et al. 10.3389/fcvm.2024.1398114
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FIGURE 3

Analysis of non-ECM protein in the extracellular extracts (naCl and guHCl) in PLF-LG. Further analysis was performed in results from NaCl extracts. Bar
graphs show the top ten most enriched GO terms of biological process category (A), cellular component category (B), and molecular function
category (C) Y-axis represents the enriched GO terms; X-axis represents the number of downregulated DAPs in each term. The color indcates the
p value following Benjamini-Hochberg correction. (D) Volcano plots of the GuHCl extraction. The X-axis represents the log2 fold change ratio
(PLF-LG/NEF-HG) plotted against its significance level (p value). The blue and the grey dots represent the up- and the downregulated proteins in
PLF-LG. Proteins of interest with essential cardiac functions are additionally highlighted as red dots. (E) Violin plot of CyPA abundance level in
PLF-LG vs. NEF-HG. Dashed line indicates median; dotted lines indicate quartiles. Unpaired Student’s t-test was used for statistical analysis;
*p < 0.05 between the groups. n= 5 (PLF-LG) and 5 (NEF-HG).

Elkenani et al. 10.3389/fcvm.2024.1398114
Furthermore, a bioinformatic analysis and filtering of ECM

extracts, i.e., obtained via NaCl and GuHCl, through

MatrisomeDB (18), a comprehensive database platform for ECM-

derived protein identification, were performed. Consistent with

the histological analyses, differences in newly synthesized and/or

loosely bound ECM proteins (i.e., NaCl-extracted proteins) and

integral ECM proteins (i.e., GuHCl-extracted proteins) were less

evident between the groups. Only four ECM/ECM-associated

proteins were significantly altered in the NaCl extracts between

the two groups: thrombospondin 4 (TSP-4), serpin peptidase

inhibitor (SerpinE2), fibril-associated collagen with interrupted

triple helices (FACIT) XII (COL12A1) and host cell factor 1

(HCF-1) (Figure 2E, Supplementary Table S1). Interestingly,

none of the DAPs (n = 33) in the GuHCl extracts were identified

as ECM/ECM-associated proteins (Supplementary Excel S2 and

Table S2). Instead, abundances of the identified core ECM

proteins in the GuHCl extracts [e.g., versican, biglycans, collagen

alpha-2(V) chain, periostin, and fibrillin-1] were comparable

between the groups (Supplementary Excel S2 and Table S2).

Since the ECM also contains soluble proteins (e.g., growth factors

and cytokines) that direct cellular recruitment and regulate gene

transcription (26), we focused on identifying and quantifying non-

ECM proteins that reside in the interstitial space and are important
Frontiers in Cardiovascular Medicine 07
contributors to LV remodeling. Analyses of NaCl extracts revealed

238 non-ECM proteins with a significant variation in abundance

between PLF-LG and NEF-HG (details of the complete list of

significant altered proteins are provided in Supplementary Excel

S3). Interestingly, GO enrichment analyses of upregulated proteins

(n = 106) in PLF-LG patients could be related to mitochondrial

function, including ATP synthesis, electron transport chain and

oxidative phosphorylation (e.g., ATP5PF, COX5B, COX7C,

NDUFS5, NDUFA8, FXN and UQCRB) (Figures 3A–C). No GO

term enrichment was observed for the downregulated proteins

(n = 132). With respect to the non-ECM proteins in the GuHCl

extracts, only 33 DAPs between the groups were found as

previously mentioned, resulting in a lack of GO term enrichment.

Among these DAPs, antioxidant proteins such as thioredoxin

(TXN), peroxiredoxin-1 (PRDX1) and the pro-inflammatory

cytokine cyclophilin A (CyPA), were found to be upregulated in

the GuHCl protein extracts of PLF-LG patients (Figure 3D).
CyPA secretion in the ECM of PLF-LG

Interestingly, we found that CyPA, an intracellular protein (27),

was markedly upregulated in the GuHCl extracts of the PLF-LG
frontiersin.org
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FIGURE 4

Subcellular myocardial localization of cyclophilin A (CyPA) and its receptor emmprin in PLF-LG and NEF-HG. Representative histological images
showing LV myocardial sections immunostained for CyPA (A) and Emmprin (B) Positive immunolocalization for CyPA and Emmprin is indicated by
brown staining, and histology/nuclear localization is indicated by blue-violet hematoxylin counter stain (n= 5/group).
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patients (1.3-fold higher vs. NEF-HG, p = 0.03) as shown in

Figure 3E), but no significant differences were detected in the SDS

extracts (p = 0.69, Supplementary Excel S1), indicating that while

the cytosolic CyPA levels remained comparable between the two

groups, the extracellular CyPA protein levels were elevated in PLF-

LG patients. To further investigate this, we performed

immunohistochemical staining for CyPA in PLG-LG and NEF-HG

LV sections. In line with the proteomic data, we found increased

levels of CyPA in PLF-LG with a different distribution than in

NEF-HG. In NEF-HG LV tissue, CyPA was found to be localized

predominantly in the cytosol, but in PLF-LG samples

accumulations of CyPA were diffuse at the cytosolic and the ECM

levels (Figure 4A). We also evaluated the expression of Emmprin

(or CD147), the extracellular receptor for CyPA. In line with our

CyPA results, expression of Emmprin was also increased in the

PLF-LG as compared to the NEF-HG samples (Figure 4B).
Discussion

Distinct differences in the pattern of LV hypertrophy and

cardiac dysfunction in response to different hemodynamic
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subtypes of AS have been previously described (4, 7), yet the

differences in their molecular composition are still poorly

understood. With respect to PLF-LG, the presence of unique

clinical findings in the context of severe AS, low SVI despite a

normal EF, indicate specific pathophysiological mechanisms.

These need to be identified in order to develop disease paradigms

and new therapeutic strategies for this particular pathological

condition (28, 29). Due to the similar clinical presentation, it may

be speculated that at least some of these mechanisms may also

play important roles in diastolic HF, i.e., HFpEF (8).

In order to get a comprehensive perspective on the changes in

myocardium proteome of patients with PLF-LG disease vs. NEF-

HG, we combined an ECM enrichment procedure with a highly

multiplexed quantitative MS approach. A major strength of this

methodology is that it allows expanded coverage and resolution

of ECM proteins as well as a high-throughput, deep proteome

profiling of complex biological samples.
Alterations in Ca2+ signaling proteins

Diastolic dysfunction is a prominent feature in PLF-LG

patients and is predictive of all-cause mortality (30). Beside titin
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modifications and myocardial fibrosis, altered diastolic Ca2+

hemostasis is a key factor in development and progression of

diastolic chamber stiffness and diastolic dysfunction. Cardiac

troponin I (cTnI), the inhibitory subunit of the troponin

complex, is a key regulatory protein in cardiac muscle

contraction and relaxation. Experimental models with loss or

mutations in cTnI have been associated with impaired relaxation

and diastolic heart failure due to an increased myofibril

sensitivity to calcium (31, 32). Alterations in sarcolemma

proteins such as delta-sarcoglycan (SGCD), a member of the

dystrophin-associated protein complex, also increase myofilament

Ca2+ sensitivity, leading to diastolic dysfunction and

cardiomyopathy (33, 34). Our proteomic analysis revealed a

significant reduction of cTnI and SGCD levels in LV cellular

extracts of PLF-LG vs. NEF-HG patients. These reductions may

contribute to the diastolic impairment often observed in PLF-LG

patients. In a larger study setting, it would be of great interest to

assess whether the respective reductions of cTnI and/or SGCD

protein levels may be associated with HFpEF development.
Voltage-gated ion channels

The top abundant protein in the PLF-LG group was the prolyl

isomerase FK506 binding protein (FKBP) 1A, also known as

FKBP12.0, a member of FKBP family. It was previously shown

that FKBP1A binds to cardiac ryanodine receptors (RyR2) and

plays an important role in regulating its function (35). Enhanced

expression of FKBP1A in isolated rabbit ventricular

cardiomyocytes altered Ca2+ spark kinetics and increased

sarcoplasmic reticulum (SR) Ca2+ content without affecting the

Ca2+ transient (35). This finding is in contrast to the FKBP1B

isoform (also known as FKBP12.6), which stabilizes the RyR2

and enhances the contractility upon overexpression (36, 37). In

line with these findings, a recent study observed that mice with

cardiomyocyte-restricted FKBP1A overexpression experienced

enhanced arrhythmic propensity that resulted in sudden cardiac

death (38). Paroxysmal atrial fibrillation (AF) was also

documented in mice with cardiomyocyte-specific FKBP1A

overexpression (39). Several studies have reported a high

prevalence of AF in PLF-LG patients (2, 4, 40), so it is possible

that FKBP1A is mechanistically involved.

SLMAP, one of the T-tubules and SR components, was among

the top downregulated proteins in PLF-LG. SLMAPmutations have

been described in Brugada syndrome (BrS), which results in

impairment of the Nav1.5 trafficking, culminating in decreased

peak INa density (41). Therefore, decreased SLMAP and

increased FKBP1A may contribute to the arrhythmogenic

phenotype seen in PLF-LG patients. Moreover, recent findings

suggest that pathogenic mutations in CACNA2D1 may mediate

AF and contribute to BrS (42–44). Our data showed decreased

CACNA2D1 in myocardial samples of PLF-LG patients, meaning

that its loss might influence the arrhythmic risk in this group.

Overall, these results indicate that PLF-LG patients exhibit

profound dysregulation of ion homeostasis and are thus

vulnerable to arrhythmias.
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ECM proteome

Our study showed less striking differences in the ECM

proteome between the PLF-LG and the NEF-HG subtypes of AS.

In the NaCl fractions, TSP-4 and Serpin E2 were differentially

abundant between the investigated groups. TSP-4, a secreted

anti-fibrotic ECM protein, was significantly downregulated in the

PLF-LG patients. A reduction in TSP-4 has been shown to

induce ECM deposition following cardiac pressure overload

(45, 46). Similarly, SerpinE2 was also downregulated in our

PLF-LG LV samples. SerpinE2 is a matrix remodeling protein

that inhibits certain serine proteases which play important roles

during the process of ECM degradation (47). The decreased

TSP-4 and SerpinE2 in PLF-LG myocardium might contribute to

the increased ventricular stiffness and the impaired diastolic

function observed in those patients (5, 48).

The FACIT-type collagen 12A1 is thought to modulate

organization and mechanical properties of collagen fibril bundles in

tissues under biophysical stress (49). Host cell factor-1 (HCF-1) is

a transcriptional co-regulator essential for basic cellular processes,

including transcriptional regulation and cell cycle progression (50).

Whether the differential decrease and increase of collagen 12A1

and HCF-1, respectively, as observed in this study, would affect the

ECM integrity in PLF-LG hearts remains to be determined.

ECM protein accumulation, particularly the interstitial

collagens, has been considered as a major determinant of tissue

stiffness (51). In the GuHCl fractions, highly integrated ECM

proteins such as collagens and proteoglygans were not altered

between the PLF-LG and NEF-HG cases. This is in line with our

histological analyses, which revealed comparable levels of LV

fibrosis and proteoglycan accumulation. However, the functional

impact of myocardial fibrosis extends beyond the mere quantity

(i.e., severity of the deposition) to also include the quality (i.e.,

collagen phenotype shift and degree of cross-linking within

collagen fibrils (52). In fact, tissue rich in collagen I is

characterized by strength and stiffness, while those abundant in

collagen III display enhanced elasticity. Furthermore, increased

collagen cross-linking is likely to reduce tissue distensibility (53).

In addition to cardiac fibrosis, post-translational modification of

titin, a large sarcomeric protein, also plays a crucial role in

determining myocardial passive stiffness. Gotzmann et al.

reported titin-hypophosphorylation (at the elastic N2Bus domain,

at residue S4185), albeit non-significantly, in the PLF-LG AS

patients. This was associated with a significant shift in the titin

isoform towards the more compliant N2BA variant; however, this

shift might be a compensatory mechanism to counteract the

increased myocardial stiffness resulting from the cardiac fibrosis

or titin-hypophosphorylation (25). Furthermore, acetylation of

titin was recently reported to be associated with myocardial

stiffness in HFpEF animal models (54) but there is limited

knowledge regarding titin acetylation in PLF-LG AS patients.

Additionally, we cannot rule out the possibility that increased

diastolic Ca2± may promote diastolic cross-bridge interactions,

thereby contributing to an increase in diastolic stiffness (55).

Ultimately, it is worth noting that the LV geometry, particularly

the concentric hypertrophy observed in PLFLG patients itself
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may influence the diastolic stiffness (56). This gap in

understanding highlights a potential area for further research

into the molecular mechanisms affecting cardiac function in the

PLF-LG AS group.

Given the minimal differences observed between the two

groups in the core ECM proteins, our attention was redirected

towards the less abundant ECM components and secreted

proteins in the extracellular space. These are also important

contributors to LV remodeling, but their precise roles are less

explored. Since all ECM extracts were labelled with TMT, we

were able to obtain quantitative accurate data for low abundant

proteins that could be missed in label-free approaches (57).

Indeed, we found accumulation of proteins related to oxidative

stress in the PLF-LG biopsies vs. NEF-HG, as discussed below.
Oxidative stress and CyPA

Oxidative stress is a key denominator in the pathophysiology

of AS and directly promotes osteogenesis in valvular tissue

(58, 59). In cardiomocytes, growing evidence suggests that

oxidative stress and mitochondrial dysfunction can lead to the

release of mitochondrial constituents into the extracellular milieu

through mitochondrial extracellular vesicles (60, 61). In PLF-LG

extracellular extracts, we found increased levels of mitochondrial

proteins involved in oxidative phosphorylation and ATP

synthesis, which may point to enhanced ROS production and

oxidative stress. In line with this hypothesis, antioxidants such as

thioredoxin and peroxiredoxin1 were significantly increased in

PLF-LG extracellular extracts, indicating a compensatory

response to the oxidative stress upon exposure to hemodynamic

overload. Consistent with our findings, Brandenburg et al.

reported significant upregulation of superoxide dismutase-2

(SOD2) and increased lipofusin deposits specifically in PLF-LG

cardiac biopsies, which further points to oxidative stress as a

fundamental process in the pathophysiology of this subgroup of

AS (62).

Our proteomic results also showed selective upregulation of

secreted (extracellular), but not cytosolic CypA in the myocardial

extracts of PLF-LG patients. While several proteins in our study

demonstrated altered levels in the extracellular extracts of PLF-

LG patients, CyPA was particularly noteworthy due to its known

cellular localization and the implications of its extracellular

presence. CyPA is a highly conserved and ubiquitous protein that

was initially believed to function primarily as an intracellular

protein. More in-depth studies have revealed that it can be

secreted by cells in response to inflammatory stimuli and

oxidative stress. Mechanistically, extracellular CyPA (eCyPA)

binds to its receptor EMMPRIN (also known as a cluster of

differentiation, CD 147), thus promoting myofibroblast

differentiation, fibrosis, cardiomyocytes hypertrophy, matrix

metalloproteinase (MMP) activation and oxidative stress (63, 64).

Clinical studies showed that plasma levels of CyPA are elevated

in patients with HF, and values were found to be related to all-

cause death and rehospitalization (65–67). Moreover, Zuern and

colleagues reported that CyPA expression in myocardial biopsies
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is an independent predictor of high risk in patients with

congestive HF (68). Additonally, CyPA knockout mice were

protected from atherosclerosis (27) and angiotensin II–induced

cardiac hypertrophy (69), and inhibition of CyPA expression in

oxidative stress- and inflammation-related cardiovascular

disorders attenuates the progression of the respective disease (69).

The consistent detection of CyPA in the extracellular heart

extracts and its significant upregulation in the PLF-LG AS hearts,

suggest that CyPA is actively released into the extracellular

milieu of the PLF-LG hearts as a targeted systemic biological

response rather than a general protein expression alteration,

random variability, or an artifact of the experimental process.

This makes CyPA not just another altered protein, but also a

specific indicator of underlying pathophysiological processes such

as inflammation or cellular stress response in PLF-LG AS. Thus,

myocardial CyPA might serves as a potential therapeutic target

for ameliorating the prognosis of the PLF-LG disease.
Potential limitations

The present study is limited by the lack of non-failing hearts as

controls, which could mask significant changes in the PLF-LG

disease. The number of enrolled patients was also relatively

small, which was due to the lack of available LV myocardial

tissue material. The identified proteins thus need to be further

verified in a larger patient cohort. Finally, this is an exploratory

study that cannot conclusively identify causal relationships;

however, our present data pave the way towards a better

understanding of PLF-LG pathophysiology and provide a

landscape proteome dataset that can be used by the research

community for future hypothesis-driven research.
Conclusion

Our comprehensive proteomic analysis uncovered a significant

association between various proteins (e.g., cTnI, FKBP1A,

CACNA2D1 and SLMAP) as well as processes (e.g., oxidative

phosphorylation) and the PLF-LG disease. Additionally, the

discovery of significantly elevated levels of myocardial CyPA in

PLF-LG samples suggests its hitherto unknown role in the

pathophysiology of this particular AS subtype. A more detailed

mechanistic understanding of how these proteins may be

involved in the pathophysiology of PLF-LG is thus essential for

developing new therapeutic strategies to treat this pathological

condition and improve HF symptoms.
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