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Non-neuronal cell-derived
acetylcholine, a key modulator of
the vascular endothelial function
in health and disease
Takashi Sonobe* and Yoshihiko Kakinuma

Department of Bioregulatory Science, Graduate School ofMedicine, NipponMedical School, Tokyo, Japan
Vascular endothelial cells play an important role in regulating peripheral
circulation by modulating arterial tone in the microvasculature. Elevated
intracellular Ca2+ levels are required in endothelial cells to induce smooth
muscle relaxation via endothelium-dependent mechanisms such as nitric
oxide production, prostacyclin, and endothelial cell hyperpolarization. It is well
established that exogenous administration of acetylcholine can increase
intracellular Ca2+ concentrations, followed by endothelium-dependent
vasodilation. Although endogenous acetylcholine’s regulation of vascular tone
remains debatable, recent studies have reported that endogenously derived
acetylcholine, but not neuronal cell-derived acetylcholine, is a key modulator
of endothelial cell function. In this minireview, we summarize the current
knowledge of the non-neuronal cholinergic system (NNCS) in vascular
function, particularly vascular endothelial cell function, which contributes to
blood pressure regulation. We also discuss the possible pathophysiological
impact of endothelial NNCS, which may induce the development of vascular
diseases due to endothelial dysfunction, and the potential of endothelial
NNCS as a novel therapeutic target for endothelial dysfunction in the early
stages of metabolic syndrome, diabetes, and hypertension.
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1 Introduction

Vascular endothelial cells, the key players in maintaining cardiovascular homeostasis,

actively modulate the arterial tone in the microvasculature. Our modern lifestyles, often

characterized by sedentary behavior, are strongly linked to the development of

endothelial dysfunction, a significant contributing factor (1–3). This dysfunction has

emerged as a fundamental factor in the pathogenesis of cardiovascular diseases and

metabolic complications, including hypertension, obesity, and diabetes (4–6). Various

factors, such as hypertension, hyperlipidemia, obesity, diabetes, and aging, induce excess

shear stress, oxidative stress, and local inflammation in the vascular endothelial cells,

leading to endothelial cell damage. In experimental and clinical studies, endothelial

dysfunction is typically characterized by impaired endothelium-dependent vascular

relaxation. The physiological response of endothelial cells to exogenous acetylcholine

(ACh) is vasodilation (7), which is markedly attenuated in individuals with

hypertension (4) and diabetes (8). Reduced responsiveness to ACh is frequently used as

a marker of endothelial dysfunction (9, 10). Recent studies have highlighted the
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importance of “endogenous” ACh, whose origin differs from the

classical neurotransmitter ACh in the nervous system (11, 12).

The non-neuronal cholinergic system (NNCS) is comprised of

various cell types, including immune (13), myocardial (14, 15),

and endothelial cells (16), all of which can synthesize and

respond to ACh. Endothelial cells respond to exogenously

administered ACh to initiate vasodilator signaling. Endothelial

function can be modulated by endothelial cells by synthesizing

and releasing ACh in an autocrine manner. Considering this, a

notable correlation may exist between endothelium-derived ACh

and the impaired modulation of endothelial function in the

development of cardiovascular disease.

This minireview provides an overview of the roles of non-

neuronal cell-derived ACh in regulating vascular endothelial

function under physiological and pathophysiological conditions.

In particular, we focused on NNCS in endothelial cells, which

affect arterial tone. In addition, we discuss the potential

therapeutic implications of NNCS function, emphasizing

hypertension. One of the main objectives of the current review is

to provide additional perspectives on strategies focusing on

endothelium-derived ACh to promote vascular health and reduce

the risk of developing cardiovascular diseases.
2 Effects of ACh on vascular function

The effect of ACh on intact endothelial blood vessels has been

well-established since Furchgott’s seminal experiments indicated

endothelium-dependent vasodilation (7). Exogenously applied

ACh is frequently used to explore endothelial function. ACh

administration triggers intracellular Ca2+-dependent signaling

pathways in vascular endothelial cells (17). This process involves

activating the M3 muscarinic ACh receptor on endothelial cell

membranes (18). Activation of the M3 receptor triggers the

inositol triphosphate (IP3) signaling pathway, resulting in

intracellular Ca2+ transients from intracellular Ca2+ stores and

the subsequent production of nitric oxide (NO) (17, 19). ACh-

induced endothelium-dependent Ca2+ signaling not only activates

NO production via endothelial NO synthase (eNOS) but also

activates cyclooxygenase, which mediates prostacyclin (PGI2) (20)

and opens Ca2+-activated K+ channels (in particular small-

conductance, SK3, and intermediate-conductance, IK1), which

induces endothelial-derived hyperpolarization (EDH) (21, 22).

These three components (i.e., NO, PGI2, and EDH) involved in

ACh-dependent vasodilation are used to estimate how the

endothelial cell capacity is balanced between healthy and

impaired modifications of peripheral artery beds (23, 24) given

that the magnitude of the contribution of NO, PGI2, and EDH

differs depending on the artery size (25) as well as the condition

of health or disease. For example, exercise training enhances

ACh-dependent endothelium-dependent vasodilation under

healthy conditions in rats (26, 27). A NO-dependent mechanism

mediates training-induced endothelial cell adaptation (26, 28).

Furthermore, exercise training has been shown to upregulate

NO-dependent and prostacyclin (29)- and EDH (30, 31)-

dependent mechanisms. Meanwhile, it is well-known that
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ACh-dependent vasodilation is substantially altered following

endothelial dysfunction induced by hypertension (32), obesity

(33), and diabetes (9, 10, 31). Altered ACh-dependent

vasodilation may be improved by exercise training, potentially

maintaining endothelial cell homeostasis (28). We recently

demonstrated that low-intensity exercise training could improve

endothelial function in rats with obesity and type 2 diabetes by

increasing the contribution of EDH to hind limb arterioles (10).

These findings indicate an association between homeostasis of

endothelial function and the ACh-dependent signaling pathway

in endothelial cells.
3 Endogenous source of
non-neuronal ACh

Neurons, particularly cholinergic neurons, are the primary

source of ACh in the central and peripheral nervous systems.

ACh is synthesized, stored in vesicles, and released into the

synapses upon neuronal stimulation. As a substrate for ACh

synthesis, choline is taken up from the extracellular environment

by the high-affinity choline transporter (CHT) (34). Choline

acetyltransferase (ChAT), a key enzyme in ACh synthesis,

catalyzes the transfer of an acetyl group from coenzyme acetyl-

CoA to choline. Vesicular ACh transporter (VAChT) is a

member of the proteins constituting the cholinergic system. The

VAChT is responsible for loading ACh into secretory vesicles.

Acetylcholinesterase (AChE) is responsible for ACh degradation.

Experimental studies conducted over the last two decades have

revealed that ACh is synthesized and released by various cell

types that possess the enzymes and proteins necessary for

establishing the local cholinergic system (12). For instance,

cardiomyocytes have been found to express these enzymes and

proteins, suggesting a role for endogenous ACh in modulating

cardiac function independent of neuronal input (14, 15).

Notably, ChAT overexpression in murine cardiomyocytes

enhances the integrity of brain endothelial function (35). This

upregulation of the cardiac cholinergic system, that is, increased

ACh synthesis in the heart, does not directly interact with

endothelial cells via M3 receptors but may activate ascending

vagus nerve signaling (35, 36).

Two major sources of non-neuronal ACh directly affect

endothelial function: lymphocytes and endothelial cells.

Endothelial cells are discussed in a separate section.
3.1 Lymphocytes

Given that ACh can be measured in the human blood (13),

Kawashima et al. explored the origin of ACh and identified T

lymphocytes as the source of circulating ACh (13, 37).

Lymphocytes that express ChAT have been characterized as a

subset of T-helper cells, such as CD4+, CD44hi, and CD62 Llo

(38). Lymphocytes regulate blood pressure via endothelium-

dependent mechanisms by increasing the bioavailability of ACh

in the blood. In a small animal experiment, infusion of
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ChAT-overexpressing Jurkat T cells reduced the mean arterial

blood pressure in mice (38). Moreover, human ChAT-positive T

cells have been shown to release ACh and promote arterial

relaxation through cholinergic mechanisms (39, 40). Although T-

cell-derived ACh can induce endothelium- and NO-dependent

vasodilation, it is unlikely that T-cells are constantly activated to

release ACh to modulate endothelial function and blood pressure

under normal physiological conditions. Additional investigations

are needed to establish the effects of T cell-derived ACh on

cardiovascular diseases, particularly inflammation-related

vascular dysfunction (40, 41).
4 ACh synthesized in endothelial cells

The ability of ACh to stimulate endothelium-dependent

vasodilation has been demonstrated in several vascular beds

(9, 10, 42). The origin of ACh present in vivo, particularly in the

bloodstream, acting on vascular endothelial cells, has long been

debated (43–45). First, the parasympathetic nerve ending is a

typical source of ACh; however, few blood vessels are innervated

by parasympathetic nerves (46). Second, autonomic nerves are

usually located on the adventitial side of the blood vessel wall,

and any ACh released from parasympathetic nerve endings faces

the basal lamina barrier before reaching the endothelial cell

membrane, where the M3 ACh receptors are localized. Third, in

the 1930s, researchers identified the presence of ACh in ox blood

(47, 48), and subsequent studies also reported the presence of

ACh in the blood, as discussed in the previous section (13). Even

if physiologically sufficient concentrations of ACh are present in

the blood, it is unlikely that endothelial cells will be persistently

activated by circulating ACh because of its inactivation by

cholinesterase, which rapidly deactivates ACh into acetate and

choline (49). ACh spillover is an intriguing idea in which ACh is

released via activation of the motor nerve and spills over onto

muscarinic receptors on the arteries of skeletal muscles, resulting

in vasodilatation (50). This is reasonable because active skeletal

muscles require adequate blood supply, which the peripheral

vascular tone regulates.

Milner et al. reported that endothelial cells can produce and

release ACh (51, 52). Using a modified chemiluminescence assay,

the authors detected the ACh content in the perfusate of rat

Langendorff heart preparations during hypoxia (51). In a

subsequent study, they also demonstrated a substantial increase

in ACh content in the perfusate from cultured umbilical vein

endothelial cells during a high-flow perfusion period under shear

stress conditions (52). The presence of ACh derived from

endothelial cells has also been documented by Kawashima et al.,

who demonstrated its presence in the culture supernatant of

bovine arterial endothelial cells using a radioimmunoassay (53).

The presence of endothelial ACh was confirmed by

electrochemical detection combined with high-performance

liquid chromatography, which identified an ACh-derived peak in

human umbilical vein endothelial cells (54).

Endothelial cells express ChAT, similar to other tissues, such as

immune cells, in which NNCS exists. In the 1980s, Parnavelas et al.
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demonstrated that ChAT immunoreactivity is localized in the

endothelial cells of capillaries and small vessels in the rat brain

(43). Notably, the authors also suggested the synthesis and

release of ACh from endothelial cells. Endothelial cells also

express other essential components of the cholinergic system,

including VAChT (55), CHT (56), and AChE (57, 58), which can

develop self-containing NNCS in endothelial cells. Increasing

evidence has indicated that vascular endothelial cells are an

important source of ACh in the NNCS, thereby establishing an

autocrine regulatory loop for endothelial function via the M3

receptor in the vascular microenvironment (16). The local

production of ACh by endothelial cells contributes to fine-tuning

vascular tone under physiological conditions. Wilson et al.

suggested that autocrine-like regulation of endothelial function

mediated by ACh is required to facilitate flow-mediated

vasodilation via shear stress-dependent activation of the

intracellular Ca2+ signaling pathway in endothelial cells (16). The

autocrine-like modulation of endothelial function via local

endothelial ACh may support the role of small peripheral

arteries, which necessitate local EDH to induce ascending

vasodilation (59). This mechanism may share the signaling

pathways of mechanosensitive modulation of endothelial

function, which also activates intracellular Ca2+ signaling

pathways in response to shear stress (60–62). Although the

mechanisms by which ACh release is activated by changes in

flow (shear stress) remain unclear, local ACh signaling

potentially influences exercise-induced hyperemia triggered

by local vasodilation and vasodilation during skeletal

muscle contraction (59).
5 Endothelial ACh in cardiovascular
disease

Arterial vasodilation caused by exogenous ACh administration

is impaired in several cardiovascular diseases (63). An impaired

vasodilator response is often defined as endothelial dysfunction

because an endothelium-dependent mechanism mediates

the vasodilator effect of ACh (7). ACh is a pharmacological tool

for examining whether endothelial cells respond to external

stimuli mediated by ACh receptors. However, recent evidence

suggests impaired endothelial function is associated with

NNCS dysfunction.

Considering lymphocytes, in which the NNCS is known to

exist, levels of ChAT expression and ACh production decreased

in spontaneously hypertensive rats (SHR) (64). Similarly, the

genetic ablation of ChAT in ChAT-positive T cells results in

hypertension in mice, which is attributed to an endothelium-

eNOS-dependent mechanism (38). These findings suggest that

NNCS lymphocyte dysfunction triggers the development of

hypertension in an ACh endothelial axis-dependent manner.

Interesting experimental approaches have been employed to

overcome hypertension in rodents (65). In mice with angiotensin

II-induced hypertension, systemic administration of recombinant

ChAT substantially reduced the mean arterial blood pressure.

Notably, this ChAT-induced decrease in blood pressure in
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FIGURE 1

A putative endothelial non-neuronal cholinergic system that regulates endothelium-derived relaxing factors (EDRFs) modulating vascular tone.
Increased shear stress stimulates vascular endothelial cells to release ACh. The endothelial cell-derived ACh (eACh) affects the endothelial function
in an autocrine manner. Local inflammation recruits activated ChAT-positive T cells, which release ACh. The T cell-derived ACh (tACh) is also
suggested to affect endothelial function. In a healthy, normotensive condition, ChAT in endothelial cells contributes to the synthesis of eACh. It is
hypothesized that adequate storage and release of eACh maintains basal vascular tone. Meanwhile, endothelial ChAT decreases in the condition
of hypertension. Thus, it causes decreased eACh synthesis that results in increased vascular tone.
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hypertensive mouse models was reversed by inhibiting NO

production, indicating that the effect of exogenous ChAT

administration on systemic blood pressure is NO-dependent (65).

Different experimental studies have demonstrated that exogenous

choline administration delays the progression of hypertension in

SHR, presumably by enhancing vagus nerve activity (66).

Moreover, serum ACh levels were substantially lower in SHR than

in control Wistar Kyoto rats (WKY); choline administration

restored these levels. This concept of increasing the bioavailability

of circulating ACh, which directly acts on ACh receptors in

endothelial cells, may offer a potential strategy to prevent the

development of hypertension caused by depletion or dysfunction

of the circulating ACh source. The bioavailability of circulating

ACh may be clinically relevant because low plasma ACh levels

and endothelial dysfunction are associated with increased mortality

in critically ill patients with poor cardiovascular outcomes (67–69).

As discussed in the previous section, vascular endothelial cells

are an important source of ACh. Therefore, a new hypothesis was

proposed: endothelial NNCS dysfunction is responsible for

endothelial dysfunction. Although there is limited experimental

evidence supporting this hypothesis, a study by Zou et al. revealed
Frontiers in Cardiovascular Medicine 04
that the expression of VAChT protein, an NNCS component, was

markedly lower in the aortic ring of SHR than in the aortic ring

of control WKY (70). Additionally, the concentration of ACh in

the aortic ring was lower in SHR than in WKY after choline

incubation. These findings suggest that the decreased synthesis

and release of ACh from endothelial cells may impair endothelial

function, impairing arterial tone regulation, thereby contributing

to hypertension (Figure 1). Additionally, evidence not directly

related to the endothelium revealed that NNCS in the heart is

downregulated in mice and humans with obese type 2 diabetes

(71). Considering these findings, NNCS may be down-regulated in

the endothelial cells under diabetic conditions. Further studies are

required to clarify the relationship between endothelial NNCS and

diabetes-induced microvascular dysfunction.

The clearly defined clinical manifestations of endothelial NNCS

dysfunction in humans remain poorly understood. Instead, the

implications of endothelial dysfunction have been frequently

discussed in the context of its role in various clinically relevant

cardiovascular diseases, including hypertension and diabetic

microangiopathy. Future studies are needed to shed light on

endothelial NNCS as potential therapeutic targets for these diseases.
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6 Conclusion

In conclusion, understanding NNCS in the vascular system

is increasingly important as it may contribute to the

development of cardiovascular disease by modulating arterial

tone. Recent findings indicate that endogenous ACh is pivotal

in regulating endothelial signaling mechanisms. Investigating

the pathophysiological significance of endothelial NNCS

dysfunction may improve our understanding of the early stages

of vascular diseases caused by endothelial dysfunction. These

findings suggest that endothelial NNCS may be a potential

therapeutic target for conditions such as metabolic syndrome,

diabetes, and hypertension and may lead to the development of

novel therapeutic strategies.
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