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Influencing factors and
improvement methods of coronary
artery plaque evaluation in CT
Yaqi Gao, Yao Pan and Chongfu Jia*

Department of Cardiovascular Radiology, The First Affiliated Hospital of Dalian Medical University,
Dalian, China
Accurate evaluation of the nature and composition of coronary plaque involves
clinical follow-up and prognosis. Coronary CT angiography is the most
commonly non-invasive method for plaque evaluation, however, the
qualitative and quantitative evaluation of plaque based on CT value is
inaccurate, due to the influence of luminal attenuation, tube voltage,
parameter setting and the subjectivity.
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1 Introduction

Coronary heart disease (CHD) incidence has been on the rise year by year, with its

mortality rate ranking first among cardiovascular diseases (1). The primary cause of

cardiovascular events is the rupture of unstable coronary artery plaques followed by

thrombus formation. Numerous postmortem and intravascular ultrasound studies have

shown a close correlation between plaque nature and composition with stability,

particularly emphasizing the heightened activity and instability of non-calcified plaques,

especially those with high lipid content (2, 3). Moreover, the assessment of plaque

burden and composition has a good predictive value for cardiovascular events, and can

further evaluate clinical risk factors, reflect drug treatment and adverse clinical

outcomes (4–6). Therefore, accurately assessing plaque nature and composition is

crucial for risk stratification and prognosis evaluation in patients with CHD.

Intravascular imaging techniques such as optical coherence tomography (OCT) are

considered the gold standard for assessing plaque nature and composition in vivo.

However, their invasive, complexity of operation, and cost make them challenging for

widespread clinical adoption (7). In recent years, coronary computed tomographic

angiography (CCTA) has become a routine clinical tool for non-invasive evaluation of

plaques (8). Nevertheless, challenges persist in accurately assessing coronary artery

plaque nature and composition based on CT values due to factors such as luminal

attenuation, tube voltage, parameter settings, and subjectivity, leading to significant

overlap in CT values between fibrous and lipid-rich plaques (9). In this review, we

summarize the methods and influencing factors of plaque assessment for CCTA, and

provide the corresponding improvement methods.
1.1 Qualitative and quantitative assessment of plaques in
CCTA

The qualitative assessment of plaques involves manually selecting regions of interest

(ROIs) and determining plaque characteristics based on the measured CT values, as
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shown in Figure 1. However, unified standard for ROI selection are

not clearly defined, including criteria such as the selection of

representative slices, distance from the lumen, and ROI size. It

has been reported that efforts should be made to avoid the

lumen and vessel walls while encompassing the plaque as much

as possible. Multiple ROIs are then measured, and their average

is calculated (10). However, specific guidelines on how much to

avoid are not clearly defined. Currently, to use a generalized HU-

criterion is not yet possible as the reported HU values vary

considerably (3, 11–16), as shown in Table 1. Matsumoto et al.

(3) conducted CCTA examinations on 77 patients with known or

suspected coronary artery disease, using intravascular ultrasound

(IVUS) as the gold standard. They found that using 45 HU as

the cutoff value resulted in higher diagnostic accuracy for lipid

plaques. In another study, Han et al. (12) identified 75 HU as the

optimal cutoff value for accurate identification of lipid plaques,

showing good consistency with histological regions rich in lipid

plaques. This variability in cutoff values poses challenges for

widespread clinical application.

In contrast to the qualitative assessment of plaque

characteristics, the quantitative measurement of plaque

components involves semi-automatically delineating the entire

plaque using quantitative analysis software, as shown in Figure 2.

Component volumes are obtained based on pre-set thresholds.

Although this eliminates the subjectivity of manually selecting

ROIs, there is still inconsistency in the definition of component

thresholds. Most studies define −30 to 30 HU, 30–130 HU, 131–

350 HU, and >350 HU as necrotic core, fibrofatty, fibrous, and

calcified components, respectively (17). Some studies define −30
to 75 HU and 76–130 HU as lipid and fibrofatty components,

respectively (18). Takx et al. (19) define fibrous plaque as 70–

129 HU, not fibrofatty. Therefore, the cutoff values for

distinguishing lipid and fibrous components remain a

contentious issue. Furthermore, most studies define 131–350 HU
FIGURE 1

Plaque recognition and CT value measurement in previous literature (10). (
curved reformation. (B) The measurement of qualitative.
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as fibrous components, which significantly differs from the

qualitative cutoff value for fibrous plaques. This definition

contradicts even the definition in calcium scoring, where

>130 HU is considered calcified plaque. Takahashi et al. (16)

demonstrated that the fibrous component load measured by

CCTA was poorly correlated with the gold standard virtual

IVUS, with a correlation coefficient of only 0.18. This

discrepancy may be attributed to the influence of partial volume

effects in the vessel lumen, leading to the erroneous classification

of 131–350 HU as fibrous plaques, which may not necessarily

represent true fibrous tissue.
1.2 Factors influencing plaque evaluation

There are numerous factors affecting the assessment of

coronary artery plaques based on CT, primarily including partial

volume effect of lumen, imaging parameters, and subjective factors.

Firstly, luminal attenuation is the most significant influencing

factor. This is due to the limited spatial resolution of CT

equipment. Studies indicate a significant positive correlation

between lipid and fibrous plaques and luminal HU, with

correlation coefficients of 0.49 and 0.32, respectively. In contrast,

calcified plaques show no correlation with luminal HU (r = 0.04)

(11). Takagi et al. (20) further demonstrated that as luminal

attenuation increases, the proportion of calcified components also

increases, while the proportions of fibrous plaques, fibrous lipid,

and necrotic core decrease. Kristanto et al. (21) using a phantom

model, investigated the impact of luminal attenuation on plaques

and found that within a 2-pixel radius outside the lumen, the

influence followed an exponential decay pattern: y =Ae−λx + c

(where A, λ, x, and c represent amplitude, coefficient, distance

from the luminal boundary, and constant, respectively). They

recommended selecting ROIs at a distance of at least 0.8 mm
A) Non-calcified plaque was detected on proximal segment of LAD on
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TABLE 1 Comparison of attenuation values used in selected studies.

Study Year Attenuation values (in HU units)

Lumen Lipid Fibrosis
Matsumoto et al. (3) 2019 193 (165–213) HU <45 HU ≥45 HU

Matsumoto et al. (11) 2019 431.2 ± 67.0 HU <58 HU ≥58 HU

Han et al. (12) 2018 444 (201–725) HU <75 HU ≥75 HU

Yamaki et al. (13) 2012 326 ± 55 HU <50 HU 50–170 HU

You et al. (14) 2016 NA 0–49 HU 50–129 HU

Wang et al. (15) 2018 276.05 ± 4.96 HU <60 HU 60–200 HU

Takahashi et al. (16) 2016 357 ± 65 HU <56 HU 56–210 HU

Gao et al. 10.3389/fcvm.2024.1395350
from the lumen to minimize the partial volume effect, providing

insights for accurate plaque measurement. However, this

approach has limitations in reflecting the overall plaque nature

and volume of individual components, especially for small-

volume plaques.

Secondly, low tube voltage is a primary means of reducing

radiation dose in CCTA. However, due to the weak penetration

ability of low-energy x-rays, it significantly influences plaque

assessment based on CT values (22). Wang et al. (15) compared

the effects of conventional and low tube voltage on the HU of
FIGURE 2

(A) Multiplanar reconstruction of the left anterior descending coronary art
proximal to distal lesion marker (green markers). Fibrotic tissue was labele
labeled in blue. (B) A histogram of the distribution of CT attenuation wit
analysis software based on pre-set thresholds.
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non-calcified plaques using a phantom model. The results

showed that the HU of low tube voltage plaques were

significantly higher than those at conventional voltage. Different

tube voltages require different cutoff HU for distinguishing lipid

and fibrous components. For example, the volumes of both

components measured at 80 kV (82 HU) and 120 kV (60 HU)

showed good correlation (r = 0.841, r = 0.879). The study

indicated two pathways through which tube voltage influences

plaques: the direct pathway driven by x-ray energy and the

indirect pathway by altering luminal attenuation, reducing tube

voltage would decrease the Compton effect, raising the HU of

the iodine-containing contrast agent (23). Matsumoto et al. (11)

compared the effects of 100 kV and 120 kV on plaque

components, finding that lower tube voltage led to a significant

increase in the HU of fibrous and lipid components, by

approximately 2.2 HU and 5.3 HU, respectively. However, after

correcting for the indirect effect of luminal attenuation, 100 kV

had almost no direct impact on non-calcified plaques. Takagi

et al. (20) found that compared to 120 kV, 100 kV increased

calcium volume (2.4%) but decreased fibrofatty (4.8%) and

necrotic core (1.5%) volumes. This change was primarily induced

by the indirect pathway. Besides the indirect pathway, the
ery (LAD) showing the whole coronary artery lesion, ranging from the
d in dark yellow, Fibro-fatty tissue in light green and necrotic core was
hin the plaque. (C) Plaque volumes were derived for the quantitative
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authors further discovered that even lower tube voltage (80 kV)

directly affected fibrofatty and necrotic core components,

increasing their volumes by 6.2% and 0.9%, respectively.

However, both 100 kV and 80 kV had a direct impact on

calcified components, possibly due to the higher likelihood of

photoelectric interaction in dense tissue at lower x-ray energies,

with the maximum variation occurring in high-density calcium.

Apart from luminal attenuation and tube voltage, the accuracy

of plaque evaluation is also influenced by scanning parameters,

post-processing methods, and subjectivity. Different CT machine

models may result in different cutoff HU for plaque assessment

(24). The HU of plaques decrease with an increase in detector

rows and reach their highest point at maximum collimation

width, possibly due to higher spatial resolution reducing partial

volume effect. Additionally, using different reconstruction

parameters, such as slice thickness and kernel, affects plaque HU.

Cademartiri et al. (25) comparing four different convolution

kernels (b30f, b36f, b46f, and b60f), found that using sharper

kernels increased spatial resolution and image noise, raising the

HU of calcified plaques (740.5, 758.5, 785.7, and 1,145.8 HU)

and decreasing non-calcified plaque HU (20.8, 14.2, 14.0, and

3.2 HU). Thicker slice thickness also decreases spatial resolution,

increasing plaque HU (26). Moreover, human interpretation is

prone to fatigue and subjectivity. In many CTA studies, plaque

CT values may be influenced by the selection, position, and size

of ROIs (27).
1.3 Improvement methods

In addressing the aforementioned influencing factors, multiple

researchers emphasize that achieving similar luminal attenuation

by unifying imaging parameters may be the most ideal solution,

especially in the context of serial CCTA examinations within

the same patient cohort (11, 20). However, the complete

standardization of parameters to eliminate variations posed

by CT machine models, reconstruction methods, physician

experience, and individual patient differences is challenging.

In light of this, various studies have proposed adaptive

approaches, dual-energy techniques, dose adjustments of contrast

agents, and artificial intelligence (AI) methods as potential

solutions (3, 11, 28–38).

Firstly, to mitigate the impact on luminal attenuation, de Knegt

et al. (28) proposed an adaptive method by adjusting plaque

assessment thresholds based on luminal CT values. Results

indicated that adaptive thresholds more accurately assessed

plaques, whereas conventional CT values underestimated the

volume of fibrous and fibrofatty plaques and overestimated the

volume of necrotic cores and calcifications. Another study

utilized the average luminal CT values of plaques in the proximal

and distal regions for calibration, revealing an overlap in the

conventional CT values distributions of lipid and fibrous plaques

(−4.5 to 74.6 vs. 61.9–149.7). However, standardized CT values

(plaque/luminal) ratios eliminated this overlap (−0.012 to 0.147

vs. 0.153–0.394) (11). Nonetheless, luminal CT values gradually

decrease with increasing stenosis severity and decreasing
Frontiers in Cardiovascular Medicine 04
diameter, leading to a significant reduction in luminal CT values

in severely stenosed regions (29). Therefore, even with

adjustments for scan-to-scan variations in luminal attenuation,

applying the same thresholds in stenotic and non-stenotic

regions may still be inadequate. Shin et al. (30) proposed two

novel adaptive thresholds: scan-adaptive threshold, using the

same threshold at each cross-section, and position-adaptive

threshold, applying different CT thresholds at each cross-section

(i.e., <50% * corresponding cross-sectional luminal CT value for

non-calcified plaques, >110% * corresponding luminal CT value

for calcified plaques). The results indicated that scan-adaptive

thresholds overestimated plaque volume, while position-adaptive

thresholds exhibited higher accuracy.

In addition, dual-energy CT (DECT) can optimize image

quality based on characteristic energy levels, distinguishing tissue

types by absorbing high and low-energy x-rays. DECT provides

additional parameters such as iodine maps, effective atomic

number maps, and virtual monoenergetic images, yielding more

diagnostic information. Recent research suggests that non-

calcified plaques can be accurately identified using effective

atomic number maps (32). Although multi-energy CT has

advantages in plaque characterization, it faces limitations related

to the complexity of plaque composition and the small size of

coronary artery plaques, posing challenges for quantitative

analysis due to partial volume effects (39).

Secondly, addressing the impact of tube voltage, adjusting the

corresponding contrast agent dose can alleviate changes

inluminal attenuation and improve the qualitative and

quantitative assessment of plaques. Yin et al. (33) found that

CCTA images and luminal attenuation obtained with 100 kV

combined with lower concentration iodine contrast (270 mg

iodine/ml) were similar to those obtained with 120 kV combined

with higher concentration contrast (370 mg iodine/ml). Jia et al.

(34) discovered that images obtained with 70 kVp combined with

30 ml of lower concentration contrast (300 mg iodine/ml) were

comparable in quality to those obtained with 100/120 kVp

combined with 65–75 ml of the same concentration contrast.

These studies suggest that low-dose scans based on low tube

voltage can reduce radiation dose while avoiding excessive

luminal attenuation. However, this approach is associated with

higher image noise and lower contrast-to-noise ratio, impacting

accurate plaque quantification and characterization. Iterative

reconstruction (IR) combined with low tube voltage scans is

beneficial for maintaining diagnostic image quality while

reducing radiation dose. Studies indicate that deep learning-based

image reconstruction algorithms can reduce radiation dose by

over 40% and improve image quality by 62%, without affecting

stenosis severity, plaque composition, and quantitative

assessment (35). However, there is limited literature on directly

addressing the impact of low tube voltage, necessitating

further research.

To mitigate subjective influences, studies have found that

histogram analysis and AI-based algorithms can overcome the

subjectivity of ROI selection by analyzing the entire plaque.

Matsumoto et al. (3) utilized histogram analysis with IVUS as

the gold standard, revealing that the area under the curve for
frontiersin.org
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diagnosing lipid-rich plaques based on the proportion of CT values

≤30 HU was significantly higher (0.9) than that for conventional

CT values (0.3), with sensitivity and specificity reaching 95% and

80%, respectively. While histogram analysis eliminates the

subjective impact of ROI selection, it does not account for

objective influences such as luminal attenuation, resulting in

varying threshold values across different studies (36).

Additionally, AI-based processing algorithms can achieve image

reconstruction, segmentation, measurement, and feature

extraction with high accuracy and low reader variability,

potentially reducing subjective influences while mitigating

objective influences such as luminal attenuation (36, 37).

Kolossváry et al. (38) processed CT images of 44 coronary artery

plaques, extracting radiomic features (935 in total). The results

indicated that, using NaF 18-positron emission tomography,

intravascular ultrasound, and optical coherence tomography as

gold standards, the diagnostic value of radiomic features in

identifying vulnerable plaques was significantly superior to

conventional CT parameters, with increased areas under the

curve of 0.22, 0.13, and 0.14, respectively. However, whether

radiomic features can classify plaque components and their

capabilities remain unreported and warrant further investigation.
2 Conclusion

While coronary computed tomography angiography (CCTA)

has become a common non-invasive imaging method for

evaluating plaques, it can not only reliably evaluate luminal

stenosis and its functional significance, but also accurately

evaluate the morphology and composition of plaque and identify

high-risk plaque, it is of great significance to guide the clinical

management of patients with coronary heart disease, accurate

evaluation of plaques based on CCTA still faces numerous

challenges due to factors such as luminal attenuation, parameter

settings, and subjectivity. The use of standardized scanning
Frontiers in Cardiovascular Medicine 05
methods, self-adaption, dual-energy techniques, and artificial

intelligence (AI) holds promise in addressing these challenges.

Particularly, AI has demonstrated significant advantages in

enhancing image quality and deeply exploring plaque

characteristics, showing considerable potential for clinical

applications. However, further research is needed to address the

direct impact of improving low tube voltage.
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