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Abdominal Aortic Aneurysm (AAA) is a disease characterized by localized dilation
of the abdominal aorta, involving multiple factors in its occurrence and
development, ultimately leading to vessel rupture and severe bleeding. AAA
has a high mortality rate, and there is a lack of targeted therapeutic drugs.
Epigenetic regulation plays a crucial role in AAA, and the treatment of AAA in
the epigenetic field may involve a series of related genes and pathways.
Abnormal expression of these genes may be a key factor in the occurrence of
the disease and could potentially serve as promising therapeutic targets.
Understanding the epigenetic regulation of AAA is of significant importance in
revealing the mechanisms underlying the disease and identifying new
therapeutic targets. This knowledge can contribute to offering AAA patients
better clinical treatment options beyond surgery. This review systematically
explores various aspects of epigenetic regulation in AAA, including DNA
methylation, histone modification, non-coding RNA, and RNA modification.
The analysis of the roles of these regulatory mechanisms, along with the
identification of relevant genes and pathways associated with AAA, is discussed
comprehensively. Additionally, a comprehensive discussion is provided on
existing treatment strategies and prospects for epigenetics-based treatments,
offering insights for future clinical interventions.
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1 Introduction

Abdominal Aortic Aneurysm (AAA) are aneurysm-like bulbous protrusions that

develop on the wall of the abdominal aorta, patients with AAA typically do not exhibit

significant symptoms in the early stages of the disease. There may be mild pulsation or

pressure sensations, but these symptoms are not pronounced. It is only when the

aneurysm reaches a certain ruptured size that the rupture of the abdominal aorta

becomes the patient’s sole apparent symptom, leading to life-threatening abdominal

hemorrhage (1, 2). Annually, at least 150,000 people die from AAA, with the majority

of deaths attributed to aneurysm rupture, carrying a high mortality rate of

approximately 70%–80% after rupture (3, 4).

Under normal circumstances, the aorta of a healthy individual is elastic. However, due

to the combined effects of genetic, environmental, and various complex factors, the

vascular wall in the abdominal aortic region may weaken. In such cases, the gradual
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force of blood against the damaged vascular wall initiates the

formation of AAA. As the disease progresses, the arterial wall

becomes weak and swollen, unable to withstand the stress of

blood flow within the artery, ultimately leading to the rupture of

the AAA (2, 5). Clinical treatment for AAA generally involves

surgical methods, with Open Aneurysm Repair (OAR) or

Endovascular Aneurysm Repair (EVAR) being commonly used.

OAR is suitable for patients with a longer life expectancy and

lower morbidity rates. Although EVAR has, to some extent,

reduced short-term mortality after AAA repair, operated patients

experience an increased burden on the aortic vasculature, leading

to an elevated risk of death (6). However, surgery has its

drawbacks, as it requires complex screening and risk assessment

before AAA surgery. Postoperatively, there may be instances of

endoleaks, and the long-term care entails significant economic

costs (7). Therefore, we may need to find a more reliable or

universal treatment than surgery for AAA. An alternative

treatment method is pharmaceutical intervention. Risk factors for

AAA in diagnostic screening include hypertension, atherosclerosis,

diabetes, etc, medications targeting these risk factors related

diseases may help slow the progression of AAA, reducing the risk

of rupture. In light of these information, the results of preclinical

studies in animal models suggest that statins, antihypertensive

drugs, doxycycline, metformin, and others have delaying effect on

AAA progression (8–10). However, the three main AAA models

currently available are elastase, CaCl2, and angiotensin II (AngII)/

apolipoprotein E (AapoE)-deficient mouse models, each of which

has defects that may not translate the findings to human AAA,

and there is currently insufficient evidence from multiple clinical

drug trials to conclusively prove the complete efficacy of these

drugs in treatment (11, 12). At the same time, these drugs may

have side effects in the treatment of AAA, and may have

contraindications, for example, statins can cause related muscle

symptoms (13), and β-blockers in antihypertensive drugs may

reduce cardiac output and vasodilation (14), which indicate that

the search for a new treatment option is essential.

Over the past few decades, with the accumulation of molecular

biology knowledge and the rapid development of molecular biology

techniques, epigenetics, as a significant branch of genetics, has

gradually gained widespread attention and in-depth research. Its role

in physiological and pathological conditions has sparked a keen

interest in personalized medicine (15). Research in the cardiovascular

field indicates that the three major epigenetic modifications—DNA

methylation, histone modification, and non-coding RNA

modification—may play a crucial role in the occurrence and

development of cardiovascular diseases (16). Recent studies suggest a

correlation between epigenetics and the pathogenesis of

cardiovascular diseases and AAA (17–19), including the role of DNA

methyltransferases, the modification of histones, the mechanisms of

non-coding RNA and RNA modification, which will be described in

detail below. The progress of AAA is a complex and multi-layered

issue, involving inflammation, matrix metalloproteinase (MMP)

activation, oxidative stress, intraluminal thrombosis, smooth muscle

apoptosis, and extracellular matrix (ECM) changes, among others,

the characteristics of AAA described above may be closely related to

epigenetic regulatory outcomes (1, 20). By elucidating the current
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research on epigenetics related to AAA and discussing the potential

involvement of epigenetic regulation in AAA progression, rupture,

and repair, this paper aims to provide insights and perspectives for

identifying new therapeutic targets.
2 Epigenetic mechanism of abdominal
aortic aneurysm

This section focuses on the mechanisms of four epigenetic

modifications in AAA, including DNA methylation, histone

modification, non-coding RNA action, and RNA modification At

present, DNA methylation, histone modification, non-coding RNA

modification and RNA modifications, are commonly studied

epigenetic mechanisms in AAA. The mechanisms have been

briefly visualized in figure and detailed at the beginning of each

part. However, epigenetic mechanisms also encompass other types

that have not been extensively explored in AAA, and their roles in

diseases are yet to be fully elucidated. Examples include chromatin

remodeling and other mechanisms Figure 1.
2.1 DNA methylation in abdominal aortic
aneurysms

DNA methylation in cardiovascular diseases is gaining attention;

however, its role in AAA has not been comprehensively studied. It is

well known that smoking is a significant risk factor for AAA, and

smoking has a crucial impact on the growth and rupture of AAA

(21). As mentioned earlier, DNA methylation is controlled by

DNMTs. Nicotine itself has been shown to not only affect the

expression of DNMT1 but also influence promoter methylation

levels in GABA-ergic neurons (22). Atherosclerosis is a complex

pathological process involving vascular wall cells and inflammatory

cells. As one of the risk factors for AAA, the mechanisms of

atherosclerosis may be correlated with AAA. Endothelial

dysfunction is the pathological basis of atherosclerosis and is

accompanied by changes in vascular wall permeability. Its

pathological process is closely related to abnormal DNA

methylation (23). Other risk factors for AAA, such as

hypertension and diabetes, may also involve similar mechanisms

in AAA, but further correlational research is needed Figure 2.

Early studies have demonstrated a significant elevation in plasma

homocysteine (Hcy) levels in AAA patients, and

hyperhomocysteinemia (HHcy) is associated with the expansion

rate of AAA (29). AAt the same time, a study’s findings indicate

that Hcy does not alter the protein levels of DNMT1 and DNMT3

but selectively reduces the activity of DNMT1 by 29% (30).

Elevated Hcy levels may promote the development of AAA through

multiple interrelated mechanisms, including endothelial dysfunction,

protein hydrolysis, endoplasmic reticulum stress, enhanced

inflammation, and increased cell apoptosis (31), which may indicate

that HHcy in AAA may play a crucial role in AAA progression by

reducing DNA methylation. Although research has shown an

association between Hcy level and the growth rate of AAA, the

conclusions drawn are relatively weak due to AAA being a

multifactorial disease. However, a studies have indicated that
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FIGURE 1

Abstract figure. Current research on epigenetics in AAA focuses on DNA methylation, histone modification, non-coding RNA action, and RNA
modification.
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patients with HHcy exhibit a faster expansion rate compared to those

with normal Hcy levels, with a considerable number of patients

demonstrating rapid expansion (>10 mm/year), thereby increasing

the risk of rupture (32). Another study aimed at exploring the

direct causal relationship between AAA and HHcy also suggests

that HHcy may exacerbate AAA formation at least partially

through the activation of peripheral fibroblast NADPH oxidase 4

(33). These two studies further confirm the high association of

AAA with HHcy. A cohort study by Kristina Sundquist et al.

provides an alternative perspective by confirming overall high

methylation in AAA cases and concluding a significant correlation

between overall DNA methylation, Hcy, and the baseline diameter

of AAA (34). However, this study did not establish a correlation

between overall DNA methylation and plasma Hcy levels. In the

future, further studies may be carried out to further explore the

specific mechanism of HHcy in promoting the growth and rupture

of AAA by mediating DNA methylation.

Moreover, the diminished inhibitory effect of regulatory T cells

(Tregs) may contribute to the progression of AAA, which is

closely related to DNA methylation. Research suggests a reduced

expression of FOXP3 (a transcriptional regulatory factor) in

peripheral CD4CD25 Tregs of AAA patients, leading to functional

deficiencies in overall CD4CD25 Tregs, indicating impaired

immune regulation by Tregs, which may contribute to the disease

progression of AAA (35). Another study confirms significantly

higher DNA methylation levels in Tregs of AAA patients
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compared to healthy subjects, indicating a transcriptionally

suppressed state affecting cellular functions (36). Furthermore,

changes in DNA methylation have been shown to impact the

expression of various genes related to vascular smooth muscle cell

(VSMC) apoptosis, inflammation, and ECM degradation. This

imbalance may be associated with the dysregulation of MMPs and

TIMPs, closely linking them to AAA (17). These findings warrant

further research for a comprehensive understanding of the

mechanistic role of DNA methylation in AAA.

In addition, there have been some exciting advances in genome-

wide DNA methylation. Evan J. Ryer et al. determined the genome-

wide DNA methylation in peripheral blood mononuclear cells

(PBMCs) of abdominal aortic aneurysm (AAA) patients,

discovering significant differences in DNA methylation at specific

CpG islands (CGIs). However, the observed differential methylation

was noted to be potentially age-related rather than AAA-related

(37). Additionally, the correlation between DNA methylation and

gene silencing increases with the density of CpG dinucleotides at

the promoter region (38). The human genome has fewer CpGs,

but more CGIs. CGIs, relatively small 5′ end promoter regions,

may experience gene suppression due to methylation of the fifth

carbon of cytosine in this region (39). Aberrant CGI

hypermethylation is common in tumor progression and may lead

to abnormal gene silencing (40). Furthermore, the variations in

5mC, 5hmC, TET family proteins, and DNMTs at the genome-

wide level differ depending on the type of cancer (24, 41)
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FIGURE 2

Mechanism of DNA methylation. DNA methylation, under the catalytic action of DNA methyltransferases (DNMTs) using S-adenosyl methionine (SAM)
as the methyl donor, involves the covalent binding of a methyl group to specific DNA base positions, resulting in the formation of 5-methylcytosine
(5mC) at the fifth carbon of cytosine. The overall process of DNA methylation is dynamic and can be divided into three stages: de novo DNA
methylation, DNA methylation maintenance, and DNA demethylation. The DNMT3A and DNMT3B subtypes in DNMTs are responsible for de novo
methylation of 5mC, while the DNMT1 subtype maintains methylation (24, 25). DNA demethylation mainly comprises passive demethylation and
active demethylation. In the process of passive DNA demethylation, the absence of DNMT1 due to multiple DNA replications prevents the
maintenance of DNA methylation (26). In active DNA demethylation, active DNA demethylation involves the Ten-Eleven translocation (TET)
enzymes, which oxidize 5mC to 5-hydroxymethylcytosine (5hmC). TET further oxidizes 5hmC to 5-formylcytosine (5fC). Under the action of TET,
5fC is then oxidized to 5-carboxylcytosine (5caC), which is subsequently excised by thymine DNA glycosylase (TDG) in the base excision repair
(BER) pathway (27, 28).
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potentially serving as relevant interrogation sites for DNA

methylation. Toghill BJ et al. used next-generation sequencing

(NGS) on VSMCs collected from individual aortic tissues,

pioneering the determination of CpG methylation status in

regulatory regions of genes located at AAA risk loci identified in

genome-wide association studies (GWAS) (42). With technological

advancements, epigenome-wide association studies (EWAS) have

evolved after GWAS, providing a systematic approach to revealing

epigenetic variations underlying common diseases. EWAS, applied

for a decade to analyze DNA methylation variations in complex

diseases, has unveiled new molecular mechanisms for various

common diseases, such as rheumatoid arthritis, metabolic

syndrome, breast cancer, Alzheimer’s disease, etc. It has made the

application of epigenetic variations as biomarkers possible (43).

This approach may lead to innovative research perspectives on the

mechanisms of DNA methylation in AAA, offering molecular-level

advancements in understanding the pathogenesis of AAA.
2.2 Histone modification in abdominal
aortic aneurysms

Research on histone acetylation and methylation modifications

in abdominal aortic aneurysm (AAA) has been extensive. In the
Frontiers in Cardiovascular Medicine 04
related studies of histone acetylation, Han et al. compared human

AAA tissue with healthy aortic tissue, analyzing the differences in

histone acetylation and the expression of corresponding HATs.

The results showed significant overexpression of three lysine

acetyltransferase (KAT) family members in the AAA vascular wall.

Some lysine acetyltransferases, such as KAT2B, were found to be

correlated with AAA diameter. High expression of KAT2B,

KAT3B, and KAT6B was also observed in inflammatory cells (44).

Another study found higher levels of H3 and H3K14 acetylation

in T lymphocytes of AAA patients (45). However, contrasting

results have been reported. As mentioned earlier, HDAC/HAT

constitutes a reversible enzyme pair regulating histone acetylation

PTM. Galán M et al. found that HDACs corresponding to KAT

were significantly upregulated in AAA. In a mouse model, HDAC

inhibitors were observed to restrict aneurysm progression. The

study suggested that HDAC may promote processes such as ECM

degradation, increased inflammatory mediators, and VSMC

apoptosis (46). While some studies in mouse models have

demonstrated inhibitory effects of HDAC inhibitors on MMP

expression, the specific mechanisms require further investigation

(47). Qian Xia et al. also identified a decrease in acetylation rates

in H3 and H3K9, attributing it to the elevated influence of

HDAC1 and HDAC5. HDAC1 and HDAC5 were found to inhibit
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the transcriptional activity of regulatory T cells (Tregs) (36).

Additionally, Jacob Greenway et al. detected downregulation of

H3K4me1, H3K9me3, and H3K56ac levels in two animal AAA

models. The study revealed dynamic changes in histone H3

modifications during AAA formation, with no observed

upregulation in H3 modifications (48). The discrepancies in results

may be attributed to the levels of HAT and HDAC expression and

their alterations during AAA development. Moreover, differences

in modifications at specific sites vs. global modifications, as well as

species variations, risk factors, and control tissue, need further in-

depth research to address these disparities and determine the

processes regulating histone methylation and acetylation patterns

in AAA Figure 3.

In addition, there are novel findings regarding histone

methylation. Research has revealed that histone demethylase

JMJD3 stimulates the pro-inflammatory monocyte/macrophage

phenotype in AAA tissue by selectively removing inhibitory

histone H3K27me3 methylation. This leads to vascular remodeling

and aortic dilation, promoting the progression of AAA (54).

Another study reported that SETDB2, a histone methyltransferase,

specifically trimethylates lysine 9 on histone H3 (H3K9me3),

reducing the expression of inhibitory histones. This results in the

loss of TIMP expression, causing dysregulation of MMP activity,
FIGURE 3

Mechanism of histone modification. DNA is wrapped around a histone oc
chromatin. The basic units of nucleosomes, after folding, constitute ch
euchromatin and heterochromatin, corresponding to the activation and si
more open conformation, supporting gene transcription, while the dense
The structure of chromatin can be modulated through post-translational m
covalent modifications include acetylation, methylation, and phosphoryla
ribosylation, deimination, and proline isomerization, among others (51). E
histone residues. For instance, histone acetylation involves histone acetylt
conformation of euchromatin. The action of histone deacetylases (HDAC
lysine side chains. HDAC/HAT constitutes a reversible enzyme pair that reg
methyltransferases (HMTs) and demethylases (HDMs). Histone phosphory
dynamic process, protein kinases (PKs) and phosphatases (PPs) respective
overall level of modifications (53).
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aortic wall degeneration, and AAA formation (55). Numerous

studies have demonstrated that, apart from histone acetylation,

methylation, and phosphorylation, histone modifications also

include ubiquitination and butyrylation. These modifications not

only participate in the progression of metabolic diseases (56), but

also impact the tumor microenvironment (57).

Furthermore, histone modifications, particularly histone

methylation and acetylation, which have been extensively

studied, play a regulatory role in cardiovascular diseases,

including AAA risk factors such as atherosclerosis and

hypertension (16). These study of histone modifications will

play some inspiring roles in the study of the mechanism of

AAA disease progression. In addition, histone modifications

also include phosphorylation mentioned above and some novel

modifications studied in cancer, such as lactatation,

ubiquitination, lysine, citrullination, etc. These modifications

may be closely related to metabolites (58). Exploring other

histone modifications may provide new directions for studying

the pathogenesis and treatment of AAA and requires further

investigation. On this basis, since nucleosomes formed after

DNA binding to histones control the structure of chromatin,

the levels of DNA methylation and histone modification can

also be expanded, and the microscopic to macroscopic study
tamer to form a nucleosome, and nucleosomes are the basic units of
romatin (49). Generally, there are two different forms of chromatin:
lencing of gene expression, respectively. Euchromatin tends to have a
structure of heterochromatin tends to inhibit gene transcription (50).
odifications (PTMs) of histone tails. Currently, the most studied histone
tion. In addition to these, there are ubiquitination, sumoylation, ADP-
ach modification has its corresponding enzymes that act on different
ransferases (HATs), which are typically associated with the more open
s) counteracts the effects of HATs and restores the positive charge of
ulates histone acetylation PTM (52). Methylation is regulated by histone
lation, similar to histone acetylation and methylation, is also a highly
ly add and remove histone modifications, collectively controlling the
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can be carried out at the level of chromatin remodeling, so as to

further explore the disease progression of AAA.
2.3 Non-coding RNA in abdominal aortic
aneurysms

Approximately only 2% of the human genome encodes

proteins, while non-coding RNAs (ncRNAs) are RNA molecules

that do not encode proteins. In addition to their roles in

transcription, ncRNAs may play complex and crucial epigenetic

regulatory roles in higher animals. These ncRNAs, often referred

to as regulatory RNAs, participate in biological processes such as

gene expression regulation and chromatin structure modulation

by interacting with DNA, RNA, and proteins (59). This section

focuses on the above three ncRNAs that have been studied in

AAA so far Figure 4.

2.3.1 miRNA
The types and functions of miRNAs in AAA are diverse, and

their regulatory roles vary. The following summary outlines the

current understanding of miRNA regulation in AAA based on

animal models and in vitro experiments. Some common target

genes and regulatory functions may provide insights into the

treatment of AAA.
FIGURE 4

Main non-coding RNA regulation mode. MicroRNAs (miRNAs) are endogeno
post-transcriptional expression inhibition of target genes by binding and pairi
RNAs (lncRNAs), with lengths exceeding 200 nucleotides and lacking prot
various genes, promote the formation of nuclear structures, and localize t
activate translation, sponging mRNA (61). Additionally, circular RNAs (circ
template for proteins, but also spongify competition to inhibit mirnas. At the s
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2.3.2 lncRNA
The main function of miRNA in gene regulation is to silence

the expression of target genes by binding to mRNA. In contrast,

the mechanism of action of lncRNA is more complex, as

mentioned earlier, serving as a scaffold to regulate the expression

of various genes, promote nuclear structure formation, and

localize specific DNA sites, among other functions (61).

Although there is limited research on lncRNA in AAA, studies

have demonstrated its regulation in cardiovascular diseases

(CVD) such as hypertension and atherosclerosis in vascular

smooth muscle cells, involving various pathological and

physiological changes (63).

H19 is a specific lncRNA associated with AAA. Li et al.

established two mouse models of AAA and analyzed the RNA

transcription expression in the models. The results indicated

that the upregulation of H19 is correlated with the progression

of AAA, including the content and apoptosis of SMCs.

In vitro experiments demonstrated a positive correlation between

H19 expression and the apoptosis rate of human aortic

smooth muscle cells, suggesting that lncRNA H19 is a novel

regulatory factor in the initiation and development of AAA (64).

Another study demonstrated the role of H19 in enhancing

vascular inflammation and inducing AAA formation. H19 was

found to enhance vascular pro-inflammatory IL-6 and MCP-1

and promote AAA formation by enhancing macrophage
us RNA molecules of approximately 23 nucleotides in length. They guide
ng with the 3′ UTR of protein-coding RNA (mRNA) (60). Long non-coding
ein-coding capacity, can act as scaffolds to regulate the expression of
o specific DNA sites, In addition, lncRNAs can maintain mRNA stability,
RNAs), Because of its stability, it can not only serve as a translation
ame time, it can bind proteins to regulate gene expression pathways (62).
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infiltration (65). X-inactive specific transcript (XIST) is an lncRNA

located on the X chromosome, and its role in certain cancers has

been elucidated, including breast cancer, rectal cancer, oral

cancer (66–68). XIST regulates apoptosis and proliferation

through competitive miRNA mechanisms, closely related to the

development and growth of tumors (69, 70). Research has also

shown that XIST in thoracic aortic aneurysm (TAA) acts as a

“sponge” to absorb miR-29b-3p, leading to overexpression of

elastin (Eln) in VSMCs and promoting smooth muscle cell

apoptosis, indicating its role in aneurysm development (71).

AAA also involves abnormal proliferation and apoptosis of

VSMCs. Corresponding research results are similar to those in

TAA, mainly related to competitive miRNA pathways. Studies

have shown that upregulation of XIST can competitively interact

with miR-1264 in the WNT/β-catenin signaling pathway and

competitively interact with miR-762-mediated mitogen-activated

protein kinase kinase 4 (MAP2K4) pathway, thereby inhibiting

apoptosis and promoting the proliferation of VSMCs,

contributing to the development of AAA (72, 73).

Many recent studies have highlighted the involvement of

various lncRNAs in AAA. For instance, lncRNA PVT1 promotes

VSMC apoptosis, ECM degradation, and pro-inflammatory factor

production by upregulating MMP-9. On the other hand, lncRNA

PVT1 acts as a sponge for miR-3127-5p/NCKAP1l, inhibiting

VSMC proliferation, inducing apoptosis, and activating

inflammation, thus promoting AAA progression (74, 75).

Upregulation of lncRNA NEAT1 accelerates VSMC proliferation

and inhibits replicative cell apoptosis through the miR-4688/

TULP3 pathway (76). The interaction between lncRNA TUG1

and transcriptional repressor KLF4 mediates impaired SMC

differentiation function (77). Elevated lncRNA Sox2ot enhances

oxidative stress and inflammation in VSMCs through competitive

regulation of the miR-145/Egr1 pathway (78) GAS5

overexpression inhibits cell proliferation, induces SMC apoptosis,

and accelerates AAA formation in a mouse model. GAS5 acts as

a sponge for miR-21, inhibiting the miR-21/PTEN pathway and

Akt phosphorylation. Additionally, GAS5 forms a positive

feedback loop with Y-box binding protein 1 (YBX1), promoting

downstream p21 expression, inhibiting SMC proliferation, and

inducing apoptosis (79), GAS5 also induces SMC apoptosis

through activation of the EZH2-mediated RIG-I signaling

pathway (80). NUDT6, a conservative antisense transcript of

FGF2, impairs SMC migration, limits proliferation, and enhances

apoptosis, promoting AAA and carotid artery diseases (81).

LINC00473 regulates the miR-212-5p/BASP1 pathway to exert

anti-proliferative and pro-apoptotic effects in VSMCs (82).

Overexpression of CRNDE upregulates Smad3 via Bcl-3,

promoting VSMC proliferation and inhibiting cell apoptosis in

AAA (83). SENCR overexpression may inhibit AAA formation

by suppressing VSMC apoptosis and extracellular matrix

degradation, but the specific pathway mechanism needs further

exploration (84). These studies provide some scientific basis for

understanding the pathogenesis and potential treatments of AAA

involving lncRNAs. While many of these lncRNAs act on

corresponding miRNAs, exploring other mechanisms of lncRNA

epigenetic regulation might yield unexpected therapeutic effects
Frontiers in Cardiovascular Medicine 07
in AAA treatment. Additionally, the clinical translation of these

findings requires further investigation. The progression of AAA

is a long-term process involving different epigenetic changes at

different stages. Therefore, clinical research with sufficient sample

sizes and excellent staging and indicator selection is crucial for

precise and feasible AAA treatment.

2.3.3 CircRNA
CircRNAs, as a relatively novel research avenue in AAA,

primarily exert their effects through miRNA sponging, possibly

achieved through competitive endogenous RNA (ceRNA)

mechanisms. Bioinformatics studies have explored potential

molecular mechanisms in AAA by constructing ceRNA interaction

networks involving circRNAs and miRNAs (85). For instance,

circCBFB acts as a miR-28-5p sponge, promoting the reduction of

GRIA4 and LYPD3 levels, thereby decreasing VSMC apoptosis

and facilitating AAA progression (86). Novel circRNAs such as

circ_0092291 might inhibit Ang II-induced smooth muscle cell

damage by sponging miR-626, leading to increased levels of

collagen IV alpha 1 chain (COL4A1) and suppressing AAA

development (87). Circ_0002168 regulates VSMC proliferation and

apoptosis by sponging miR-545-3p to enhance CKAP4 expression,

potentially impacting VSMC loss in AAA (88). Another circRNA,

hsa_circ_0087352, upregulated in AAA, may enhance macrophage

inflammation and regulate VSMC apoptosis by sponging has-miR-

149-5p and acting on LPS (89). Furthermore, circRNAs can

influence protein pathways. For instance, circChordc1 induces

wave protein degradation, increases GSK3β/β-catenin pathway

activity, promotes VSMC phenotype transition, reduces apoptosis,

and alleviates vascular remodeling to inhibit AAA progression

(90). CircCdyl promotes vascular inflammation and induces M1

polarization in macrophages, contributing to AAA formation, by

inhibiting interferon regulatory factor 4 (IRF4) nuclear entry and

acting as a sponge for let-7c to enhance C/EBP-δ expression (91).

Additionally, circRNA transcription, such as that of the circRNA

of the ataxia-telangiectasia mutated gene (cATM), may represent

an early characteristic change in the AAA microenvironment,

triggering oxidative stress reactions in SMCs and potentially

serving as a crucial molecular diagnostic indicator for AAA (92).

Despite these findings, research on the role of circRNAs in AAA

remains incomplete. Mechanisms involving other miRNA

sponging, as well as alternative roles of circRNAs, such as protein

translocation, translation, and interactions between proteins,

require further exploration in subsequent studies.

Certainly, the involvement of ncRNA and epigenetic regulation

extends beyond the mentioned three types. For instance, pathways

related to piwi-interacting RNA (piRNA) and the target sites of

small interfering RNA (siRNA) also contribute. Notably, studies

have indicated the potential involvement of the piRNA pathway,

specifically piRNA piRPG, in AAA (93). Further in-depth

research is warranted to explore the specific roles of other

ncRNAs in AAA pathogenesis.

Due to the complex and multifactorial nature of AAA, ncRNA

may represent a potential factor for effective treatment. This is

because ncRNAs can regulate the expression of corresponding

proteins by targeting multiple mRNAs and influencing various
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signaling pathways related to AAA. NcRNA is currently in the

exploratory stage, and when transcribing multiple genes, only a

portion of them may be translated into proteins. Other genes are

intricately regulated by a network of non-coding RNAs,

controlling the expression of the final protein products.

Numerous studies emphasize the significance of ncRNAs, as they

play critical roles in the development of diseases. Moreover, these

research findings are actively translating into clinical therapies.

NcRNAs may serve as the foundation for clinical targeted

treatments, and their role in screening and monitoring early

stages of the disease is crucial for making accurate therapeutic

decisions (94).
2.4 RNA modification in abdominal aortic
aneurysms

In recent years, an increasing body of research has highlighted

the crucial role of epigenetic factors in the onset and progression

of cardiovascular diseases (95–98). RNA methylation is a

significant form of epigenetic modification, belonging to the fields

of epitranscriptomics and epigenomics, which collectively regulate

gene expression in eukaryotes (99, 100), this includes 6-

methyladenosine (m6A), 5-methylcytosine (m5C), and N-7-

methylguanosine (m7G). Currently, studies regarding the

association between RNA methylation and AAA are limited, with

the primary focus on m6A.

2.4.1 m6A modification
m6A modification involves methylation of the sixth nitrogen

atom on the adenine base of RNA, and this modification is widely

present in eukaryotes, playing a role in the regulation of certain

non-coding RNA metabolism (101). The enzymes associated with

m6A modification are categorized into methyltransferases (writers),

demethylases (erasers), and m6A-binding proteins (readers),

forming a crucial protein ensemble that can add, remove, and

recognize m6A modification sites, thereby altering biological

processes (102). Major methyltransferases include METTL3,

METTL14, WTAP, RBM15/15B, KIAA1429, ZC3H13, and

METTL16, while demethylases comprise FTO and ALKBH5.

Recognized readers include YTHDF1, YTHDF2, YTHDF3,

YTHDC1, YTHDC2, HNRNPC, HNRNPG, among others (103).

m6A methylation profoundly impacts various aspects of RNA

metabolism, including RNA expression, splicing, translation, and

RNA-protein interactions (104). It participates in the regulation of

multiple biological processes, such as autophagy, inflammation,

oxidative stress, DNA damage, and cellular aging (105–107), all of

which are closely associated with the occurrence and progression of

AAA. AAA is characterized by vascular remodeling and progressive

dilation (1), infiltration of lymphocytes and macrophages into the

vessel wall, and smooth muscle cell apoptosis (108). Studies have

revealed a significant increase in m6A modification levels in AAA,

with elevated m6A posing an increased risk of AAA rupture (109,

110). Moreover, differential expression of METTL14, FTO, and

YTHDF3 has been observed in various types of inflammatory cells

in AAA tissue. FTO, in particular, has shown a strong correlation
Frontiers in Cardiovascular Medicine 08
with the infiltration of aneurysmal smooth muscle cells and

macrophages, indicating its potential pivotal role in AAA

progression (111). Furthermore, METTL14, HNRNPC, and RBM15

exhibit significant expression differences in AAA and are strongly

associated with infiltrative immune cells such as macrophages and

mast cells (112). RBM15, by recruiting the WTAP-METTL3-

METTL14 RNA methyltransferase complex, enhances m6A levels.

Knocking down RBM15 can reduce the expression of m6A-

dependent CASP3, inhibiting apoptosis in human abdominal aortic

smooth muscle cells (113, 114). In addition, a study by Zhong et al.

found that METTL3/m6A participates in AAA formation by

promoting the expression of mature miR34a, thereby reducing the

expression of SIRP1, providing new targets and diagnostic

biomarkers for clinical treatment of AAA (115). Current research

on the mechanism of m6A action in AAA mostly focuses on FTO,

METTL3, and METTL14, and further investigation is needed to

explore the interactions between other regulatory factors.

2.4.2 m5C modification
m5C modification refers to the methylation of the fifth carbon

atom on the cytosine base of RNA molecules, a process

predominantly catalyzed by enzymes of the NSUN family in

eukaryotes. This modification participates in various RNA

biological processes, including RNA export, translation, and

ribosome assembly (116). Post-transcriptional m5C modification

has been confirmed to play a crucial role in various cancer

diseases such as lung cancer (117), prostate cancer (118), breast

cancer (119), bladder cancer (120) among others. Currently,

there is limited research on m5C modification in AAA. Several

studies have indicated that NSUN2, by regulating mRNA stability

and the translation process, influences a range of pathological

processes, including cell proliferation, oxidative stress, and

inflammatory responses (121–123). Furthermore, research has

shown a significant increase in mRNA m5C modification levels

in AAA compared to healthy groups (124). These findings

suggest that m5C modification may play a role in the clinical

mechanisms affecting AAA, providing new avenues for research

in AAA treatment.

2.4.3 m7G modification
m7G modification is one of the most common post-

transcriptional base modifications, widely distributed in tRNA,

rRNA, and the 5′ cap region of eukaryotic mRNA (125). The

identified methyltransferases responsible for m7G methylation

include the yeast Trm82/Trm8 complex and its mammalian

homolog METTL1/WDR4 complex (126). To date, numerous

research findings suggest that m7G modification influences the

occurrence and development of various cancer diseases, such as

hepatocellular carcinoma (127), esophageal cancer (128), and

bladder cancer (129). Additionally, reports have indicated the

significant role of m7G modification in inflammation and

angiogenesis (130). It can be inferred that m7G modification

may also impact the development of AAA. However, the specific

mechanisms through which m7G modification affects AAA

remain unclear. Bioinformatic analysis has revealed a significant

correlation between AAA and m7G-related genes, including
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CYFIP1, EIF3D, EIF4E3, NSUN2, and NUDT11 (131).

Nevertheless, further in vivo and in vitro experiments are needed

to validate the mechanisms through which m7G modification

influences abdominal aortic aneurysm.

RNA modifications extend beyond the mentioned types. For

example, 3-methylcytidine (m3C) is close to m5C sites, and 7-

methylguanosine cap structure [m7Gpp(pN)] acts on

dihydrouridine (D) and pseudouridine (Ψ) in tRNA and rRNA.

Research on these modifications has been conducted in breast

cancer, gastric cancer, liver cancer, and prostate cancer, but

investigations into the relationship between RNA modifications

and AAA are still ongoing (132). Studies have shown that N1-

methyladenosine (m1A) may promote macrophage polarization

in aortic inflammation through the reader YTHDF3, affecting

target gene expression and influencing the progression of AAA

(133). Further research is needed to explore the specific

mechanisms and roles of RNA modifications, paving the way for

understanding the pathogenesis and treatment of AAA.
3 Epigenetic regulatory genes
potentially associated with abdominal
aortic aneurysm

In the context of epigenetic pathways related to AAA, some

novel examples have caught our attention. They may be associated

with the progression of AAA and could potentially regulate the

expression of corresponding proteins through epigenetic

mechanisms. The following outlines three examples related to AAA.
3.1 PCSKs

The PCSK family consists of nine proteases, with PCSK9 being

demonstrated as crucial in the regulation of CVD (134). In a 2023

study, a potential therapeutic target, Proprotein Convertase

Subtilisin/Kexin Type 9 (PCSK9), was identified through AAA’s

genome-wide association meta-analysis of 121 independent risk

loci. When elastase was introduced into PCSK9 mice, AAA

growth decreased, indicating a unique role for PCSK9 in AAA

(135). Besides, Inhibitors of PCSK9 can reduce low-density

lipoprotein (LDL) cholesterol levels, potentially decreasing the risk

of severe cardiovascular disease symptoms associated with

atherosclerosis (136). A large-scale study involving 100,000

individuals suggested that elevated lipoprotein levels may increase

the risk of AAA 2–3 times (137). Given PCSK’s role in regulating

lipid metabolism, this represents the feasibility of PCSK as a

therapeutic target, necessitating more preclinical research and

clinical trials to assess its efficacy in AAA-related outcomes.

Meanwhile, epigenetic mechanisms likely play a role in some

functional aspects of PCSK genes. For example, sirt6 deacetylase

can inhibit PCSK9 gene expression by enriching the transcription

factor Foxo3 in the proximal promoter region of the PCSK9

gene, leading to histone H3 deacetylation (138). Increased

expression of has-miR-335 and has-miR-6825 can lower PCSK9

mRNA expression in myocardial cells (139). Additionally, the
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histone acetyltransferase P300 may increase PCSK9 expression

(140). Non-coding RNAs (ncRNA) play a crucial role in the

progression of inflammation in atherosclerosis by targeting genes

related to the PCSK9 pathway at the post-transcriptional level

(141). Further research is needed to uncover the pathway-related

mechanisms of PCSK9 in AAA, potentially providing new

insights and breakthroughs into the complex pathogenesis of AAA.

While PCSK9’s Epigenetic importance is established, the

specific mechanism of other PCSK family protein in AAA are

still under exploration. Members of the PCSK family share

structural similarities, but their functional roles vary. In cancer

research, other PCSK family members have been reported to

activate cytokines, influencing cell proliferation, migration, and

extracellular matrix remodeling—important features in the

progression of AAA (142). A study categorized PCSK analysis

into plaque expression, biochemical blood parameters,

morphological characteristics, and patient symptoms. The

cumulative data from each section suggested the feasibility of

PCSK6 as a new therapeutic target, followed by PCSK5, PCSK7,

and FURIN, all showing potential for CVD treatment within this

family (143). This, of course, is also closely related to the

treatment of AAA. Therefore, the research on PCSK family

proteins may be more in-depth and comprehensive.
3.2 TGF-β

The transforming growth factor-beta (TGF-β) family members

include TGF-beta, pathway factors, and bone morphogenetic

proteins (BMP), among other genes, with extensive research in

cancer. TGFβs can activate various pathways, including the Sma-

and Mad-related family proteins (Smad), mitogen-activated

protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)

pathways. Their association with AAA may lie in their ability to

ultimately inhibit inflammatory cell infiltration, reduce ECM

degradation, limit VSMC apoptosis, promote ECM formation,

and be involved in tissue repair, fibrosis, extracellular matrix

remodeling, cell proliferation, and migration (144, 145). It’s

worth mentioning that the Smad pathway, in terms of

epigenetics, is regulated by various miRNAs during the AAA

process. Notably, miRNA-29b-mediated Smad targeting facilitates

AAA by influencing key matrix metalloproteinases (MMP-2 and

MMP-9). Inhibiting miRNA-26a increases gene expression of

SMAD-1 and SMAD-4, promoting vascular smooth muscle cell

proliferation, inhibiting cell differentiation and apoptosis, altering

TGF-β pathway signaling. Additionally, miR-424/322 analogs

modulate Smad2/3/runt (146–149). Moreover, miRNA-195,

miRNA-155, and miR-143/145 intersect with the Smad pathway

in the TGF-β pathway (150). A genetic association study in a

Dutch population analyzed single nucleotide polymorphisms

(SNPs) in TGF-β receptor genes TGFBR1 and TGFBR2,

revealing potential correlations similar to TAA in AAA (151).

This may be evidence that some TGF-β is related to genetics or

epigenetics. In the TGF-β pathway, multiple genes coordinate

final outcomes, and aside from the Smad pathway, the other two

pathways may form a complex and mutually influencing
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regulatory system with various non-coding RNAs. Furthermore,

there is limited research on histone modification and DNA

methylation in this context, necessitating further exploration of

the pathways and discovery of new targets.
3.3 RTKs

Receptor tyrosine kinases (RTKs) form the largest class of

enzyme-linked receptors, serving both as receptors for growth

factors and as enzymes that catalyze downstream target protein

phosphorylation. RTKs play crucial regulatory roles not only in

normal cells but also have pivotal functions in the progression of

various cancers, including lung cancer, gastric cancer, thyroid

cancer, etc (152). Mutations in receptor tyrosine kinases lead to

the activation of a series of signal cascades, impacting protein

expression, including epigenetic effects, although specific research

in this regard is currently lacking. RTKs can modulate various

downstream signaling pathways such as MAPK, PI3K/Akt, and

JAK/STAT. Various types of RTKs may be overexpressed in

AAA, including epidermal growth factor receptors (EGFRs)

(153), vascular endothelial growth factor receptors (VEGFRs)

(154), platelet-derived growth factor receptors (PDGFRs) (155),

insulin-like growth factor receptors (IGFRs) (156) and fibroblast

growth factor receptors (FGFRs) (157). Research indicates that

caspase recruitment domain and membraneassociated guanylate

kinaselike domain protein 3 (CARMA3) recruits two downstream

signaling molecules, BCL10 and MALT1, through its N-terminal

effector CARD domain, forming the CARD11-BCL10-MALT1

(CBM) complex (158), involved in the NF-kB signaling pathway

induced by G protein-coupled receptor (GPCR) and RTK.

Inflammation is a critical feature in the pathogenesis of

cardiovascular diseases, including Abdominal Aortic Aneurysm

(159). During the inflammatory process, blood vessels and the

surrounding connective tissue are important regulatory factors

(160). In endothelial cells of mice, CARMA3 assembles BCL10

and MALT1 to form the CBM signalosome, triggering NF-kB

activation induced by CXCL8/IL8. CXCL8/IL8 is a crucial

chemokine involved in promoting angiogenesis and

inflammation. This process controls VEGF expression and

promotes autocrine activation of VEGF receptors (161). The

CBM complex also mediates coagulation-induced NF activation

(162). However, how CARMA3 connects to GPCR and regulates

the NF-kB signaling pathway remains a puzzle. Future studies

can explore how RTKs, through epigenetic mechanisms,

influence NF-kB to impact the occurrence and development of

AAA, thereby identifying new therapeutic targets.

The three aforementioned gene pathways represent only a

minute fraction of the vast gene regulatory network. In addition

to the previously discussed pathways, such as the inflammatory

response pathways, including the Interleukin-6 (IL-6) pathway,

and the MMP pathway responsible for degrading cellular tissue

matrix, there is limited research on the interplay with

epigenetics. Besides refining the epigenetic aspects of these

pathways, further exploration and research are needed on gene
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pathways related to cellular autophagy, ECM, and VSMC

proliferation, and their associations with epigenetic modifications.
4 Current drug and prospect of
epigenetic treatment for abdominal
aortic aneurysms

In preclinical studies of abdominal aortic aneurysm (AAA),

three main rodent models are commonly employed: the elastase

model, the CaCl2 model, and AngII/ApoE deficient mouse

model. The elastase model emphasizes the role of inflammation-

related mechanisms in AAA but may ultimately lead to healing

unrelated to AAA rupture. The CaCl2 model can induce a

smaller degree of aneurysm and, similar to the elastase model,

does not result in AAA rupture. The AngII/ApoE deficient

mouse model is the most commonly used, causing rupture but

potentially having a higher correlation with aortic dissection, and

its results may not necessarily translate to human AAA outcomes

(163). As a matter of fact, a challenge in current experiments

related to abdominal aortic aneurysm lies in the difficulty of

translating some of the existing animal model results into clinical

trial outcomes. On the one hand, animal models need continued

optimization due to the physiological and biochemical differences

between rodents and mammals. On the other hand, inherent

differences exist between animal models and humans in various

aspects. The pathogenesis of human AAA is highly complex,

requiring interdisciplinary scientific approaches to prove the

efficacy of drug treatments in the progression from small to large

AAA after the discovery of small AAAs Figure 5.
4.1 Current drug for AAA

Due to studies demonstrating a common coexistence and

positive correlation between Chlamydia pneumoniae infection and

AAA progression (164, 165), antibiotics were once considered as

potential candidates for clinical treatment. However, results from

two large clinical studies showed that doxycycline treatment did

not reduce aneurysm growth, nor did it delay the need for AAA

surgery or the timing of surgical repair (166, 167). The most

commonly used AAA animal model involves inducing abdominal

aortic aneurysm formation with angiotensin II, and clinical trials

are often conducted using ACE inhibitors (ACEIs) and

angiotensin II receptor blockers (ARBs). Additionally, there are

numerous clinical trials for anti-inflammatory drugs targeting

immune cell inflammatory infiltration in AAA, statin drugs

selected from observational experiments for their potential

correlation with AAA growth and rupture, and antiplatelet drugs

that weaken blood clots. It is noteworthy that metformin, targeting

the risk factor of diabetes for AAA, is still under clinical trial.

However, AAA growth is a long-term process influenced by

multiple factors, including statistical considerations. Since age is

also a risk factor for AAA, elderly AAA patients often end up

with the outcome of loss to follow-up due to death. As a result,

the statistical results of clinical trials are often censored, making
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FIGURE 5

Prospects for epigenetic treatment of AAA. Epigenetic drugs need to go through clinical trials, we may be able to look for therapeutic ideas for AAA
through epigenetics in the therapeutic mechanisms of CVD, cancer and pathways.
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them less convincing (9, 168, 169). Currently, most drug

clinical trials involve repurposing basic drugs from other diseases.

These trials test the impact of drugs on limiting AAA growth,

but there is still no clinical trial data providing conclusive evidence

of drug efficacy in restricting AAA progression. Further research

may require larger sample sizes, diverse populations, and clinical

trial designs that account for gender differences. Future

exploration may also involve personalized targeting of drug

development for AAA to translate the effects of AAA-related

drugs into therapeutic outcomes.
4.2 Possibility of epigenetic modification in
the treatment of AAA

Since the cellular aberrations observed in abdominal aortic

aneurysms (AAA) involving proliferation, apoptosis regulation,

inflammatory infiltration, and fibrosis are similar to those

observed in cancer, the therapeutic significance of epigenetic

modification in cancer may be instructive for AAA. It is plausible

that similar treatment approaches could be applied. For example,

Brd4, as an epigenetic regulator of multiple programmed cell

death, has some untapped potential in cancer. This may indicate

that it may serve as a potential direction for epigenetic therapy of

AAA (170). In addition, m6A in RNA modification may play

some crucial roles in tumor glycolysis, and the glycolytic

reprogramming of cancer cells is a major characteristic of cancer,
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which may become a special therapeutic mechanism affecting the

occurrence and development of tumors. It may represent that

AAA may also have similar epigenetic mechanisms related to

proliferation to be further studied (171). Immunological

treatments targeting cell-specific epigenetic modifiers such as

histone demethylase JMJD3 and SET domain bifurcated protein

lysine methyltransferase 2 (SETDB2) have shown promise in

effectively intervening in AAA progression (54, 55).

Exploring well-established pathways in cancer research for

potential treatment targets is anotheravenue. For instance, the

Wnt/β-catenin pathway has been found to be significantly

activated in human and experimental animal AAA models,

suggesting the presence of potential therapeutic targets, despite

the exclusion of specific anti-tumor drugs for arterial disease in

animal models (172). Due to the intricate genetic actions of

pathways, in-depth research is necessary to determine whether

improving arterial aneurysm development is achievable by

targeting specific components of these pathways. The presence of

ncRNAs may fulfill this role. Recent studies on lncRNA have

shown that inhibiting H19 expression could serve as a novel

molecular therapeutic target, preventing or slowing AAA

progression by suppressing IL-6 expression (65). The role of

miRNAs in AAA treatment has been demonstrated (Table 1),

but a combination with specific pathways and target gene

functions is still required. It is essential to explore the

intersections of various pathways and ncRNAs in detail to

identify critical therapeutic targets for AAA progression.
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TABLE 1 The Role of miRNA in AAA.

The miRNA in AAA

miRNA
types

Up-regulated
(++)/Down-
regulated (−)

Gene miRNA regulatory function Sample Reference

miR-1-3p – TLR4 Inducing the formation of dedifferentiated cell phenotypes and
inflammation

hASMC (173)

miR-10b + CMA1, LCN2 Promotion of degradation of elastin, elevation of neutrophil and
mast cell markers

Mouse whole aorta (174)

miR-15a-5p + CDKN2B Inhibition of apoptosis of SMCs hASMC (175)

miR-17-5p − TXNIP, NLRP3 Inhibition of inflammatory cytokine release, reducing
macrophage pyroptosis

Mouse ADSC (176)

miR-19b-3p − MST4 Inhibition of stem cell proliferation, suppression of VSMC
senescence

Mouse whole aorta (177)

miR-21 + PTEN Promotion of aortic wall cell proliferation and reduction in cell
apoptosis

Mouse whole aorta, hASMC,
hAFB 和 hAEC

(178)

miR-23b − FoxO4 Inhibition of VSMC phenotype switching Human AAA tissue and mouse
aortic VSMC

(179)

miR-24 − CHI3L1 Promotion of inflammation in macrophages, SMCs, and VECs hASMC, hAEC, mouse whole
aorta

(180)

miR-26a − Smad1, Smad4 Promotion of vascular SMC proliferation while concurrently
inhibiting cell differentiation and apoptosis

hASMC (146)

miR-28-5p + GRIA4, LYPD3 Promotion of SMCs apoptosis hASMC (86)

miR-29a-3p + PTEN Promotion of AECs proliferation hAEC, mouse AEC (181)

miR-29b − Col1a1, Col3a1,
Col5a1, Eln

Inhibition of perivascular fibrosis and decreasing collagen
content

hASMC, hAFB (147)

miR-126 − ADMA9 Promotion of macrophage infiltration, cell apoptosis, and
inflammation

hASMC, hAoECs (182)

miR-126-5p − VEPH1 SMCs synthesis and phenotype transition hASMC (183)

miR-126a-5p − ADAMTS-4 Inhibition of the infiltration of inflammatory macrophages hASMC (184)

miR-144-3p + EZH2 Promotion of SMCs proliferation and inhibit cell apoptosis hASMC (185)

miR-144-5p − TLR2 and OLR1 Inhibition of the M1 macrophage polarization Macrophages (186)

miR-147 + EV Promotion of the macrophage inflammatory response hAMSC (187)

miR-155-5p + FOS, ZIC3 Inhibition of the activity of VSMCs and reduce cell apoptosis hASMC (188)

miR-155 + MMP-2, MMP-9,
iNOS, MCP-1

Promotion of the proliferation and migration of VSMCs hVSMC (189)

miR-181b + TIMP-3 Inhibition of the expression of elastin and collagen proteins Human and Mouse Abdominal
Aortic Macrophages

(190)

miR-194 − KDM3A Inhibition of inflammatory response and oxidative stress Mouse VSMC (191)

miR-195 + Smad3 Inhibition of proliferation, induce cell apoptosis, and increase
the expression of collagen II and OPN

hASMC (192)

miR-199a-5p + Sirt1 Promotion of ROS generation and VSMC senescence hASMC (193)

miR-205 + LRP1 Impede the removal of MMP-9 from the cellular milieu hVSMC (194)

miR-322/424 − Smad2/3, MMP-2
and VEGF

Inhibition of inflammation, neoangiogenesis, Promotion of
VSMC phenotype transition, and matrix remodeling

hASMC, Mouse Aorta (148)

miR-712/205 + TIMP3, RECK Promotion of ECM remodeling, endothelial permeability, and
inflammation

Mouse VSMC, AEC (195)

h, human; ASMC, aortic smooth muscle cell; ADSC, adipose-derived stem cell; AFB, aortic fibroblast; AEC, aortic epithelial cell; VSMC, vascular smooth muscle cell; TLR4, toll-

like receptor 4; CMA1, chymase 1; LCN2, lipocalin-2; CDKN2B, cyclin dependent kinase inhibitor 2B; TXNIP, thioredoxin interacting protein; NLRP3, nucleotide-binding

oligomerization domain, leucine-rich repeat and pyrin domain-containing; CMST4, mammalian sterile 20-like kinase 4; PTEN, mutated in multiple advanced cancers 1;

FoxO4, forkhead box O4; HI3L1, chitinase-3-like protein 1; GRIA4, glutamate ionotropic receptor AMPA type subunit 4; LYPD3, Ly6/PLAUR domain-containing protein 3;

Col1a1, collagen, type 1, alpha 1; Col3a1, collagen, type 3, alpha 1; Col5a1, collagen, type 5, alpha 1; Eln, elastin; LRP1, low-density lipoprotein receptor related protein 1;

ADMA9, asymmetric dimethylarginine 9; VEPH1, ventricular zone expressed PH domain containing 1; ADAMTS-4, a disintegrin and metalloproteinase with

thrombospondin motifs-4; EZH2, enhancer of zeste homolog; TLR2, toll like receptor 2; OLR1, oxidized low density lipoprotein receptor 1; EV, extracellular vesicle; ZIC3,

Zic family member 3; MMP-2, matrix metalloproteinase 2; MMP-9, matrix metalloproteinase 9; iNOS, inducible nitric oxide synthase; MCP-1, monocyte chemotactic

protein-1; TIMP-3, tissue inhibitor of metalloproteinase 3; KDM3A, lysine (K)-specific demethylase 3A; Smad3, SMAD family member 3; Sirt1, silent information regulator 1;

LRP1, low-density lipoprotein receptor related protein 1; VEGF, vascular endothelial growth factor; RECK, reversion inducing cysteine rich protein with lazal motifs.

Liu et al. 10.3389/fcvm.2024.1394889
Another perspective for epigenetic treatment is drawing

inspiration from risk factor diseases or other cardiovascular

diseases similar to AAA. For example, research has shown that

stem cells have potential in treating cardiovascular diseases, with

mesenchymal stem cells (MSCs) effectively inhibiting cell
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senescence in cardiovascular disease (196). Recent results in

epigenetic research indicate that upregulating miR-19b-3p can

enhance the anti-aging effect of extracellular vesicles from MSCs

(MSC-EXO) isolated from AAA patients. This occurs through

the regulation of the MST4/ERK/Drp1 pathway, inhibiting
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mitochondrial fission in VSMCs (177). In addition, there are a

number of epigenetic therapeutic drugs in clinical trials in

cardiovascular diseases, such as DNMT inhibitors (azacytidine,

decitabine, and hydroalazine), HDAC inhibitors (vorinostat,

sodium valproate), histone methylation inhibitors (GSK126,

EPZ-5676), and histone methylation inhibitors (azacytidine,

decitabine, and hydroalazine). Bromodomain and exo-terminal

motif (BET) inhibitor (RVX208) (197). They have different

effects on cancer and cardiovascular diseases, and may be used

as a treatment for AAA in the future.
4.3 Future of epigenetic modifications in
AAA

Our exploration of epigenetic modifications extends beyond

this. In addition to translating established epigenetic modification

mechanisms observed in animals into clinical trial directions,

other types of epigenetic modifications that have not been well-

explored in AAA, such as chromatin remodeling and other types

of RNA modifications, are also considered. Two studies on

chromatin remodeling focused on the unique subunits BAF60a

and BAF60c of the SWI/SNF chromatin remodeling complex,

determining that BAF60a promotes epigenetic regulation of

VSMC inflammation and BAF60c plays a crucial role in

maintaining VSMC homeostasis (198, 199). However, there are

still few studies on the specific mechanisms of chromatin

remodeling in AAA and even cardiovascular diseases. In the

future, more comprehensive studies are expected to make the

effects of histone and DNA remodeling at the chromatin level on

AAA more clear. With the development of epigenetic

technologies, new sequencing and editing methods can reveal

complex network regulations of many genes controlled by

epigenetic mechanisms. The application of these epigenetic

technologies in AAA research can provide a genetic-level

understanding of epigenetic modifications as targets and

signaling pathways for new drug development and offer critical

insights into potential therapeutic strategies for AAA.

However, despite the potential therapeutic advantages of

epigenetic therapy, it also comes with limitations. Epigenetic

treatments may induce unnecessary changes or off-target effects

outside the intended target, potentially leading to adverse reactions

or even other diseases. Furthermore, uncertainties remain

regarding the long-term impacts and safety of epigenetic therapy,

necessitating further research and validation. It is also important

to note that most epigenetic research is limited to animal models,

in vitro studies on human cells, or bioinformatics-based

screenings. Effective translation into clinical trials may face

obstacles, such as delivery methods or cost and accessibility.
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In the past two decades, there has been rapid progress in the

research development of epigenetics. The role of AAA is a complex

and multi-faceted issue. A comprehensive understanding of

epigenetics in AAA is crucial. On one hand, it involves exploring

different targets and pathways, and on the other hand, validating

the feasibility of known targets and pathways. Further research is

required to confirm the role of epigenetics in the treatment of AAA

and the therapeutic potential in AAA animal models.
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