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Objective: This study aimed to investigate the prevalence of carotid atherosclerosis
(CAS), especially among seniors, and develop a precise risk assessment tool to
facilitate screening and early intervention for high-risk individuals.
Methods: A comprehensive approach was employed, integrating traditional
epidemiological methods with advanced machine learning techniques,
including support vector machines, XGBoost, decision trees, random forests,
and logistic regression.
Results: Among 1,515 participants, CAS prevalence reached 57.4%, concentrated
within older individuals. Positive correlations were identified with age, systolic
blood pressure, a history of hypertension, male gender, and total cholesterol.
High-density lipoprotein (HDL) emerged as a protective factor against CAS,
with total cholesterol and HDL levels proving significant predictors.
Conclusions: This research illuminates the risk factors linked to CAS and
introduces a validated risk scoring tool, highlighted by the logistic classifier’s
consistent performance during training and testing. This tool shows potential
for pinpointing high-risk individuals in community health programs, streamlining
screening and intervention by clinical physicians. By stressing the significance of
managing cholesterol levels, especially HDL, our findings provide actionable
insights for CAS prevention. Nonetheless, rigorous validation is paramount to
guarantee its practicality and efficacy in real-world scenarios.
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Introduction

Carotid atherosclerosis (CAS) is not just an indication of systemic atherosclerosis in

the carotid arteries; its implications extend far beyond that (1, 2). Firstly, CAS had

garnered significant attention due to its close association with stroke (3), a grave health

concern where CAS was recognized as a major contributing factor. Notably,

asymptomatic CAS exhibits a high prevalence of up to 40% among middle-aged and

elderly individuals, implying that it may have remained unnoticed in many individuals

(4). Rupture of atherosclerotic plaques in the carotid arteries could trigger transient
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TABLE 1 Demographic information for participants.

Characteristic No, N = 646a Yes, N = 869a

Sex

Male 157 (24%) 350 (40%)

Female 489 (76%) 519 (60%)

Age 54 (45, 60) 63 (59, 68)

Biomarkers

hsCRP 0.85 (0.43, 1.78) 1.14 (0.59, 2.39)

Unknown 2 5

Uric Acid 329 (274, 396) 351 (297, 428)

Unknown 2 2

Hemoglobin 5.60 (5.30, 5.80) 5.70 (5.50, 6.10)

Unknown 2 2

Glucose 4.69 (4.34, 5.18) 5.03 (4.58, 5.91)

Unknown 2 2

Homocysteine 10.4 (8.8, 12.6) 11.7 (9.8, 14.3)

Unknown 2 2

LDL 2.83 (2.37, 3.30) 3.00 (2.45, 3.63)

Unknown 2 2

TG 1.27 (0.93, 1.90) 1.50 (1.10, 2.08)

Unknown 2 2

HDL 1.31 (1.15, 1.52) 1.29 (1.13, 1.49)

Unknown 2 2

TC 5.26 (4.65, 5.91) 5.42 (4.74, 6.16)

Unknown 2 2

Blood pressure

SBP 120 (109, 131) 133 (121, 146)
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ischemic attacks and strokes, profoundly impacting patients’ lives.

Moreover, given atherosclerosis was a systemic disease, there exists

a close relationship between CAS and coronary atherosclerosis,

further elevating the risk of cardiovascular and cerebrovascular

diseases (5, 6). These multiple hazards underscored the urgent

need for in-depth research and management of CAS.

In the process of studying and managing CAS, ultrasound

diagnosis played a pivotal role (7). Carotid ultrasound

examination provides crucial insights into the disease severity. It

facilitated early diagnosis and monitoring of disease progression

by quantifying carotid intima-media thickness (CIMT) and

detecting carotid atherosclerotic plaques (CAP) (8, 9). This non-

invasive tool boasted safety benefits without radiation risks while

remaining applicable across extensive age groups from children

to seniors. These advantages made ultrasound diagnosis a

powerful methodology for elucidating the underpinnings and

clinical approaches for CAS. Our focus was on the overlooked

community populations. We utilized ultrasound techniques for

CAS screening, aiming to ascertain subjects at risk and further

evaluate associated factors. This endeavor provides valuable data

that could enable the establishment of a robust scoring model to

accurately evaluate CAS risks in patients and tailor preventive

tactics. Through this study, we aim to thoroughly characterize

and strategize management of CAS, especially in community

settings, filling knowledge gaps to enhance screening and care.

Unknown 18 11

DBP 79 (73, 86) 82 (75, 89)

Unknown 18 11

Medical history

Hypertension 100 (15%) 330 (38%)

Dyslipidemia 116 (18%) 264 (30%)

Diabetes 29 (4.5%) 114 (13%)

Cardiac history 26 (4.0%) 109 (13%)

Depression or anxiety 124 (19%) 154 (18%)

Cognitive impairment 13 (2.0%) 19 (2.2%)

Family history

Stroke 103 (16%) 140 (16%)

Unknown 0 1

Coronary heart disease 65 (10%) 105 (12%)

Unknown 0 1

Hypertension 245 (38%) 325 (37%)

Unknown 0 1

Diabetes 106 (16%) 109 (13%)

Unknown 0 1

Health status

BMI 23.2 (21.5, 25.2) 23.8 (21.8, 25.8)

Unknown 16 14

Central obesity 323 (50%) 592 (68%)

Smoking 76 (12%) 159 (18%)

Unknown 1 2

Drinking 103 (16%) 204 (24%)

Unknown 2 3

Sleep 357 (56%) 492 (57%)

Unknown 10 6

Lifestyle factors

Living alone 23 (3.6%) 44 (5.1%)

Unknown 1 3

Sport levels

Lack of physical activity 270 (50%) 355 (47%)

(Continued)
Methods

Study population

The study protocol was reviewed and approved by the Ethical

Committee of Guangdong Second Provincial General Hospital

(Approval number: GD2H-KY IRB-AF-SC.07-01.2), and the

ethical guidelines of the 1975 Declaration of Helsinki were followed.

A prospective longitudinal study named Ivy Action was

performed in the form of a voluntary prevention screening

program for ischemic cerebrovascular disease targeting the adult

population of multicenter communities (Guangzhou) in 2018–

2019. The study included individuals aged 35 years or older, who

had no history of stroke or had experienced a good recovery

after stroke with a modified Rankin scale score of 2 or less

indicating good recovery. Exclusion criteria included individuals

unable to communicate with the research team, those with

mobility impairments hindering study participation, individuals

with heart, liver, or kidney failure, and patients with a history of

malignancy. The comprehensive study protocol included

gathering information on basic socio-economic status, social and

residential status, smoking, housework, physical activity, sleep

and dietary habits. Additionally, cardiovascular risk factors,

family history and medical history were meticulously recorded.

In our machine learning models, we employed a

comprehensive set of risk factors, including age, gender,

biomarkers, systolic and diastolic blood pressure, health status,

lifestyle factors, family history of cardiovascular disease, and

medical history (Table 1). These factors were chosen for their
Frontiers in Cardiovascular Medicine 02 frontiersin.org
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TABLE 1 Continued

Characteristic No, N = 646a Yes, N = 869a

Frequent physical activity 270 (50%) 393 (53%)

Unknown 106 121

Housework Level

No 37 (6.3%) 73 (9.0%)

Occasionally 46 (7.8%) 68 (8.4%)

30 min_perday 35 (5.9%) 55 (6.8%)

30 min–1 h_perday 90 (15%) 130 (16%)

1–3 h_perday 243 (41%) 307 (38%)

4 h_perday 140 (24%) 180 (22%)

Unknown 55 56

Mutual action

Virtually none 221 (39%) 299 (38%)

1–2days_perweek 214 (38%) 278 (35%)

3–5days_perweek 85 (15%) 138 (17%)

6–7days_perweek 46 (8.1%) 80 (10%)

Unknown 80 74

an (%); Median (IQR); “unknown” indicates missing values.

Huang et al. 10.3389/fcvm.2024.1392752
well-documented association with carotid atherosclerosis and their

clinical significance in predicting cardiovascular events. The

medical exam included non-invasive tests (resting blood pressure,

anthropometric measurements), ECG, anxiety and depression

Scale, venous blood tests performed in a central laboratory with

conventional enzymatic methods, echocardiography and carotid

duplex scans (10). Waist and hip circumference were measured

with light clothing. Cardiac History encompasses any medical

history of coronary artery disease, myocardial infarction, angina,

atrial fibrillation, or valvular heart disease. A waist-to-hip ratio over

0.90 for men and >0.85 for women was considered central obesity.

It is essential to note that the primary aim of this study was

focused on the prevention and management of stroke. All

examination procedures were provided free of charge, and

participants had the option to voluntarily undergo testing,

ensuring that the study adhered to ethical standards and

obtained informed consent from the participants.
Utilizing high-resolution ultrasound to
assess CAS

An examination was conducted with the patient supine with

the head slightly extended. Carotid intima media thickness (IMT)

was evaluated with a 7.5 MHz linear array transducer using a

LOGIO E ultrasound (GE healthcare, USA). Measurements were

taken carefully, analyzing the maximum IMT at two sites and all

interfaces of the near and far walls of the common carotid artery

(CCA), located 1–1.5 cm below its bifurcation. To obtain

anechoic images, adjustments the image gain, depth, and focus

were meticulously made for each participant. Plaques were

defined as a focal thickening extending into the lumen by at least

0.5 mm or as IMTs greater than 1.5 mm, measured between the

near- and far-walls of any carotid segment in the internal carotid

artery, common carotid arteries, and carotid bulb. Carotid artery

(CA) was defined as having a maximal intima-media thickness

(IMT) of ≥1.0 mm and/or the presence of atherosclerotic
Frontiers in Cardiovascular Medicine 03
plaques. To minimize intra-operator variation, a single

experienced sonographer conducted all ultrasound examinations.
A comprehensive approach to machine
learning modeling and evaluation

The analytical approach employed in this study leveraged R

code to perform several critical steps. To address missing data,

the “missRanger” package was utilized for imputing missing

values. Subsequently, a diverse set of machine learning models,

encompassing support vector machines (SVM), XGBoost,

decision trees, random forests, and logistic regression, were

employed. Hyperparameter tuning was conducted through

random search to identify the optimal model configuration. To

ensure robust model performance while mitigating overfitting, a

5-fold cross-validation strategy was implemented. Given the

presence of imbalanced target classes, data balance was achieved

through oversampling. Model performance evaluation primarily

relied on the area under the curve (AUC) metric, facilitating the

selection of the best-performing machine learning method as the

final model.

In the final model evaluation, three key approaches were

employed: (1) ROC and PRC (Precision-Recall Curve) plots

provided in-depth insights into model performance. (2) Model

calibration was conducted using the calibration function from the

“calibrate” package. This process involved generating calibration

plots for apparent and bias-corrected probabilities to

comprehensively assess model performance. (3) Decision Curve

Analysis (DCA) was carried out to evaluate the clinical utility of

the model. Decision curves and the plot_decision_curve function

were employed to visualize the net benefit of the model across

various threshold probabilities.

Additionally, a forest plot was created using the forest_model

function from the “forestmodel” package, offering deeper insights

into the relationship between predictor variables and the

outcome variable. Sample size calculation was executed using the

ShowRegTable function, contributing to an understanding of

dataset characteristics and ensuring an adequate sample size for

the analysis.

In summary, this methodological approach comprised data

imputation, machine learning modeling, hyperparameter tuning,

cross-validation, data balancing, and comprehensive model

performance evaluation, culminating in the selection of the best-

performing model. The final model evaluation involved ROC and

PRC plots, model calibration, Decision Curve Analysis, and a

forest plot. Sample size calculations were conducted to support

the robustness of the analysis.
Developing a risk scoring system

Grouping and Reference Value Selection of Risk Factors:

Firstly, risk factors are grouped based on their clinical

significance or common usage. In each group, appropriate

numerical values are selected as reference values (Wij). Typically,
frontiersin.org
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the midpoint of the group is chosen as the reference value.

Secondly, Handling Categorical Variables: For categorical

variables such as gender, a category is chosen as the reference,

and its reference value is set to 0, while other categories are

naturally assigned numerical values, typically 1. Basic Risk

Reference Value: Each risk factor needs to have a suitable group

selected as the basic risk reference value (WiREF). When

constructing a scoring tool later, the score for this group will be

set as 0. Scores for other groups will be assigned positive or

negative values based on their relationship with WiREF. Scoring

Calculation: Using the regression coefficients estimated by a

multiple logistic regression model (βi) and the reference values

for each risk factor group (Wij), the distance between each risk

factor’s group and the basic risk reference value (WiREF) is

calculated (D). The calculation formula is D = (Wij−WiREF) * βi.

Thirdly, Risk Probability Calculation: Using the equation of a

multiple logistic regression model, the probability of risk

prediction (bp) for each score is calculated. This probability value

represents the likelihood of an individual experiencing a specific

event under certain risk factors. The formula is:

bp ¼ 1

1þ exp �Pp
i¼0 biXi

� � ,

where
Pp

i¼0 biXi represents a linear combination, which is

approximately a constant term added to the product of the

scores for various risk factors. Analyses were conducted using the

R Statistical language (version 4.3.1; R Core Team, 2023).
Results

Population characteristics

Initially, 1,560 participants were recruited; however, 45

individuals with incomplete carotid ultrasound examinations

were excluded from analysis. Consequently, the final analytical

sample comprised 1,515 subjects. Carotid ultrasound revealed

CAS in 869 participants, constituting a prevalence of 57.4% in

the study cohort. Individuals in the CAS group demonstrated

more advanced age compared to the non-CAS group (mean 63

years vs. 54 years). Additionally, the majority of CAS individuals

were female (519 subjects, accounting for prevalence of 60%).

Detailed demographic information for the entire study

population is presented in Table 1.
Machine learning model training and
evaluation process

The preprocessing phase involved imputing missing values to

ensure a complete dataset, as depicted in Figure 1. Subsequently,
Frontiers in Cardiovascular Medicine 04
five machine learning models were explored, including logistic

regression, support vector machines (SVM), XGBoost, decision

trees and random forests. Hyperparameter optimization was

carried out through random search across defined parameter

spaces for each algorithm. To mitigate class imbalance, the

“oversample” method from the classbalancing package was

utilized, equalizing the training set’s target categories. For

imbalanced classification, the area under the receiver operating

characteristic curve (AUC) served as a robust metric of overall

performance. As shown in Figure 2, the ROC curves described

each learner’s discrimination capacity across thresholds, with the

AUC score quantifying overall predictive power.

Simultaneously, the AUC values for each learner on the

training set were computed and visually represented in the figure.

The outcomes of different machine learning algorithms on the

training and test sets were summarized in Table 2. Remarkably

high accuracy levels (79%–100%) were achieved by all classifiers

during the training phase. However, when applied to the test set,

the overall accuracy dropped to 75%. Notably, an accuracy of

82% was achieved by the logistic classifier, outperforming its

counterparts. This discrepancy underscores potential challenges

in the model’s generalization to unseen data, with the logistic

regression model exhibiting greater robustness during the

transition from training to testing phases. Therefore, the logistic

regression model (Figure 3) was selected as the final model,

incorporating six variables: age, systolic pressure, hypertension,

total cholesterol, HDL cholesterol, and sex. Based on these six

variables, the model was named the AP2C2S model. Specifically,

age showed a significant positive correlation with CAS (OR = 1.14,

95% CI: 1.13–1.16, P < 0.001), while systolic pressure also

demonstrated a positive correlation (OR = 1.02, 95% CI: 1.01–1.02,

P < 0.001). Conversely, high-density lipoprotein (HDL) exhibited a

significant negative correlation with CAS (OR = 0.30, 95% CI: 0.17–

0.50, P < 0.001), indicating its role as a protective factor against

CAS. Additionally, total cholesterol (TC) showed a positive

correlation with CAS (OR = 1.58, 95% CI: 1.35–1.86, P < 0.001).

Gender, when treated as a categorical variable, was significantly

associated with CAS, with males showing a higher risk (OR = 2.09,

95% CI: 1.57–2.80, P < 0.001). Moreover, individuals with a history

of hypertension exhibited a significant positive correlation with

CAS (OR = 1.53, 95% CI: 1.11–2.11, P = 0.009). These findings

underscore the significance of these variables in predicting CAS

risk and justify their inclusion in the AP2C2S model.

Expanding upon our analysis, we extracted the regression

model and generated ROC and PRC curves (Figures 4A,B) to

further assess the model. We performed consistency checks using

the calibrate function and depicted the calibration curve

(Figure 4C). Additionally, employing decision curve analysis

allowed us to assess patient benefits at different thresholds,

providing insights into the model’s potential value in real clinical

decision-making (Figure 4D). This series of analyses and

evaluations contributes to a thorough understanding of the

model’s performance and applicability.
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FIGURE 1

Missing data aggregation plot. On the left, the distribution of missing data is depicted as a percentage. On the right, a missing pattern analysis
(aggregation missingness plot using the VIM package) is presented, showcasing the percentages of different missing patterns. 79% of the entire
study population had no missing values.

Huang et al. 10.3389/fcvm.2024.1392752
Development of a risk scoring tool
(AP2C2S)

Firstly, we categorized the variables of the final model as per

the methodology section, assigning values to each variable based

on the description provided (refer to Table 3). Subsequently,

utilizing the equation of the multiple logistic regression model,

we calculated the risk prediction probability for each

corresponding score. Through this iterative process, we

established a comprehensive table illustrating the correspondence

between total scores and risk prediction probabilities, as depicted

in Table 4.

The seamless integration of this grouping and calculation

procedure facilitates a systematic evaluation of each variable’s

contribution to the final model. It ensures a thorough and

precise prediction of risk probability for patients. This

methodical approach underscores the scientific rigor and

practical utility of our risk assessment model in a clinical context.

To illustrate the application of the AP2C2S risk scoring tool

concretely, we provide an example based on Tables 3, 4. Let’s
Frontiers in Cardiovascular Medicine 05
consider a 55-year-old male patient with a systolic blood pressure

of 135 mmHg, total cholesterol (TC) of 5.5 mmol/L, high-density

lipoprotein (HDL) of 1.2 mmol/L, and a history of hypertension.

Referring to Table 3, we can assign points for each risk factor:

Age (55–64 years): 8 points; Gender (male): 3 points; SBP

(130–139 mmHg): 1 point; HDL (1.14–1.29 mmol/L): 0 points;

TC (reference range): 3 points; Hypertension (yes): 1 point.

Adding up these points, the patient’s baseline total score is 16

points. Next, referring to Table 4, we find the corresponding

CAS risk prediction probability based on the total score. In this

example, a score of 16 corresponds to a risk prediction

probability of 15.07%.
Discussion

Our study revealed a 57.4% prevalence of CAS among 1515

participants, underscoring a significant risk, especially in the

middle-aged and elderly population. CAS patients exhibited

higher age and positive correlations with traditional
frontiersin.org
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FIGURE 2

AUC and ROC comparisons for imbalanced classification learners. The figure illustrates the AUC (A) and ROC (B) comparisons for different learners
in the context of imbalanced classification problems. Each learner is represented by a distinct color. The AUC/ROC value, denoted in the legend,
quantify the overall classification performance of each learner. The higher the AUC/ROC, the better the learner’s ability to distinguish between
classes. This set of machine learning pipelines (scale.oversample.classif.log_reg, scale.oversample.classif.svm, scale.oversample.classif.xgboost,
scale.oversample.classif.rpart, scale.oversample.classif.ranger) is designed to tackle imbalanced classification problems. Firstly, by scaling features,
the data is normalized to enhance the robustness of the classification algorithms. Secondly, to address class imbalance, oversampling techniques
are applied to augment the number of samples in the minority class. Finally, each pipeline employs a different classifier, such as logistic
regression, support vector machine, XGBoost, recursive partitioning trees (rpart), and Ranger random forest, to accomplish the ultimate
classification task. This integrated framework aims to improve the model’s ability to handle imbalanced data, thereby enhancing the overall
performance of the classification algorithms. AUC, area under the curve; ROC, receiver operating characteristic curve.

TABLE 2 Comparison of the performance of machine learning classifiers.

Learner Area under the curve
training set

Area under the curve
test set

Sensitivity Specificity False negative
rate

False positive
rate

Logistic regression 0.8505827 0.8208542 0.8216663 0.6595230 0.1783337 0.3404770

Support vector machines 0.9395673 0.8061250 0.8365956 0.6162075 0.1634044 0.3837925

XGBoost 1.0000000 0.7876161 0.8043851 0.6269529 0.1956149 0.3730471

Decision trees 0.7886977 0.7631142 0.8412331 0.5975671 0.1587669 0.4024329

Random forests 0.9995162 0.8145973 0.8596306 0.6207752 0.1403694 0.3792248

Scale.oversample.classif.log_reg 0.8495273 0.8218000 0.7595176 0.7214073 0.2404824 0.2785927

Scale.oversample.classif.svm 0.9466890 0.7996170 0.7871304 0.6672630 0.2128696 0.3327370

Scale.oversample.classif.xgboost 1.0000000 0.7943870 0.8020730 0.6502087 0.1979270 0.3497913

Scale.oversample.classif.rpart 0.7904094 0.7518600 0.7676433 0.6703518 0.2323567 0.3296482

Scale.oversample.classif.ranger 0.9996804 0.8163943 0.8366222 0.6718664 0.1633778 0.3281336

This set of machine learning pipelines (“scale.oversample.classif.log_reg”, “scale.oversample.classif.svm”, “scale.oversample.classif.xgboost”, “scale.oversample.classif.rpart”,

“scale.oversample.classif.ranger”) corresponds to different classifiers such as logistic regression, support vector machine, XGBoost, recursive partitioning tree (rpart), and

Ranger random forest, aimed at accomplishing the final classification task. The ensemble framework is designed to enhance the model’s ability to handle imbalanced data,

thereby improving the overall performance of the classification algorithm.
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cardiovascular risk factors, including systolic blood pressure, age,

history of hypertension, male gender, and total cholesterol.

Notably, we identified high-density lipoprotein (HDL) as a

protective factor against CAS, highlighting its role in risk

mitigation. These findings indicate that total cholesterol and

HDL levels could serve as significant predictors of CAS in

community-dwelling men. This underscores the importance of

managing cholesterol and increasing HDL levels to prevent the

development of atherosclerosis. Specifically for elderly men with

a history of hypertension, early adoption of secondary

cardiovascular prevention measures is strongly recommended.
Frontiers in Cardiovascular Medicine 06
Furthermore, leveraging advanced machine learning techniques,

such as SVM, XGBoost, decision trees, random forests, and

logistic regression, we achieved high accuracy during training

(79%–100%). The logistic classifier, with an 82% accuracy,

exhibited superior robustness in transitioning from training to

testing, leading to its selection as the final model. This

comprehensive approach enhances our understanding of CAS

while providing a practical tool for risk assessment and

personalized preventive strategies.

A traditional belief was that HDL particles, known for their role

in reverse cholesterol transport, conferred cardiovascular benefits.
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FIGURE 3

Forest plot showing logistic regression multivariate analysis of CAS.

Huang et al. 10.3389/fcvm.2024.1392752
However, current insights into HDL highlight its role in suppressing

inflammation, oxidative stress, and stimulating endothelial function

(11). Additionally, animal studies have indicated that recombinant

HDL may inhibit the expression of carotid VCAM-1 (12) or aortic

VCAM-1 and ICAM-1 (13). HDL has also been demonstrated to

reduce the surface expression of ICAM-1, VCAM-1, and E-selectin

by activating annexin A1 (14), a recognized anti-inflammatory

mediator. In summary, the collective evidence from experimental

models suggests that HDL particles directly influence endothelial

cells, inhibiting proteins associated with endothelial activation. This

mechanism holds the potential to decelerate the progression of

atherosclerosis.

Notably, this study integrates traditional epidemiological

analysis with advanced machine learning techniques, culminating

in the creation of a practical risk scoring tool. By initially

recruiting a substantial sample and utilizing carotid ultrasound to

identify atherosclerosis, the research delves into population

characteristics, revealing significant associations with

demographic factors. The application of machine learning

algorithms enhances the study’s predictive capabilities, with

logistic regression emerging as the most robust model (15). The

incorporation of ROC and PRC curves, calibration checks, and
Frontiers in Cardiovascular Medicine 07
decision curve analysis ensures a thorough evaluation of the

model’s performance and clinical utility. Additionally, the

development of a risk scoring tool (AP2C2S) based on logistic

regression results contributes to a systematic and precise

assessment of individual risk probabilities. This holistic

methodology reflects a novel and integrated approach to

investigating and managing CAS, offering valuable insights for

both research and clinical applications.

While our study yields valuable insights, certain limitations

need consideration. The cross-sectional nature impedes causal

inference, necessitating future longitudinal investigations.

Additionally, the study’s regional focus may impact

generalizability, prompting caution in extending findings to

broader populations. It is also worth noting that the AP2C2S

model has not undergone direct comparison with the Systematic

Coronary Risk Evaluation (SCORE) system (16) or other

currently utilized scoring systems for carotid artery disease risk

assessment. Therefore, while our findings provide valuable

insights into the risk factors associated with carotid

atherosclerosis, further research is needed to compare the

AP2C2S model with other scoring systems and to validate its

predictive accuracy across different demographic groups.
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FIGURE 4

Model performance for CAS prediction. (A) Receiver-operating characteristics (ROC) and (B) precision recall curve (PRC) plots for the predictive model
(AP2C2S model) for discrimination of patients with carotid atherosclerosis in the multiple community populations. The 95% CIs of precision and
sensitivity are shown as pink ribbons in the PRC and ROC curves, respectively. (C) Calibration curve for the AP2C2S model. The plot shows the
agreement between predictions from the model and what was actually observed. (D) Decision curve analysis for the AP2C2S model. The net
benefit (y-axis) is the net proportion of community populations with CAS who, based on the decision strategy, would correctly be recommended
further intervention at the same rate that populations with non-CAS would not be recommended further screening. The threshold probability (x-
axis) indicates the range of predicted risk levels above which patients and their physicians might opt for further screening. The gray and black lines
(horizontal) represent the scenarios where all or none of the community populations would be prospectively determined by the AP2C2S model,
respectively. The red line demonstrates the net benefit of the risk model dependent at the chosen risk threshold. The accompanying thinner lines
represent the 95% confidence intervals.
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The risk scoring tool developed in this study serves as a

foundation for further refinement and validation in diverse

populations. Future research could explore additional biomarkers

or imaging modalities to enhance risk prediction accuracy. The

study sets the stage for evaluating personalized interventions

based on risk scores, contributing to targeted and efficient

preventive strategies.

Given the prolonged progression of atherosclerosis, our study’s

“preventive strategies” aim to achieve two key objectives: primary

prevention for identifying high-risk individuals susceptible to

cerebrovascular and cardiovascular complications, and secondary

prevention targeting existing CAS patients. For primary

prevention, our AP2C2S model facilitates the identification of

candidates who could benefit from lifestyle modifications and

early medical interventions, thereby reducing the risk of stroke.

In the realm of secondary prevention, the same model serves as a
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valuable tool for prioritizing patients requiring heightened

surveillance and more aggressive treatment approaches to impede

CAS progression.
Conclusions

In conclusion, our study unveils a significant prevalence of

CAS within the community, especially among the elderly. The

introduction of the AP2C2S risk scoring tool, validated

through the logistic classifier’s robust performance across

training and testing phases, offers a refined approach to risk

assessment. This tool holds promise for identifying high-risk

individuals within community health initiatives, potentially

streamlining the process of screening and clinical intervention.

By emphasizing the critical role of cholesterol management,
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TABLE 3 Development of a risk factor scoring tool using multifactor logistic regression.

Factors Categories Reference value (Wij) βi βi (Wij−WiREF) Pointsij = D/B = (Wij−WiREF) * βi/B
Age 0.127

35–44 39.5 =W1REF 0 0

45–54 49.5 1.27 4

55–64 59.5 2.54 8

65–74 69.5 3.81 12

≥75 78.5 4.953 15

SBP 0.022

<120 107 −0.396 −1
120–129 125 =W2REF 0 0

130–139 135 0.22 1

140–149 145 0.44 1

150–159 155 0.66 2

≥160 170 0.99 3

HDL −1.28
<1.14 0.99 0.2944 1

1.14–1.29 1.22 =W3REF 0 0

1.30–1.50 1.40 −0.2304 −1
≥1.51 1.89 −0.8576 −3

TC 0.55

<4.70 3.98 =W4REF 0 0

4.70–5.33 5.02 0.572 2

5.34–6.04 5.69 0.9405 3

≥6.05 7.23 1.7875 5

Sex 0.88

Female 0 =W5REF 0 0

Male 1 0.88 3

Hypertension 0.39

No 0 =W6REF 0 0

Yes 1 0.39 1

HDL, high-density lipoprotein; SBP, systolic blood pressure; TC, total cholesterol.

Wij (Reference Value of Risk Factor Group): Represents the reference value of the j-th category of the i-th risk factor group. Typically, the median of this category is

selected as the reference value. WiREF (Basic Risk Reference Value): Represents the baseline risk reference value of the i-th risk factor. When constructing the scoring

tool, an appropriate group is selected as WiREF, with its score set to 0. Other groups receive positive or negative scores based on their relationship with WiREF. Risk

Score Calculation: Utilizes the regression coefficients βi estimated by a multiple logistic regression model and the reference values Wij of each risk factor group to

calculate the distance D between each group and the baseline WiREF. The formula is as follows: D = (Wij - WiREF) * βi. The score for each risk factor (Pointsij)

represents the calculation derived from the multiple logistic regression model, indicating the score of the ith risk factor in the jth category. This score is based on the

difference between the reference value (Wij) and the baseline risk reference value (WiREF) of that category, multiplied by the regression coefficient (βi) of the risk

factor, and divided by a constant (B). This constant, B, is utilized to convert the units of the regression coefficients into scores, ensuring consistency in the use of

scores within the risk scoring system.

TABLE 4 The correspondence table between total score and risk prediction probability.

Point total Estimate of risk Point total Estimate of risk Point total Estimate of risk
−1 0.88195759 9 0.452914929 19 0.084023053

0 0.857062087 10 0.39917591 20 0.068567823

1 0.827940365 11 0.347760001 21 0.055782307

2 0.794309407 12 0.299663659 22 0.045264987

3 0.756041843 13 0.25561233 23 0.03665365

4 0.713225204 14 0.216039055 24 0.029629715

5 0.666211583 15 0.18110187 25 0.023918357

6 0.615644079 16 0.150728336 26 0.019286027

7 0.56244723 17 0.124673352 27 0.015536572

8 0.507774373 18 0.102578251 28 0.012506764
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particularly high-density lipoprotein (HDL), our research

provides actionable insights that could inform CAS prevention

strategies. However, we recognize the imperative for rigorous

and extensive validation to ensure the tool’s practicality and

effectiveness in diverse real-world settings.
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