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Background: Chronic heart failure (CHF) patients exhibit alterations in cerebral
cortical structure and cognitive function. However, the mechanisms by which
CHF affects cortical structure and functional regions remain unknown. This
study aims to investigate potential causal relationship between CHF and
cerebral cortical structure through Mendelian randomization (MR).
Methods: The research utilized genome-wide association studies (GWAS) to
explore the causal association between CHF and cerebral cortical structure.
The results were primarily analyzed using the inverse-variance weighted (IVW).
The reliability of the data was verified through horizontal pleiotropy and
heterogeneity analysis by MR-Egger intercept test and Cochran’s Q-test,
respectively. Replication analysis was conducted in the Integrative
Epidemiology Unit (IEU) OpenGWAS project for further validation. In addition,
we collected mediator genes that mediate causality to reveal potential
mechanisms. Integrated bioinformatics analysis was conducted using the
Open Target Genetics platform, the STRING database, and Cytoscape software.
Results: The IVW results did not reveal any significant causal association between
genetically predicted CHF and the overall structure of the cerebral cortex or the
surface area (SA) of the 34 functional regions of the cerebral cortex (P > 0.05).
However, the results revealed that CHF increased the thickness (TH) of pars
opercularis (IVW: β=0.015, 95% CI: 0.005–0.025, P= 3.16E-03). Replication
analysis supported the causal association between CHF and pars opercularis TH
(IVW: β=0.02, 95% CI: 0.010–0.033, P= 1.84E-04). We examined the degree
centrality values of the top 10 mediator genes, namely CDKN1A, CELSR2, NME5,
SURF4, PSMA5, TSC1, RPL7A, SURF6, PRDX3, and FTO.
Conclusion: Genetic evidence indicates a positive correlation between CHF and
pars opercularis TH.
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1 Introduction

Chronic heart failure (CHF) is the severe and final stage in the

development of most cardiovascular diseases (CVDs),

characterized by dyspnea, decreased exercise tolerance, and

edema in patients. According to epidemiological surveys, there

are currently over 64 million patients with CHF worldwide (1).

Within 5 years, the readmission and mortality rates of patients

can be as high as 80% and 50%, respectively (2). With the aging

trend of society, the current prevalence of CHF among Chinese

residents aged ≥35 years is 1.3%, and the number of patients is

as high as 8.9 million (3, 4). By 2030, the prevalence rate in the

elderly population is expected to reach 8.5% (5). Statistics

indicate that CHF patients in China are hospitalized an average

of 3.3 times per year, with a per capita cost of $4,982 for

inpatient and outpatient treatment (6). Despite the progress that

has been made in treating CHF, plenty of patients still experience

unsatisfactory outcomes and poor prognosis.

The cerebral cortex is a layer of gray matter that covers the

surface of the cerebral hemispheres and is composed primarily of

neuronal cells (7). It is widely acknowledged that the structure of

the cerebral cortex is responsible for a number of higher

cognitive functions in humans, including the processes of

thinking, learning, memory, and language (8, 9). The human

cerebral cortex is characterized by two main parameters: surface

area (SA) and thickness (TH), which are regulated by multiple

genes (10). In-depth studies related to the cerebral cortex can

enhance our comprehension of alterations in cortical structure

during disease progression and throughout the lifespan. The

“heart-brain axis” refers to the bidirectional communication

network between the heart and the central nervous system

(CNS), involving hemodynamic changes and neuronal signaling.

This concept involves a tight heart-brain feedback interaction

and is highly complex (11, 12). Researches have demonstrated

that more than 50% of patients with CHF experience secondary

brain damage, which can manifest as autonomic damage,

cognitive dysfunction, and neuropsychological deficits (13). In

addition to their relation to the grey matter structure of the

subcortex and brainstem, these varying degrees of brain damage

also involve the integrity of cerebral cortical structure (14).

Several scientific studies have examined the structure of the

cerebral cortex, and the cortical regions of patients with CHF

have been roughly examined using magnetic resonance imaging

(MRI) (15–17). However, the assessment of altered cerebral cortical

structure in specific regions has not been effective. The causal

associations between CHF and cerebral cortex remain unknown.

Mendelian randomization (MR) analysis, as a naturalistic

randomized controlled trial, is an effective approach to evaluate

potential causal associations between specific exposure factors

and outcomes. In contrast to randomized controlled trials

(RCTs), MR analysis employs single nucleotide polymorphism

(SNP) as an instrumental variable (IV) based on Mendel’s law of

independent assortment. This approach can effectively aid in

establishing a causal association between phenotype and disease

(18, 19). Additionally, MR analysis can address the limitations of

traditional epidemiological studies that are susceptible to
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potential confounding factors. As a result, MR study allows for

obtaining more plausible causal associations and a stronger

ability to argue for etiological inferences (20). Currently, the joint

application of genome-wide association studies (GWAS) and

biological big data has become a new trend in scientific research.

This approach provides an opportunity to explore etiological

associations from a genetic perspective and lays the foundation

for the wide application of MR analysis (21). In recent years,

researchers from both domestic and international settings have

investigated the impact of diseases, circulating biomarkers, and

behaviors on the structure of the cerebral cortex through the use

of MR studies. These studies have confirmed that obesity (body

mass index (BMI) and waist-to-hip ratio (WHR)), elevated blood

lipid levels, and sleep disorders (insomnia and shorter sleep

duration) are associated with alterations in the structure of the

cerebral cortex (22–24). In this study, we employed publicly

available GWAS summary statistics to preliminarily investigate

the effects of CHF on the structure of the cerebral cortex and to

explore its correlation with cerebral cortical SA and TH.

Subgroup analyses were conducted according to different

functional regions of the cerebral cortex, providing new insights

into the effects of CHF on cerebral cortical structure and its

underlying mechanisms.
2 Materials and methods

2.1 Study design

This study was conducted in accordance with the established

standards for reporting on two-sample MR analyses (25). The

genetic IVs for phenotypes should meet the three crucial

assumptions (26): (a) There is a robust and strong correlation

between IVs and CHF. (b) IVs are not affected by confounding

factors that may influence the relationship between CHF and

cerebral cortical structure. (c) IVs affect cerebral cortical

structure only through the onset of CHF, but not through other

pathways. The study investigated CHF as the exposure factor and

measured three outcomes in the following order: overall cortical

structure, SA of functional regions of the cerebral cortex, and TH

of functional regions of the cerebral cortex. We initially

conducted MR studies with the objective of comprehensively

analyzing the causal associations between CHF and the cerebral

cortex. Subsequently, we proceeded to perform replication

analysis with the intention of validating the identified causal

association. Figure 1 shows the study design flowchart.
2.2 Data sources

2.2.1 Exposure: CHF
The GWAS summary statistics for CHF were obtained from the

Cardiovascular Disease Knowledge Portal (CVDKP) database,

which included 26 cohort studies (27). The study consisted of

17 population-based cohorts that participated in the Heart

Failure Molecular Epidemiology for Therapeutic Targets
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1396311
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 1

Research design flow chart. CHF, chronic heart failure; SA, surface area; TH, thickness; SNP, single nucleotide polymorphism; MR, Mendelian
randomization; IVW, inverse-variance weighted.
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Consortium (HERMES), comprising 38,780 cases and 893,657

controls, as well as nine case-control studies with 8,529 cases

and 36,357 controls. The study participants in this GWAS

study were of European ancestry, totaling 47,309 cases and

93,014 healthy controls. In this meta-analysis study, Shah

et al. employed logistic regression (LR) to analyze the

association between autosomal SNPs and heart failure (HF).

The overall effect model was evaluated using inverse-variance

weighted (IVW). SNPs exhibiting linkage disequilibrium (LD)

were excluded based on the principle of “P < 5 × 10−8, r 2 <

0.1”. The researchers ultimately identified 12 independent

genetic variants associated with HF risk by analyzing 11

genomic loci, providing new insights into the understanding of

HF etiology.

2.2.2 Outcome: cerebral cortex structure
The outcome dataset utilized in this study was derived from

the GWAS summary statistics published in March 2020 by the

Enhancing Neuro Imaging Genetics Through Meta-Analysis

(ENIGMA) consortium (http://enigma.ini.usc.edu). The study

performed a meta-analysis of MRI data from 51,665

individuals from 60 cohorts worldwide (28). The GWAS

summary statistics included the total cerebral cortex SA and

average TH, as well as 34 cortical regions with known function

defined according to the Desikan-Killiany cortical atlas. The

subject population was approximately 94% of European

ancestry. Grasby et al. identified a total of 70 categories of

cortical phenotypes and 306 statistically significant loci

through GWAS analyses and multiple statistical comparisons

(P < 5 × 10−8). After multiple statistical correction tests, the
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study confirmed that only 187 genomic loci were associated

with cortical SA and 12 genomic loci were associated with

cortical TH. The proportion of SA phenotypic variation that

could be explained by common genetic variants was greater than

that of TH phenotypic variation, both in terms of the overall

structure of the cerebral cortex and in terms of the 34 specific

functional regions.
2.2.3 CHF replication samples
The CHF replication samples were derived from GWAS

summary statistics (ebi-a-GCST90018806) included in September

2021 by the Integrative Epidemiology Unit (IEU) OpenGWAS

project (https://gwas.mrcieu.ac.uk) (29). A total of 14,262 cases

and 47,189 controls were included in the study, with data from

BioBank Japan (BBJ), the UK Biobank (UKB) and FinnGen. The

CHF replication samples comprised 10,540 cases and 168,186

controls derived from BioBank Japan, and 6,526 cases and

350,289 controls derived from the UK Biobank and FinnGen

databases. The subject population consisted of individuals of

Japanese and European ancestry. In this study, Sakaue et al.

conducted a genome-wide association study of 220 human

phenotypes from BioBank Japan, successfully replicating 94.2% of

the variant loci in the European population. A cross-population

meta-analysis was conducted with 196 human phenotypes from

the UK Biobank and 128 human phenotypes from FinnGen.

The meta-analysis identified 1,730 disease-associated loci, 12,066

biomarker-associated loci, and 1,018 drug-associated loci,

respectively, which extended the genetic association map in non-

European populations.
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2.3 Selection of instrumental variables

Instrumental variables significantly associated with CHF were

screened from the GWAS summary statistics with a threshold of “P

< 5 × 10−8”. SNPs that were not affected by linkage disequilibrium

and were independent of each other were screened using “r² < 0.001

and Clump distance >10,000 kb” as thresholds (30). Additionally,

the formula F ¼ R2(n� 2)=(1� R2) was employed to calculate

the F statistic in order to detect any potential bias due to weak IVs.

Only IVs with F statistics greater than 10 were included in this

study. In accordance with the exclusivity assumption of MR

analysis, SNPs associated with cerebral cortical structure should be

excluded (P < 5 × 10−8). Regarding the independence assumption,

secondary phenotypes were identified for each SNP using the

PhenoScanner V2 website (http://www.phenoscanner.medschl.cam.

ac.uk/) (31), and SNPs associated with confounding factors (type 2

diabetes, body mass index, blood pressure, and coronary heart

disease) (32) were excluded.
2.4 Functional exploration of
mediator genes

In order to identify the core mediator genes regulating the causal

association between CHF and cerebral cortex structure, and to reveal

the potential biological pathways between CHF and brain

dysfunction, we conducted an integrated bioinformatics analysis.

Genes that are functionally associated with genetic variation are

referred to as mediator genes. The Open Target Genetics platform

(33) is a free and open-source tool that highlights statistical

evidence centered on genetic variation. It utilizes human genetics

and genomics data for systematic drug target identification and

prioritization, exploring the intrinsic associations between traits,

variants, and genes, and identifying potential drug targets (34). The

Open Target Genetics platform (https://genetics.opentargets.org/)

was employed to genetically annotate the genetic variants utilized as

IVs, with the subsequent construction of a protein-protein

interaction (PPI) network based on these mediator genes in the

STRING database (version 12.0) (https://cn.string-db.org/). The

Cytoscape software (version 3.9.1) was used to visualize and analyze

the complex network based on the node degree and integrated

score of target proteins in the PPI network. The topology of the

network graph was analyzed using the CytoHubba plug-in. Each

mediator gene was assigned a value by the topological network

algorithm, and the hub genes and the subnetwork were identified

after sorting. We conducted Gene Ontology (GO) terms and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analysis using the Bioinformatics Online Cloud Platform (https://

www.bioinformatics.com.cn/) in order to present the results of the

functional annotation of mediator genes in a more intuitive manner.
2.5 Statistical analysis

R studio software (version 4.3.2) and the TwoSampleMR

package (version 0.5.6) were used for statistical analysis. We
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utilized selected SNPs as IVs to evaluate the causal relationship

between CHF and cerebral cortex structure. Five methods were

employed: MR-Egger, inverse-variance weighted, weighted

median, simple mode, and weighted mode. The results of the

MR study were mainly dominated by the IVW analysis, while

the MR-Egger method and the weighted median approach were

able to enhance the estimation accuracy of the IVW analysis.

The cluster-heatmap format of IVW analysis results was

generated by the Bioinformatics Online Cloud Platform. The

replication MR analysis procedure was identical to that employed

in the discovery stage.

Instrumental variables from different analytical platforms,

experiments, populations, etc., may be heterogeneous and thus

affect the results of MR analyses. In addition, if IVs influence the

occurrence of an outcome through factors other than the

exposure factor, this indicates that the IVs are pleiotropic.

Pleiotropy can lead to a violation of the assumptions of

independence and exclusivity. Therefore, if there is a causal

relationship between CHF and cerebral cortex structure, it is

necessary to confirm the reliability of the findings through the

test of heterogeneity and horizontal pleiotropy. In this study,

Cochran’s Q-test was used to test for heterogeneity among the

included studies (P-value < 0.05 indicates heterogeneity). The

MR-Egger regression test was used to determine the presence of

horizontal pleiotropy (P-value < 0.05 indicates horizontal

pleiotropy). A leave-one-out (LOO) analysis was employed in the

sensitivity analysis to evaluate whether a single SNP had an effect

on the association between CHF and cerebral cortex structure.

The leave-one-out method entailed the exclusion of a single SNP

one at a time, with the remaining SNPs subsequently subjected

to an aggregate effect calculation.

Furthermore, the Bonferroni correction was employed to

account for the multiplicity of test results. For each multiple

test, the new significance level was set at P < 0.05/n, where n

represents the number of results (35). Consequently, a P-value

of less than 2.5 × 10−2 (0.05/2) was deemed statistically

significant in the estimation of the overall structure of the

cerebral cortex, whereas a P-value of less than 7.35 × 10−4 (0.05/

68) was considered statistically significant in the estimation of

the 34 specific functional regions of the SA and TH. A P-value

of less than 0.05 was deemed suggestive of an association and a

P-value of less than 0.01 was considered suggestive of a

stronger association.
3 Results

3.1 Details of instrumental variables

This study screened for SNPs that differed significantly on a

genome-wide basis using the completed GWAS database for

CHF. A total of nine SNPs were finally included (Supplementary

Table S1). The median value of the F-statistics for the IVs was

34.87, with a range of 30.89–83.10. It is noteworthy that all

F-statistics were greater than 10. This suggests a significant

correlation between the IVs and the exposed factors represented
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by CHF. The results of the MR analyses are not significantly

affected by the inclusion of weak IVs.
3.2 Results of MR analysis

The study conducted comprehensive MR analyses to assess

the causal associations between genetically predicted CHF and

the overall structure of the cerebral cortex, SA and TH of the

34 functional regions of the cerebral cortex. The results showed

no statistically significant association between CHF and the

overall structure of the cerebral cortex (IVW: βSA = 247.489,

95% CISA: −1,799.191–2,294.168, PSA = 0.813; IVW: βTH =

−0.009, 95% CITH: −0.019–0.001, PTH= 0.066) (Supplementary
FIGURE 2

Clustering heat maps of IVW results of causality between CHF and SA and TH
weighted.
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Table S2). Figure 2 presents the changes in IVW analysis results

between CHF and the SA/TH of the 34 functional regions of

the cerebral cortex using a cluster-heatmap format. The IVW

analysis did not find a significant causal relationship between

genetically predicted CHF and the SA of the 34 functional

regions (P > 0.05) (Supplementary Table S3). Nevertheless, in

specific functional region analyses, a potential causal

relationship between CHF and pars opercularis TH was

identified (IVW: β = 0.015, 95% CI: 0.005–0.025, P = 3.16E-03)

(Supplementary Table S4). The IVW results indicated a positive

correlation between CHF and alterations of pars opercularis

TH. Specifically, the results of the weighted median method and

the IVW analysis were similar and both were statistically

significant (weighted median: β = 0.017, 95% CI: 0.004–0.030,
of cerebral cortex. SA, surface area; TH, thickness; IVW, inverse-variance
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FIGURE 3

Causal relationship of CHF in predicting pars opercularis TH. (A) Scatter plot; (B) funnel diagram; (C) individual SNP causal effect diagram; (D) leave-
one-out sensitivity analysis. MR, Mendelian randomization; SNP, single nucleotide polymorphism; CHF, chronic heart failure.

FIGURE 4

Forest diagram of causal association between CHF and pars opercularis TH. MR, Mendelian randomization; CI, confidence interval.

Peng et al. 10.3389/fcvm.2024.1396311
P = 9.50E-03). Figures 3A,B illustrate the scatter plot and the

funnel plot of the causal relationship between CHF and pars

opercularis TH, respectively. The asymmetry in the funnel plot

may be due to factors such as clinical or methodological

heterogeneity between studies that do not introduce a

significant degree of bias into the results. The results of the
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meta-analysis of the causal relationship between CHF and pars

opercularis TH are presented in Figure 4.

The causal relationship between CHF and pars opercularis

TH was successfully replicated in the MR analysis of the IEU

OpenGWAS project. The results of the IVW analysis

demonstrated a positive correlation between CHF and pars
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opercularis TH (β = 0.02, 95% CI: 0.010–0.033, P = 1.84E-04)

(Supplementary Table S5). The replication analysis yielded results

consistent with those of previous MR studies, thereby providing

support for the reliability of the present findings.
3.3 Sensitivity analysis

We assessed the magnitude of heterogeneity and horizontal

pleiotropy by using Cochran’s Q-test and MR-Egger intercept

test. The Cochran’s Q-test statistic was not statistically significant

(P > 0.05), indicating no heterogeneity among the SNPs

associated with CHF (Supplementary Tables S6–S8). The MR-

Egger intercept results indicated no horizontal pleiotropy

between CHF and pars opercularis TH (P > 0.05) (Supplementary

Tables S9–S11), providing strong evidence for a direct causal

relationship. The leave-one-out analysis demonstrated that no

SNP could potentially drive the null causal effect of CHF on pars

opercularis TH (Figures 3C,D).
3.4 Results of integrated
bioinformatics analysis

This study identified the dominant instrumental loci for the

causal associations between CHF and cerebral cortex structure

and analyzed their genetic profiles. After eliminating

duplicated sequences, we matched 9 independent SNPs with

genetic variations of the mediator genes, and identified 107

mediator genes. The correspondence between SNPs and

mediator genes is shown in Supplementary Table S12. The PPI

network was constructed using the STRING database with a

screening criterion of “Minimum Required Interaction Score

>0.150” (Figure 5A). The network illustrates the correlation

between mutation-associated mediator genes (Supplementary

Table S13). The PPI network consisted of 107 nodes and 483

edges, with an average node degree of 9.03, an average local

clustering coefficient of 0.427, and an enriched P-value < 1.0E-

16. The PPI network data were detailed in Supplementary

Table S14. The top 10 mediator genes with the highest degree

centrality values were screened, which included CDKN1A,

CELSR2, NME5, SURF4, PSMA5, TSC1, RPL7A, SURF6,

PRDX3, and FTO (Figure 5B).

A total of 210 entries were obtained from GO terms analysis

under the screening condition of “P < 0.05”, including 149

Biological Process (BP), 16 Cellular Component (CC), and 45

Molecular Function (MF) entries (Supplementary Table S15).

Furthermore, 16 entries were obtained from KEGG pathway

enrichment analysis (Supplementary Table S16). Figures 5C,D

show the results of the GO terms histogram and the KEGG

pathway enrichment analysis bubble plot. The mediator genes

in the BP analysis were primarily concentrated in “glutathione

derivative metabolic process”, “glutathione derivative

biosynthetic process” and “xenobiotic catabolic process”. The

CC analysis revealed that mediator genes were mainly enriched

in “intercellular bridge”, “lysosomal membrane” and “lytic
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vacuole membrane”. Regarding MF analysis, the mediator

genes were principally involved in “glutathione transferase

activity”, “glutathione binding” and “oligopeptide binding”.

The KEGG pathway enrichment analysis indicated that the

mediator genes were primarily enriched in pathways related to

“platinum drug resistance”, “glutathione metabolism” and

“epatocellular carcinoma”.
4 Discussion

Patients with CHF frequently exhibit concomitant brain

damage, which typically involves the integrity of cortical

structure. In this study, a causal relationship between CHF and

pars opercularis TH was determined through the use of two-

sample MR analysis. The results of this study indicate that

patients with CHF exhibit increased pars opercularis TH. The

integrated bioinformatics analysis revealed that CHF may affect

pars opercularis TH through 10 key mediator genes. Further

KEGG enrichment analysis indicates that glutathione (GSH)

metabolism may be a potential biological pathway by which CHF

affects the structure of the cerebral cortex. This establishes a

foundation for further elucidation of the relationship between

CHF and neuropsychiatric disorders, including cognitive

dysfunction, dementia, and depression.

The pars opercularis is a key component of the motor-linguistic

area, situated posterior to the inferior frontal gyrus of the frontal

lobe, as designated by Brodmann as area 44 (BA44) (36). The

pars opercularis is essential for lexical extraction, language

synthesis, memory, coordination of the oral muscles, and various

cognitive functions (37–39). The normal function of the pars

opercularis depends on the integrity of the cortex, while its

volume is determined by both total SA and average TH. A

review of the literature indicates that several factors regulate the

SA and TH of the human cerebral cortex. Based on the radial

unit hypothesis (40), cortical SA is determined by the number of

neural progenitor cell proliferation units, while cortical TH is

dependent on the number of cell divisions within each

proliferation unit. In functional regions of the cerebral cortex,

changes in cortical TH are primarily influenced by genetic

factors and tend to decrease with age (41–43). Most

neurodegenerative diseases (NDDs) and cerebrovascular diseases

(CVDs) are characterized by cortical TH thinning (44). The

study findings indicate that there is no significant causal

relationship between CHF and the overall structure of the

cerebral cortex. This may be attributed to the fact that cerebral

glucose metabolism in patients with early CHF maintains a

relative balance of compensatory increases and decreases, thus

preventing a significant alteration in the overall structure of the

cerebral cortex (45). In recent years, researchers have devoted

considerable attention to the potential causal association between

HF and the structure of functional cortical regions of the brain

(46, 47). These findings have confirmed that frontal brain activity

is reduced in HF, and that there is a significant positive

correlation between left ventricular ejection fraction (LVEF) and

overall density of the frontal cortex (48, 49). Notably, the
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FIGURE 5

Results of integrated bioinformatics analysis. (A) Protein-protein interaction network of mediator genes; (B) diagram of the top 20 mediator genes
interactions; (C) histogram of GO biological function analysis; (D) bubble diagram for KEGG pathway enrichment analysis. GO, gene ontology;
KEGG, Kyoto encyclopedia of genes and genomes; BP, biological process; CC, cellular component; MF, molecular function.
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conclusions drawn from subgroup analyses were opposite to the

results of previous findings. Kumar et al. conducted a study that

revealed a decrease in regional cortical TH in areas regulating

automatic memory, cognitive, emotional, linguistic, and visual

functions in patients with HF (50). Nevertheless, the present

study found that CHF is associated with an increase in pars

opercularis TH. This indicates that neuropsychiatric disorders,

such as cognitive dysfunction, dementia, or depression, may not

be the primary cause of thickening in the pars opercularis in

individuals with CHF. Most patients with CHF often experience

low cardiac output and sleep apnea, which can cause hypoxia/

ischemia-induced brain damage. This damage can affect the TH

of cortical structural regions of the brain (51). Baril et al.

discovered obstructive sleep apnea generally alters gray matter

structure and that high levels of hypoxemia are associated with
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increased TH of the left prefrontal cortex (52). Therefore, we

propose the hypothesis that CHF may lead to hypoxemia,

resulting in neuronal cell dysfunction, increased capillary

permeability, accelerated division of neural progenitor cells, and

ultimately compensatory hypertrophy of cerebral cortical

structure. In addition, prolonged hypoxia in the brain stimulates

the secretion of adrenaline (A) and norepinephrine (NE), leading

to vasoconstriction. This exacerbates cerebral hypoxia, resulting

in cerebral oedema and abnormal thickening of the cerebral

cortex. In summary, further in-depth exploration is required to

investigate the potential molecular mechanisms behind the

complex changes that may occur in pars opercularis TH or other

specific functional regions in the CHF population.

Integrated bioinformatics analysis identified 10 key genes,

namely CDKN1A, CELSR2, NME5, SURF4, PSMA5, TSC1,
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RPL7A, SURF6, PRDX3, and FTO, which could help elucidate the

potential mechanisms underlying the association between CHF and

structural alterations in the cerebral cortex. The KEGG pathway

enrichment analysis revealed that five mediator genes, which

were closely related to the genetic variations, were enriched in

the “glutathione metabolism” signaling pathway (P = 9.36E-06).

GSH is a biologically active polypeptide composed of glutamic

acid, cysteine, and glycine, containing a γ-amide bond and

sulfhydryl groups (53). GSH is widely distributed in animals and

plants and plays a crucial role in various biological processes,

including DeoxyriboNucleic Acid (DNA) and protein synthesis,

amino acid transport, gene expression, and cell proliferation and

apoptosis (54, 55). In the context of CVDs, GSH serves as a

marker for prophylactic antioxidant therapy and the risk of

adverse cardiovascular events (56). Researches have demonstrated

that GSH can not only scavenge reactive oxygen species via the

glutathione peroxidase (GSH-Px) and glutathione S-transferase

(GST) pathways, but also bind to free radicals to exert

detoxifying and antioxidant effects, thereby attenuating

myocardial cells apoptosis (57, 58). Several CVDs, including

myocardial ischemia/reperfusion injury (MI/RI), coronary

atherosclerotic heart disease (CHD), hypertension (HT), and

myocardial infarction (MI), have been found to have a negative

correlation with GSH levels (59–61). Meanwhile, GSH plays a

vital role in the antioxidant defense system and in maintaining

redox homeostasis in neuronal cells. A reduction in the

concentration of GSH in neuronal cells has been demonstrated to

be a significant contributing factor in the development of

Alzheimer’s disease (AD), Huntington’s disease (HD), and

Parkinson’s disease (PD) (62–64). Based on this hypothesis, if

GSH metabolism is abnormal and GSH levels are reduced, it

may affect both the cardiovascular and central nervous systems,

increasing the susceptibility of myocardial cells and neuronal

cells to oxidative stress. This can trigger cellular degeneration,

necrosis, and apoptosis, ultimately leading to alterations in

cortical structure.

To the best of our knowledge, a similar MR study has been

conducted previously. The results of the study by Hu et al.

demonstrated a causal effect of HF on the SA of the caudal

middle frontal lobule, insula lobule, precuneus lobule and

superior parietal lobule (65). In contrast to the present study, the

investigators employed a screening criterion of “P < 5 × 10−6” to

identify SNPs that predicted HF as the final IVs included in the

study. The discrepancy in screening criteria may have

contributed to the disparate outcomes observed in the two

studies. In addition to employing MR analysis, our study also

investigated the potential mechanism of CHF on the structure of

the cerebral cortex through integrated bioinformatics techniques.

The utilization of MR analysis in this study enabled the

avoidance of residual confounding factors and reverse causality,

thereby compensating for the inherent limitations of

observational studies. Genetic variants were identified at the time

of conception and followed the principle of random assignment.

In this study, genetic variants associated with CHF were

employed as the exposure and cerebral cortical structure as the

outcome in order to ascertain whether there was a causal effect
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between CHF and cerebral cortex structure. This approach

effectively avoided reverse causality in this MR study. Besides,

the replication analysis was conducted within the IEU

OpenGWAS project with the objective of validating the MR results.

Inevitably, the current study still has certain limitations. The

GWAS sample data utilized in this study were predominantly

derived from populations of European ancestry. Therefore, the

results cannot be used to establish causal associations between

CHF and cerebral cortex structure in ethnically diverse

populations. Moreover, the statistics on exposure factors selected

during the study were pooled and did not categorize specific

forms of CHF. The causal associations between cerebral cortical

structure and CHF type and grade remains unclear. What’s

more, the present study did not address the severity of altered

SA or TH of functional regions of the cerebral cortex. The

present study employed integrated bioinformatics analysis to

clarify the critical targets and potential molecular mechanisms

involved in regulating the TH alteration of pars opercularis.

Nevertheless, further experimental studies are required to

substantiate these findings.
5 Conclusion

In summary, this study provides preliminary genetic evidence

supporting a positive correlation between CHF and pars

opercularis TH through MR analysis. This study contributes to

the in-depth examination of the “heart-brain axis” theory.

Further investigation is necessary to comprehend the association

and potential mechanism of action between CHF, cerebral

cortical structure, and altered brain function.
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