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The disruptive role of LRG1 on
the vasculature and perivascular
microenvironment
Athina Dritsoula*, Carlotta Camilli, Stephen E. Moss and
John Greenwood

UCL Institute of Ophthalmology, University College London, London, United Kingdom
The establishment of new blood vessels, and their subsequent stabilization, is a
critical process that facilitates tissue growth and organ development. Once
established, vessels need to diversify to meet the specific needs of the local
tissue and to maintain homeostasis. These processes are tightly regulated and
fundamental to normal vessel and tissue function. The mechanisms that
orchestrate angiogenesis and vessel maturation have been widely studied, with
signaling crosstalk between endothelium and perivascular cells being identified
as an essential component. In disease, however, new vessels develop
abnormally, and existing vessels lose their specialization and function, which
invariably contributes to disease progression. Despite considerable research into
the vasculopathic mechanisms in disease, our knowledge remains incomplete.
Accordingly, the identification of angiocrine and angiopathic molecules
secreted by cells within the vascular microenvironment, and their effect on
vessel behaviour, remains a major research objective. Over the last decade the
secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1), has emerged as a
significant vasculopathic molecule, stimulating defective angiogenesis, and
destabilizing the existing vasculature mainly, but not uniquely, by altering both
canonical and non-canonical TGF-β signaling in a highly cell and context
dependent manner. Whilst LRG1 does not possess any overt homeostatic role in
vessel development and maintenance, growing evidence provides a compelling
case for LRG1 playing a pleiotropic role in disrupting the vasculature in many
disease settings. Thus, LRG1 has now been reported to damage vessels in
various disorders including cancer, diabetes, chronic kidney disease, ocular
disease, and lung disease and the signaling processes that drive this dysfunction
are being defined. Moreover, therapeutic targeting of LRG1 has been widely
proposed to re-establish a quiescent endothelium and normalized vasculature.
In this review, we consider the current status of our understanding of the role
of LRG1 in vascular pathology, and its potential as a therapeutic target.
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Introduction

The formation of a vascular network is a fundamental prerequisite in serving the needs

of the surrounding tissue and enabling normal tissue function. The process of

angiogenesis, whether during development or postnatally as during reproduction and

wound healing, has been studied extensively and many of the controlling elements have

been defined (1, 2). Vascular endothelial growth factor (VEGF) has emerged as the

master regulator, but other factors also contribute to vessel growth and the subsequent
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stabilization and maturation processes, which are necessary for the

establishment of functional vessels (3). The vasculature, however, is

highly heterogeneous with vessel structure and function depending

on position in the vascular hierarchy and on the physiological

requirements of the surrounding tissue. To achieve such diverse

functionality, different local signaling factors are required during

development and throughout life to maintain this site-specific

specialization. Nevertheless, some ubiquitous signaling

interactions are deemed essential for vessel maturation, most

notably the crosstalk between the endothelium and perivascular

mural cells, which are critical to vascular homeostasis. Indeed,

disruption of this cellular interplay is recognised as a major

factor in the destabilization of existing vessels in several diseases.

Aside from the disruption of existing vessels, the formation of

new vessels in disease has attracted enormous attention as they are

usually abnormal, often forming a chaotic and immature network

that may be poorly perfused, leaky, and fragile (2). Whilst many

of the factors driving new vessel growth in disease are also those

responsible for developmental and physiological angiogenesis, it

is clear that differences must exist. Thus, it has been proposed

that the balance of expression between pro- and anti-angiogenic

factors may be disturbed, while additional disease-specific players

may corrupt the normal angiogenic and maturation processes.

Although our understanding of these factors, and the associated

signaling pathways that disrupt both new and existing vascular

structure and function is considerable, there remain significant

gaps in our knowledge as highlighted by the large number of

patients who fail to respond favourably to standard of care

therapies aimed at alleviating vascular dysfunction (2, 4).

The interaction between the endothelium and perivascular

mural cells is an imperative and extremely complex process that

is central to normal blood vessel development and long-term

homeostasis. Abnormalities in this relationship are implicated in

numerous vascular diseases, such as diabetic retinopathy,

pulmonary hypertension, kidney disease and cancer, where

decreased mural cell coverage or abnormal recruitment results in

destabilized leaky microvessels and vascular rarefication (5–9). In

addition, activation or de-differentiation of vascular smooth

muscle cells and pericytes can lead to vascular remodeling and

medial thickening in larger vessels (5). Also emerging is the

disruptive role played by endothelial to mesenchymal transition

(EndMT) (10), a process similar to epithelial to mesenchymal

transition (EMT), in which TGF-β plays a predominant role.

Irrespective of cause, when vessels become dysfunctional, they

not only fail to provide their selective barrier and delivery

functions but can also negatively influence the behaviour of

surrounding tissue. Designing therapeutic strategies, therefore,

that aim to normalize the vasculature has received increasing

attention, especially in cancer (11), but further insight into our

understanding of interactions that drive vascular dysfunction in

disease is needed. Through such improved insight, new

therapeutic targets will be identified for which activation or

inhibition will enable repair of dysfunctional vessels and the

facilitation of physiological revascularization during disease. One

recently identified candidate, the angiocrine factor leucine-rich

α-2 glycoprotein 1 (LRG1), is emerging as a ubiquitous and
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potentially critical player in driving vascular pathology, and

therefore offers substantial potential as a new therapeutic target

in many different diseases. This review aims to present the

diverse and emerging vasculopathic roles that LRG1 has on the

vasculature and its influence on the local microenvironment.
LRG1 in homeostasis and disease

LRG1 is a member of the conserved family of leucine-rich repeat

glycoproteins that are involved in numerous physiological functions,

including protein-protein interactions and innate immune responses

(12, 13). Under normal conditions LRG1 is expressed almost

exclusively by liver hepatocytes, from where it is secreted into the

circulation and maintained at an approximate concentration of

20–50 μg/ml in the plasma (14) (Figure 1). Neutrophils, which are

powerful mediators of innate immunity, are also known to express

LRG1 constitutively and are likely to contribute to LRG1-mediated

pathogenic effects in inflamed tissues and diseased vasculature

(Figure 1). In these cells, LRG1 is stored within granules, and its

expression has been associated with accelerated neutrophilic

granulopoiesis, suggesting a potential role for LRG1 in myeloid

cell differentiation (15, 16). Moreover, LRG1 has been shown to

be involved in the formation of neutrophil extracellular traps

(NETs), a process known as NETosis, via a signaling pathway

involving ALK5 and AKT (17). NETosis is an innate immune

response initiated against pathogens but is also frequently

associated with vascular dysfunction (18). These findings, together

with increased LRG1 levels in serum in response to microbial or

viral infections and other inflammatory stimuli, as well as the high

binding affinity of LRG1 for cytochrome c (Cyt c) following its

release upon apoptotic signals, have led to the proposal that LRG1

functions as an acute phase protein involved in the innate

immune response (19, 20). Aside from these major sources of

LRG1, low levels of expression have been reported under normal

conditions in other tissues including lung, kidney, heart, brain,

testis, and the vasculature, where LRG1 is predominantly

expressed in endothelial cells (21) (Figure 1). Many of these

studies, however, use immunohistochemical detection, which

might reflect the presence of extracellular, and matrix/endothelial

cell sequestered LRG1 derived from the circulation. Nevertheless, a

recent transcriptomics study dissecting the molecular heterogeneity

of blood vascular endothelial cells from skin has shown that LRG1

transcript is exclusively found in the blood vessels and more

specifically in healthy skin enriched in the postcapillary venules (22).

Although current evidence suggests that LRG1 expression may

be important to the functions of different organs and processes, its

primary physiological role remains poorly defined, with Lrg1-

deficient mice presenting with normal development and fertility,

and no obvious phenotype indicating a non-essential role. In

recent years, however, accumulating evidence points to the

involvement of LRG1 in a wide range of diseases (23, 24). Since

2013, when LRG1 was initially identified as a key vasculopathic

molecule in abnormal angiogenesis (25), more causative roles

have been attributed. Among others, LRG1 has been found to

drive IL-6-dependent pathological angiogenesis through the
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FIGURE 1

Cell source, target cells and outcome of LRG1 in the vasculature. LRG1 is expressed constitutively by only a few cell types, including hepatocytes and
neutrophils, but during disease can be induced in various other cells. In the vasculature, endothelial cells are the only source of LRG1, but other local
cells may also be induced to express LRG1 such as fibroblasts and tumor cells. Irrespective of the source, LRG1 affects the function of all cellular
components of blood vessels resulting in vascular damage. Vascular dysfunction is closely associated with fibrosis, and both may influence each
other through LRG1 signaling. EndMT, endothelial to mesenchymal transition. Created with BioRender.com.
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STAT3 signaling pathway (26, 27), destabilize tumor vasculature

and promote tumor growth and metastasis (28–32), drive

chronic kidney and lung disease (33–40), stimulate fibrosis

(33, 34, 41–48), contribute to diabetes-related pathology

(17, 49–57), and regulate pathological placental angiogenesis (58).

High circulating LRG1 levels have been reported in many

cancers, where LRG1 has been proposed, or used, as a prognostic

and diagnostic marker. Indeed, high LRG1 levels in cancer

patients’ plasma correlate with poor prognosis and survival

(59–61), and resistance to standard of care therapy (62). The

involvement and roles of LRG1 in key vascular processes are the

scope of this review and will be discussed in detail.
Regulation of LRG1 expression

Several transcriptomic and post-transcriptional regulatory studies

have shown that the IL-6/STAT3signalingpathway is amajor activator

of LRG1 expression (26, 29, 31, 63). Indeed, it was recently reported

that LRG1 transcriptional activation is abolished upon deletion of

the STAT3 binding site on the LRG1 promoter (26). Inflammation

seems to be an important driver of LRG1 expression, with many

different cytokines activating LRG1 in a range of cells and disease

settings (Figure 2). These include IL-6, IL-1β, TNF-α, IL-17, IL-4,

IL-10 and IL-33 and they may act either alone or synergistically

(36, 64–68). In addition, PPARβ/δ is able to bind the LRG1
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promoter to activate transcription as reported in a chromatin

immunoprecipitation assay (47), and similarly, both ELK1 and

ELK4 transcription factors have been shown to initiate LRG1

transcription upon mechanical strain (41) and through cooperation

with Sp1/Sp3 complex (69), respectively. FOS-like 1 was also

identified as a novel activator of LRG1 in a transcriptomics study

(39). There is also evidence that hypoxia can induce LRG1

expression (70), consistent with the presence of potentially active

HIF-1α binding elements in the LRG1 promoter. At the post-

transcriptional and post-translational levels, microRNAs, long non-

coding RNAs, and histone modifications have also been reported to

regulate LRG1 expression (23) (Figure 2). Furthermore, different

glycosylation patterns have been identified and these might

influence LRG1 function (23). Overall, while experimental evidence

that unravels the pleiotropic functions of LRG1 continues to

accumulate, further work is required to establish the key regulatory

mechanisms that control LRG1 expression and function, some of

which will be discussed in detail later.
LRG1 and angiogenesis

In the early stages of development, blood vessels are formed

through a tightly orchestrated process called vasculogenesis,

where mesoderm-derived angioblasts, the precursor of

endothelial cells, establish angioblastic cords that advance into a
frontiersin.org
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FIGURE 2

Induction of LRG1. (A) Schematic representation of inflammatory factors reported to activate LRG1 gene expression and known transcriptional and
post-transcriptional regulatory mechanisms. Cytokines and lipopolysaccharide (LPS) acting through their cognate receptors and downstream
transcription factors drive LRG1 gene induction. lncRNA TUG1 facilitates LRG1 transcription while miR-335, miR-494, miR-497, miR-150-5p and
miR-24-3p promote the degradation of LRG1 mRNA. LRG1 protein is differentially glycosylated in a cell- and function-specific manner that may
affect its activity. The secreted protein may combine to form dimers and trimers. OSM, oncostatin M; IL, interleukin; TLR4, toll-like receptor 4;
lncRNA, long non-coding RNA; miRNA, microRNA. (B) LRG1 is induced during cell damage and infection as part of the repair mechanism. In the
presence of LRG1 and TGF-β, we propose that cells are activated and de-differentiated into a less mature state to enable wound healing. As
inflammatory signals subside, LRG1 expression diminishes allowing resolution of tissue damage and cells to return to a quiescent state. (C) Under
chronic conditions, inflammatory signals maintain LRG1 expression perpetuating the unstable cell state and preventing completion of the healing
process. EMT, epithelial to mesenchymal transition; EndMT, endothelial to mesenchymal transition. Created with BioRender.com.
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primitive vascular plexus and subsequently into blood vessels. At

later stages of development, and postnatally in the reproductive

system and during physiological tissue repair, angiogenesis occurs

in response to tissue growth and hypoxia. The angiogenic

mechanism is tightly regulated and influenced by pro-angiogenic

factors, with VEGF being a key master regulator, essential for the

development and maintenance of the vascular system (3). Other

growth factors with established pro-angiogenic activities include

the FGFs, PDGF, angiopoietins, HGF and the TGF-β superfamily.

In particular, PDGF and the angiopoietins exert their functions on

the endothelium in a paracrine manner through their binding to,

or their expression by, perivascular mural cells. In addition,

angiopoietins regulate vascular homeostasis and promote vessel

stability through the recruitment of mural cells and mediate their

interactions with the endothelium (71). Among other potent

angiogenic molecules are angiopoietin-like 4 (72), apelin (73),

Frizzled A (74, 75), thrombomodulin (76), AGGF1 (77), Slit3 (78),

as well as a plethora of pro-angiogenic peptides, the therapeutic
Frontiers in Cardiovascular Medicine 04
potential of which is reviewed elsewhere (79). Aside from the

established regulators of angiogenesis, there are many ancillary

factors that influence vessel growth and maturation and which,

under certain circumstances, may even circumvent the angiogenic

dependency on VEGF. As will be seen in this review, LRG1 is

now considered to be one of these adjunct pro-angiogenic factors

and hence can be added to this extensive list. However, contrary

to many of the factors mentioned above, LRG1 does not play a

role in developmental or physiological angiogenesis as knock-out

mice exhibit no overt phenotype, breed successfully and live a

normal life span (21). In the context of disease, however, LRG1 is

now recognised as a potent pro-neoangiogenic factor as it has

been shown to promote pathological angiogenesis in numerous

diseases and de novo growth in in vitro experimental settings

(Table 1). It is worth noting, however, that angiogenesis under

in vitro/ex vivo conditions is unlikely to represent normal

angiogenesis, as the environment is more aligned to a pathogenic

than homeostatic state. As outlined in more detail in the sections
frontiersin.org
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TABLE 1 Evidence for the functional role of LRG1 in disease pathogenesis and vascular processes.

Disease/Condition Process Functional evidence Publication
Cancer Tumor progression, Angiogenesis

(Bladder cancer)
Increased tumor cell proliferation, migration, invasion, EC angiogenesis (tube formation)
(in vitro).

(80)

Tumor progression, Angiogenesis
(Pancreatic cancer)

Improved tumor cell viability, migration, invasion, EC angiogenesis (tube formation)
through VEGFR activation (in vitro).

(81)

Tumor progression, Angiogenesis
(Gastric cancer)

Increased EC proliferation, migration, and angiogenesis (tube formation). Tumor cell
angiogenesis and tumor progression (in vitro).

(27)

Vessel normalization Improved vessel structure and vascular function (Antibody blockade or gene deletion in
tumor models in vivo).

(32)

Metastasis Promoted metastasis in lung cancer via NG2+ perivascular cells and STAT3 signaling (in
vivo).

(29)

Metastasis (Melanoma) Reduced tumor cell metastasis, growth, proliferation, and angiogenesis in the absence of
LRG1 (in vivo, in vitro).

(28)

Angiogenesis (Non-small-cell lung
cancer)

Promoted tumor cell proliferation, migration, invasion, EC angiogenesis (tube formation)
through TGF-β (in vitro).

(82)

Angiogenesis (Ovarian cancer) Induced EC angiogenesis (tube formation) by upregulating VEGF, Ang1, TGF-β (in vitro). (83)

Angiogenesis (Colorectal cancer) Promoted tumor cell invasion, EMT, EC migration, angiogenesis and sprouting (ex vivo,
in vitro) through HIF-1α.

(84)

Diabetes Angiogenesis Induced angiogenic and neurotrophic function, EC angiogenesis (tube formation),
proliferation, migration (in vivo, ex vivo, in vitro).

(85)

Wound healing Promoted EC viability, proliferation, migration, angiogenesis (in vitro), and wound
healing (in vivo).

(86)

Wound healing Controlled immune cell infiltration, re-epithelialization, and EC angiogenesis/
proliferation (tube formation) through phosphorylation of SMAD1/5.

(17)

Wound healing Corneal epithelial wound healing and nerve regeneration via regulation of matrix
metalloproteinases (in vivo, in vitro).

(54)

Angiogenesis Induced angiogenesis (in vivo) through ALK1-SMAD1/5/8 in glomerular EC. (53)

Pathogenesis Elevated expression in glomerular EC (in vitro). (52)

Angiogenesis Elevated expression in glomerular EC and angiogenesis (tube formation) (in vitro). (87)

Fibrosis Skin Induced EC proliferation, migration, and angiogenesis (in vitro) and promoted skin
fibrosis through ELK1 and ERK signaling.

(41)

Lung Promoted lung fibrosis through TGF-β-induced Smad2 (in vivo, in vitro). (42)

Kidney, DKD Induced expression in glomerular EC and promoted fibrosis through p38 signaling (in
vitro).

(88)

Kidney, CKD Promoted EC angiogenesis (tube formation) and proliferation (protective role). (34)

Heart fibrosis, myocardial
infarction

Gene ablation aggravated myocardial fibrosis and cardiac remodeling by suppressing
SMAD1/5/8 (in vivo) (protective role).

(89)

Acute respiratory distress
syndrome

Vascular repair, tissue healing Exhibited angiogenic properties and tissue repair through TGF-βR2 and SMAD1/5/8. (90)

Osteoarthritis Angiogenesis Induced EC angiogenesis and mesenchymal stem cell migration (in vitro). (64)

Corneal neovascularization Angiogenesis Induced angiogenesis and lymphangiogenesis via activating VEGF signaling (in vivo). (91)

Ischemia Angiogenesis Promoted blood vessel formation through upregulating the TGF-β1 signaling (in vivo). (92)

Atherosclerosis Calcification Endothelial LRG1 induced VSMC de-differentiation and calcification through SMAD1/5
signaling (in vivo).

(93)

De novo angiogenesis Vessel formation (placenta) Exhibited pro-angiogenic functions and hypervascularization in gestational diabetic
placenta (ex vivo, in vitro).

(58)

Vessel formation Induced de novo angiogenesis upon activation by IL-6/STAT3 (ex vivo, in vitro). (26)

Vessel formation (ocular) Induced de novo angiogenesis through SMAD1/5/8 (ex vivo, in vitro). (25)

EC, endothelial cell; EMT, epithelial to mesenchymal transition; CKD, chronic kidney disease; DKD, diabetic kidney disease; VSMC, vascular smooth muscle cells.
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below, and with the caveat above, several studies have investigated

the pro-angiogenic properties of LRG1 and have shown that it can

act directly on endothelial cells, inducing cell proliferation and

tube formation in vitro as well as on other cells impacting

proliferation, migration and viability (17, 27, 34, 41, 80–84, 86). In

addition, LRG1 promotes vessel growth and sprouting in ex vivo

mouse metatarsal bone and aortic ring angiogenesis assays

(25, 26). This is attenuated in explant tissues derived from Lrg1−/−

mice or when a function-blocking anti-LRG1 antibody is used

(25, 26, 84, 94). Similarly, knocking down LRG1 through siRNA

silencing decreased the tube formation capacity of HUVEC

co-cultured with pancreatic cancer cells (81). Vessels that develop
Frontiers in Cardiovascular Medicine 05
in response to LRG1 stimulation, in the absence of other

exogenous drivers, exhibit a pathological phenotype. In particular,

LRG1 treatment of metatarsal bones and aortic rings resulted in

vessels with reduced coverage of αSMA+ and NG2+ mural cells

(26). Although the mechanisms behind this remain unknown, it

seems likely that both autocrine and paracrine mechanisms affect

the recruitment, proliferation, migration and differentiation state of

mural cells in a LRG1-dependent manner. These studies raise the

question whether LRG1 is a true angiogenic factor or whether it

affects the stability of existing vessels permitting them to be more

permissive to other angiogenic stimuli. Indeed, similar to VEGF,

LRG1 can destabilize existing vessels and this may promote the
frontiersin.org
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angiogenic process. In addition, as LRG1 is ubiquitously present in

the circulation it remains unclear what the relative contribution of

systemic LRG1 vs. locally produced LRG1 is to vascular pathology.

As with TGF-β, the effect of LRG1 on cell function is dependent

on multiple factors one of which appears to be its local

concentration, indicating a possible threshold effect achieved

through local production. Moreover, the differential effect of

luminal vs. abluminal exposure has yet to be determined as this

may also dictate outcome.

Thedata above support the idea that in contrast tomanyangiogenic

factors with homeostatic roles in the maintenance of a healthy
FIGURE 3

Drivers of vascular dysfunction and its therapeutic reversal. Vessels under no
through cross-talk between the endothelial cell and mural cells (pericytes a
that destabilize existing vessels and stimulate new dysfunctional vessel growt
alter vascular function in disease is a common therapeutic objective. Inhibiti
be a promising therapeutic approach. DR, diabetic retinopathy; nAMD, neov
Created with BioRender.com.
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vasculature, LRG1 expression is induced locally in response to

pathogenic cues to drive the formation of a destabilized vasculature

(Figure 3). These cues include inflammatory signals, hypoxia and

vessel destabilizing factors that not only induce LRG1 expression but

may also act on the vasculature independently creating an overall

disruptive milieu. Acute inflammation, for example, causes

dysfunction to existing vessels and often precedes neovascularization.

Indeed, when inflammation becomes chronic and unresolved, it can

promote the sustained activation of downstream mechanisms that

trigger endothelial dysfunction, vascular remodeling, and abnormal

neovascularization all of which serve as major risk factors for the
rmal conditions are stabilized and maintained in a mature functional state
nd smooth muscle cells). During disease, vasoactive factors are released
h, both of which contribute to disease progression. Targeting factors that
ng LRG1 activity has been shown to normalize vessels and may therefore
ascular age-related macular degeneration; CKD, chronic kidney disease.
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development of cardiovascular disease (95). Our studies, and other

recent evidence, demonstrate that endothelial cells themselves

represent a key source of LRG1 in the diseased milieu (Figure 1). For

instance, single cell RNA sequencing revealed Lrg1 as one of the most

upregulated genes in disease-associated endothelial cells in murine

models of liver cancer (96) and atherosclerosis (97), while a seminal

study demonstrated that LRG1 originating from endothelial cells

contributes primarily, in an autocrine fashion, to vessel malfunction

and disease severity in a model of emphysema (37). Interestingly,

transcriptomics studies also showed higher Lrg1 expression in

endothelial cells isolated from LPS-treated lungs, pointing to

inflammation-induced LRG1 being responsible for aberrant

vasculogenesis (39). Similarly, Lrg1 was found upregulated in diseased

endothelium from inflamed retinal vessels in a mouse model of

experimental autoimmune uveitis, suggesting a role for LRG1 in

retinal inflammation and angiogenesis (98).

Abnormal angiogenesis is associated with numerous conditions,

and the role of LRG1 in this pathology has become evident. Thus, as

discussed in more detail below, it has been reported to be involved

in neovascular dysfunction in ocular disease, diabetes, kidney

disease, lung disease, impaired wound healing, inflammatory

conditions, gestational diabetes and cancer. In addition, LRG1 may

also contribute to destabilization of existing vessels by impacting on

endothelial cell adhesion and permeability (Figure 3). Such
FIGURE 4

LRG1 cell-dependent signaling and outcome. LRG1 can induce signaling in al
of signaling receptors and downstream influences, LRG1 can cause the TGF-
smooth muscle cell. LRG1 has been shown to alter the canonical and non-c
endothelial to mesenchymal transition; EMT, epithelial to mesenchymal tran
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emerging evidence highlights the potential of targeting LRG1 with

novel therapeutic strategies to attenuate vascular disruption in

disease. In support of this, and as highlighted elsewhere in this

review, deletion of the Lrg1 gene or blocking LRG1 function has

been shown to partially reverse the vascular pathology in many

conditions. Thus, therapeutic blockade of the angiopathic properties

of LRG1 will therefore not only permit vessels to revascularize tissue

in a more physiological manner but has the potential to re-establish

a quiescent endothelial state in existing disrupted vessels.

In order to devise therapeutic strategies targeting LRG1, it is

important to understand the mode of action through which

LRG1 promotes defective angiogenesis or impairs the established

vasculature. To date, it is evident that TGF-β signaling is a key

downstream mediator of LRG1 activity. In endothelial cells,

TGF-β signals through binding to the TGF-βRII receptor

followed by initiation of signaling either via the ALK1 or ALK5

kinase. In homeostasis, TGF-β signaling maintains endothelial

cell quiescence by regulating ALK5 and the downstream

SMAD2/3 transcription factors (99). However, high levels of

LRG1 can shift the balance of endothelial TGF-β signaling

towards the ALK1 kinase, which associates with Endoglin (ENG)

to activate the pro-angiogenic SMAD1/5/8 arm of transcription

factors leading to endothelial cell proliferation, migration and

pathological angiogenesis (25, 26, 53, 99) (Figure 4). Indeed,
l cellular constituents of the vasculature. Depending on the configuration
β angiogenic switch through acting on the endothelial cell, pericyte and
anonical TGF-β signaling pathways in a cell-dependent manner. EndMT,
sition. Created with BioRender.com.
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ENG has been proposed as being essential to allow the interactions

between LRG1, TGF-β and ALK1 (25, 100) but evidence from

other cell types demonstrates that it can still elicit TGF-βRII

signaling in the absence of ENG. Nevertheless, this so called

TGFβ angiogenic switch is not a binary response as outcome is

more likely due to the relative balance between these two

canonical signaling arms that dictates the context-dependent

nuanced response. Moreover, LRG1 also activates the non-canonical

TGF-β pathway in various cells and settings (23), which may

influence vascular structure and function (Figure 4). Merely

promoting the pro-angiogenic TGF-β switch, therefore, is unlikely to

fully explain the complex angiopathic effects of LRG1. There also

exists the distinct possibility that LRG1 can modify BMP signaling

although this remains to be determined. Outside the TGF-β axis, an

alternative mechanism has been noted, whereby LRG1 binds to the

Latrophilin-2 receptor to promote LRG1-dependent angioneurin

effects in diabetes, where angiogenic and neurotrophic processes are

in place (85). Additionally, recent studies have provided evidence that

LRG1 disrupts vascular homeostasis by altering the fine balance

between endothelial cells and pericytes causing leaky and destabilized

vessels (26, 32). How this imbalance is achieved needs to be further

explored, but autocrine and paracrine signaling mechanisms between

the endothelium and pericytes appear to be critical. Those

mechanisms may involve the release of angiocrine factors including

Ang1 and Ang2, or LRG1-driven signaling in pericytes.
LRG1, tissue repair and wound healing

Postnatally, angiogenesis is an important part of the repair and

wound healing process. This involves a tightly regulated sequence

of events including the recruitment of many different cell types

driven in part by overlapping phases of inflammation and tissue

remodeling (101). Failure of wound healing can lead to chronic

wounds, which can be observed in many conditions such as eye

disease, lung and heart disease, and diabetes (102). Upregulation

of LRG1 in various cell types during the normal wound healing

process clearly suggests its involvement, possibly through the

promotion of new vessels and cell de-differentiation and migration

(Figure 1). Whilst the role of LRG1 in normal blood vessel

formation during wound healing is still unknown, reduced blood

vessel density has been observed in the wound bed of Lrg1−/−

mice (17), suggesting its involvement in post-developmental vessel

formation. In a murine skin wound healing model, LRG1 drives

keratinocyte migration and re-epithelization by improving HIF-1α

stability through ELK3 (103), whereas in a similar setting, LRG1

promoted endothelial cell proliferation, angiogenesis and EMT

(17). In the latter study, LRG1 expression within the wound was

also observed in bone-marrow-derived cells such as neutrophils,

monocytes, macrophages and dendritic cells. The presence of

LRG1 was shown to be essential for timely wound repair as Lrg1−/−

mice exhibited a significant delay in wound closure, which was

reversed when bone marrow-derived LRG1-expressing stem cells

were transfused into the knock-out animals (17). However, in

wounds from diabetic mice, as well as from patients with diabetes,

LRG1 expression was markedly enhanced and in mice was shown
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to result in delayed wound closure. LRG1 was also associated with

the adverse inflammatory response by stimulating excessive

neutrophil attraction and promoting NETosis in a TGF-β/ALK5/

ΑKT-dependent manner (17). The delay in wound healing in

diabetic mice was reversed in Lrg1−/− mice, demonstrating its

context dependent activity. In diabetic wounds in the rat, LRG1 has

also been shown to increase blood vessel density through activating

the WNT/β-catenin pathway, which, counterintuitively, may

exacerbate the wound healing process (86).

Whilst not entirely consistent, these studies suggest that under

normal conditions LRG1 promotes physiological tissue repair by

promoting angiogenesis and cell migration, but in a chronic

inflammatory setting, as seen in diabetes, LRG1 remains induced

prolonging the initiating stage of wound healing (Figure 2). Our

current understanding, therefore, is that LRG1 is induced as part of

the acute innate immune response mechanism that sequesters Cyt

c, and through modification of TGF-β signaling activates endothelial

cells and pericytes resulting in destabilized vessels and stimulation

of sprouting angiogenesis. We propose that through other switches

in the TGF-β signaling, LRG1 also drives EMT that permits loss of

epithelial junctional integrity, cell division and migration required

for wound closure. As the inflammatory response resolves under

normal conditions LRG1 expression is attenuated allowing for

cellular re-differentiation, wound stabilization, and maturation.

However, in the presence of a continuing chronic inflammatory

stimulus LRG1 expression is sustained, and even increased, which

maintains cells in a de-differentiated less mature state and thus

prevents wound resolution and tissue homeostasis (Figure 2).
LRG1, ischemia and stroke

A role for LRG1 has been reported to be part of the repair

mechanism in cerebral damage due to ischaemic injury.

Interestingly, high circulating LRG1 levels have been found

positively associated with stroke severity and poor functional

outcomes (104–106), as well as with poor cognitive impairment

and neurological function (107). In the brain, following ischemic

stroke injury a single cell transcriptomics study revealed the

emergence of a LRG1-positive endothelial cell subpopulation in

the brain infarct area, the expression profile of which suggests its

involvement in the complex regulation of angiogenesis, with both

pro- and anti-angiogenic factors expressed (108). In fact, in a

mouse cerebral artery occlusion model, LRG1 increased apoptosis

and autophagy through TGF-β and SMAD1/5 exacerbating the

ischemic injury (109). Similarly, increased LRG1 was found in

brain endothelial cells in a rat brain ischemia model with

expression correlating positively with VEGF, Ang2 and TGF-β

(92), indicating a protective role for LRG1 by promoting de novo

formation of blood vessels, possibly through TGF-β (92). De novo

vessel formation was confirmed, with CD34 staining showing

significantly increased microvessel density after stroke, which again

correlated with LRG1 expression (92). However, whilst new vessels

were observed which may confer survival benefit, the likelihood is

that these penumbral vessels are dysfunctional compromising their

beneficial effect (110). A more recent study employing a cerebral
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ischemia-reperfusion injury model in the mouse demonstrated that

in the Lrg1−/− mouse there was reduced cerebral oedema and

infarct size, which was accompanied by improvement in

neurological function (111). Crucially, this study showed that

following cerebral ischaemia, cells of the blood-brain barrier were

able to retain the expression of barrier function related genes, such

as claudin 11, integrin β5, protocadherin 9, and annexin A2, more

effectively in the absence of LRG1 (111). This demonstrates that

LRG1 has a detrimental effect on the blood-brain barrier and thus

contributes to vasogenic cerebral oedema. In its wider role, Lrg1

knockout also permitted a more anti-inflammatory and tissue-

repairing environment and reduced neuronal cell death. In a

different ischaemic setting, tissue remodeling after myocardial

infarction involved the infiltration of LRG1 expressing myeloid

cells that were reported to exert a cardioprotective role by

promoting signaling through the pro-angiogenic TGF-β/SMAD1/

5/8 axis and contributing to post-infarct vessel formation (89).
LRG1 and vascular pathology of the eye

Retinal neovascularization

Vascular problems of the eye, such as in diabetic retinopathy or

neovascular (exudative or wet) age-related macular degeneration

(nAMD), are characterized by vessel remodeling and angiogenesis

and can occur intraretinally, subretinally or at the vitreal interface.

Irrespective of the ocular disease, vascular dysfunction is often a

major contributing factor to loss of vision in the developed world

(112). The first evidence that LRG1 is actively implicated in

pathogenic neovascularization emerged from its identification as the

most up-regulated gene in a transcriptomics analysis of retinal

microvessels isolated from three different animal models (retinal

dystrophy 1, VLDLR knock out, Grhl13ct/J curly tail), each of which

showed marked retinal vascular remodeling and pathology (25).

This study went on to show that the Lrg1 transcript is almost

undetectable in the healthy mouse retina but in experimental retinal

vascular diseases such as experimental choroidal neovascularization

(CNV) (113) and oxygen-induced retinopathy (OIR) (114) that

model choroidal and retinal neovascularization respectively,

expression of LRG1 is induced in endothelial cells (25). In OIR, the

abnormal retinal neovascularization that occurs at the vitreous

interface is believed to be driven largely by hypoxia, whereas in

CNV the laser burn to the retinal pigment epithelium (RPE) results

in vessels sprouting from the choriocapillaris through the breached

RPE into the subretinal space as a result of injury-induced hypoxic

and inflammatory cues. Irrespective of the model system employed,

genetic deletion of Lrg1 led to a diminished pathogenic neovascular

response coupled with a reduction in vascular leakage as assessed by

fundus fluorescein angiography. Of note, however, revascularization

of the hyperoxia-induced vessel ablated region in OIR proceeds in a

more physiological patterned manner and is not affected by Lrg1

deletion (25, 94), further demonstrating that LRG1 contributes to

pathogenic, but not physiological, neovascularization. Similar

findings were seen when LRG1 activity was blocked by intravitreal

delivery of a specific function-blocking antibody, the application of
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which significantly reduced OIR and CNV lesion size (25, 94) and

lends credence to its potential as a therapeutic target.

In addition to the disease-associated induction of endothelial

LRG1 expression, myeloid cells have also been found to express

LRG1 in choroidal neovascularization. A recent study exploring

the transcriptional profiling of immunosenescence in myeloid

cells during the development of CNV showed that aged

senescent myeloid cells of CNV-induced animals exhibited an

upregulated angiogenic transcriptional profile with significantly

elevated Lrg1 and Arg1 expression compared to young cells

(115). This is the first study to provide evidence of upregulated

Lrg1 expression in cells other than the endothelium contributing

to choroidal neovascularization. Although it is not clear yet

whether this is an epiphenomenon or there is a direct causal role

for LRG1 in CNV-related immunosenescence, the data suggest a

potential role for LRG1 and myeloid cells in the

immunoregulation of CNV that merits further investigation.

Corroborating the mouse studies above, elevated expression of

LRG1 has also been found in the aqueous and vitreous humour and

in retinal choroidal neovascular membranes of nAMD patients

(116–119), as well as in dry (atrophic) AMD (120). Mundo et al.,

showed that in ocular sections of nAMD membranes LRG1 is co-

localized not only with endothelial cells but also with myofibroblasts,

suggesting an alternative cell source through which LRG1 may exert

its pathological effects (118). Thus, myofibroblast-derived LRG1 may

contribute to endothelial dysfunction in the retina in a paracrine

manner, but it may also be involved in promoting retinal fibrosis

through autocrine mechanisms (118). This suggests that, two-way

LRG1 cross talk between endothelial cells and fibroblasts may drive

both vascular dysfunction and fibrosis. This is in accordance with

other findings showing that LRG1 promotes fibrosis in various

tissues and conditions including the skin (41), idiopathic pulmonary

fibrosis (42), renal fibrosis (34) as well as diabetic nephropathy (33,

121), by directly affecting the physiology and activity of fibroblast-

like tissue resident cells (Figure 1). Interestingly, a recent study

showed that exogenous LRG1 promotes the EMT of RPE cells as

evidenced through high levels of αSMA and fibronectin and low

levels of ZO-1 (122). The concept that vascular dysfunction can

contribute to fibrosis is not new (123) and it raises the interesting

possibility that endothelial derived LRG1 may also trigger the

fibrotic response in the eye. Similarly, endothelial cells have been

shown to contribute to matrix deposition when they undergo

phenotypic differentiation via EndMT, a process predominantly

regulated by TGF-β. EndMT is a hallmark of cardiovascular disease

and has been studied in a variety of experimental models (124).

Although there is no known link between EndMT and LRG1,

unpublished evidence from our laboratory suggests that LRG1 is

overexpressed in a cytokine induced EndMT model system and may

therefore play a role in the eye.
Diabetic retinopathy

In diabetic retinopathy, where retinal vascular dysfunction,

dropout and neovascularization are prominent, LRG1 has been

reported to be upregulated not only in the vitreous humour and
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in ocular tissues (25, 50, 125, 126), but also systemically in the

plasma of patients with proliferative diabetic retinopathy (PDR)

(50, 127). Diabetic retinopathy is the most common complication

of diabetes, leading to impaired vision and ultimately to vision

loss (128). The first stage of the disease is non-proliferative and

is characterized by microvascular abnormalities leading to

macular oedema, microaneurysms, micro-haemorrhages, and

poorly perfused, occluded, and de-endothelialized capillaries. In

PDR, the later stage of the disease, loss of vessels and subsequent

hypoxia results in the growth of abnormal neovessels leading to

vitreous haemorrhage, tractional detachment and eventually

blindness. Since LRG1 is almost undetectable in a healthy human

eye, its elevated expression in the vitreous in diabetes is most

likely to be due to activated local production in response to

disease, but it may also derive from the plasma as a consequence

of vascular leakage. Whether the upregulated expression drives

the vascular complications in the eye or contributes to other

diabetes-associated pathology remains to be elucidated. Indeed,

accumulating evidence indicates that LRG1 is upregulated in the

plasma (56, 129) and urine (130) of people with diabetes, hence

it can serve as a biomarker for PDR (131). However, LRG1 did

not offer a significant improvement when used in a risk

prediction model for PDR (57). Nevertheless, the greater

evidence so far implicates LRG1 in retinal neovascularization,

with its genetic deletion or inhibition of function through

antibody blockade ameliorating vascular pathology, lesion size

and leakage in animal models (25, 94). In addition, unpublished

data from our lab shows that LRG1 can promote the phenotypic

and functional differentiation of pericytes towards a fibrotic state

and that this contributes to vascular dysfunction in diabetic

retinopathy through both canonical and non-canonical TGF-β

signaling (20) (Figures 1, 4). This evidence highlights the

possibility that endothelial derived LRG1 may also impact retinal

function in a paracrine manner. Although our understanding of

diabetic retinopathy has increased substantially, and anti-VEGF

therapeutics have revolutionized diabetic macular oedema and

PDR treatment, a substantial number of patients remain or

become refractive which clearly implicates the involvement of

other players and highlights the need for further research. The

evidence to date suggests that LRG1 may be a contributing factor

to resistance to anti-VEGF strategies and thus LRG1 blockade

could improve outcome.
Corneal neovascularization

The angiogenic properties of LRG1 have also been described in

the context of corneal neovascularization in a corneal alkali burn

mouse model, where LRG1 promoted a significant outgrowth not

only of blood vessels, but also of lymphatic vessels (91). The

normal cornea is avascular in order to maintain transparency but

under pathological conditions, such as inflammation or trauma,

new vessels invade the avascular tissue causing visual impairment.

In Lrg1 knock down studies using siRNA, a limited angiogenic

and lymphangiogenic response was observed compared to control

mice (91). In this study, different members of the VEGF family
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were implicated in LRG1-driven corneal angiogenesis and

lymphangiogenesis, with VEGF-A/B and their receptors VEGFR-1/2

regulating the former and VEGF-C/D together with VEGFR-2/3

regulating the latter (91). How LRG1 impacts on this remains

unclear but it raises the possibility of cross regulation between

these pathways. Apart from neovascularization, LRG1 was also

found to promote corneal fibrosis by increased deposition of

αSMA, collagen type I and CTGF in the corneal epithelium (48).

This LRG1-driven effect was mediated by neutrophil infiltration at

the site of corneal injury through the phosphorylation of STAT3

and the upregulation of IL-6/STAT3 signaling (48). These data

point to LRG1 as a potential therapeutic target to ameliorate

pathogenesis in corneal disease.
LRG1 and chronic kidney disease

The role of LRG1 in kidney disease, in particular diabetic

nephropathy, is gaining interest (132) with growing evidence that

LRG1 contributes to vascular rarefaction and abnormal

neovascularization. In normal kidney, LRG1 expression is found in

glomerular endothelial cells co-localized with that of CD31, as well

as in the tubulointerstitium (53). The kidney is a highly

vascularized organ, where maintenance of normal blood flow is

crucial for renal function which, following pathological

complications such as vessel loss and fibrosis, may become

seriously compromised. Endothelial dysfunction coupled with

abnormal angiogenesis have long been known to contribute to the

pathogenesis of diabetic nephropathy and other chronic kidney

conditions, although the underlying molecular mechanisms are

poorly understood (33, 53, 133). Several studies show that in a

variety of chronic kidney disease (CKD) models LRG1 gene and

protein expression is significantly increased. Indeed, a

transcriptomics study has shown that in a model of diabetic

nephropathy, Lrg1 was upregulated in glomerular endothelial cells,

where it mediated high glucose-induced pathological angiogenesis

(87). Similarly, other studies have also shown that in experimental

diabetic kidney disease (DKD) Lrg1 gene expression induced in

glomerular endothelial cells is involved in vascular rarefication and

subsequent neovascularization and fibrosis, partly via activation of

the p38 and TGF-β-SMAD1/5/8 pathway (52, 53, 87, 88).

Consistent with these reports, LRG1 overexpression has also been

shown to result in exacerbation of disease (33, 53). What is

interesting, but needs further corroboration, is the suggestion that

the initiating mechanism driving vascular dysfunction is mediated

by LRG1 and is independent of VEGF. This is based on the

finding that LRG1 expression precedes the expression of VEGF

and its receptor VEGFR-2 in diabetic nephropathy (52) and that

VEGF is expressed mainly in the injured podocytes following

endothelial injury (134, 135). These data prompted the authors to

suggest that glomerular endothelial LRG1 may be an initiating

factor in vascular pathology in the diabetic kidney.

In various other in vivo models of CKD, including the albumin

overload model (136), unilateral ureteral obstruction (UUO) model

(34), and the aristolochic acid-induced nephrotoxicity (AAN)

model (33), LRG1 protein levels have also been shown to be
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higher, often correlating with increased pro-inflammatory and pro-

fibrotic cytokines. Such findings support the contention that LRG1

is not only induced by inflammatory cues but that it also promotes

the renal inflammatory response including the activation of

macrophages in a TGF-βR1-dependent manner (137).

In the kidney, endothelial cells are not the only source of LRG1,

as it has also been shown that renal tubular epithelial cells (33) and

HK-2 human proximal tubular epithelial cells (34) can be induced in

vitro to express LRG1. Tubular epithelial cell derived LRG1 has been

shown to activate the TGF-β-SMAD3 pathway in fibroblasts resulting

in increased renal fibrosis (33). This additional cellular source of

LRG1 may not only trigger fibrosis but also contribute further to

endothelial cell dysfunction. Indeed, it has also been proposed that

LRG1 mediated microvascular dysfunction in the kidney may

facilitate the onset and progression of fibrosis (34), supporting the

notion that these two phenomena are interrelated (123). What is

clear from these studies is that in the kidney LRG1 not only

stimulates vessel loss and the formation of abnormal neovessels, it

also drives the fibrotic response, all of which combine to reduce

glomerular filtration rates (121, 138). In accordance with the

studies above, increased renal LRG1 expression is reflected in the

urine, where significantly elevated levels correlate closely with the

degree of renal tubular dysfunction (136). Consistent with these

findings, Lrg1 knockout reduces the deterioration of kidney

function (33, 53). Similarly, suppression of LRG1 and ALK1-

dependent angiogenesis by metformin showed significant

renoprotective effects in a diabetic rat model (139).

Clinical evidence also points to LRG1 playing a role in the

pathogenesis of CKD. Thus, it has been shown that in people

with type 2 diabetes and DKD, plasma LRG1 levels predict both

albuminuria and CKD progression beyond traditional risk factors

(56, 140). Similarly, in children with type 1 diabetes a clear

relationship between plasma LRG1 and estimated glomerular

filtration rate (eGFR) decline suggests that LRG1 may be an early

marker of DKD progression (49). In separate studies, using

human DKD tissue, LRG1 gene expression has been found to be

increased in glomerular endothelial cells (53). Moreover, in other

forms of CKD, including lupus nephritis (36), IgA nephropathy

(34), and end-stage kidney disease dialysis patients (35),

increased LRG1 plasma and biopsy tissue levels correlate with

worse outcome, increased inflammatory markers, and greater

fibrosis. Of note, LRG1 levels correlated positively with IL-6, a

known activator of LRG1 gene expression, as well as with a more

advanced state of T cell differentiation and the presence of

cardiovascular disease and peripheral arterial occlusive disease

(35) demonstrating its potential systemic involvement.

In addition to plasma, increased urine LRG1 levels in diabetes is

also associated with an increased risk of progression to end stage

kidney disease independent of traditional cardiorenal risk factors

(55), and in kidney transplant recipients LRG1 has been considered

a potential kidney injury marker that correlates with other tubular

injury markers and functional deterioration (141). These human

data support the evidence from experimental studies that LRG1 is

an important factor in driving CKD through initial effects on the

kidney vasculature and the subsequent fibrotic response. One of

the most compelling pieces of clinical evidence that LRG1
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contributes to DKD, however, was a recently reported GWAS study

in people with type 2 diabetes and CKD, where a 5’UTR variant

(rs4806985) in the promoter region of LRG1 was found to

influence its gene expression resulting in elevated plasma LRG1

and a robust association with increased risk of rapid decline in

kidney function (51). This is the first study describing a

polymorphism risk to LRG1 circulating levels, suggesting a

potential use for LRG1 in stratifying patients with diabetes into

subsets based on their genetic predisposition. Additionally,

genetically influenced plasma LRG1 levels were also associated with

lower cognitive function, further supporting a role for LRG1 as a

novel biomarker for cognitive decline in type 2 diabetes mellitus

(142). The conclusion drawn in many of these studies is that LRG1

is a potentially important therapeutic target as it is seen as a

master upstream orchestrator of pathogenic TGF-β signaling. It is

well established that the TGF-β pathway has a critical role in

neovascular and fibrotic processes and that targeting constituents of

this pathway continues to be considered an attractive therapeutic

strategy. However, the need to retain homeostatic TGF-β signaling

remains a challenge but one which may be overcome by targeting

LRG1 as this is a key upstream factor in causing the switch from

quiescent housekeeping to pathogenic disruptive signaling.
LRG1 and lung disease

Inflammation, tissue repair, endothelial dysfunction and

increased interstitial pressure are common phenomena in

pulmonary disease leading to prominent vascular-related

complications such as pulmonary embolism, abnormal

microthrombi, and microvascular damage (143). Alveolar epithelial

and endothelial permeability are also compromised with impaired

gas exchange and vascular leakage due to loss or destabilization of

cell junctions. In addition, the damaged endothelium may disrupt

vascular tone and cause dysregulation of anti-inflammatory and

anti-thrombogenic endothelial properties, and together with

damaged epithelium can trigger the tissue repair process (144). To

date, evidence shows that LRG1 is involved in pulmonary vascular

dysfunction with increased expression seen in lung disease,

including chronic obstructive pulmonary disease (COPD),

interstitial pneumonia, airway inflammation in asthma, and active

tuberculosis, with LRG1 levels serving as a biomarker for early

diagnosis, progression, and prognosis (38, 66, 145–148).

Several reports show that LRG1 is upregulated in lung

epithelial and endothelial cells, mainly but not exclusively in

inflammation-induced pathology (37, 39, 66, 90). In particular, in

human COPD tissue, upregulated LRG1 was localized specifically

to the endothelium and correlated positively with marked airflow

obstruction, decline in lung function and severity of emphysema

(37). COPD is a heterogeneous long term lung disease

characterized by persistent airway inflammation, microvascular

dysfunction, dysregulated angiogenesis, and endothelial

apoptosis (149). Specific endothelial deletion of LRG1 in a

murine elastase model of COPD protected against severe

parenchymal destruction, highlighting a critical role for LRG1 in

promoting the development of maladaptive lung vasculature (37).
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Although the exact mechanism that mediates this process has not

yet been defined, it is possible that LRG1 impacts angiogenic

responses following endothelial injury either by promoting

defective angiogenesis or through the development of fibrosis.

Indeed, LRG1 has been shown to trigger a pro-fibrotic response

in the lung by activating lung fibroblasts and the subsequent

production and deposition of extracellular matrix via TGF-β

signaling and the phosphorylation of SMAD2 and SMAD3 in

mouse bleomycin models (42, 44). Strikingly, in a recent single

cell transcriptomics study, LRG1 was described as an extracellular

matrix coding gene and its expression was found increased and

maintained at high levels in aging lung, which associated LRG1

with age-related inflammation and tissue stiffness (150).

However, LRG1-mediated fibroblast activation and proliferation

was not regulated by SMAD2 or 3, the levels of which were

either unchanged or repressed, respectively, implying that other

signaling mechanisms, such as activation of alternative canonical

or non-canonical pathways, are in place (150). Indeed, consistent

with previously published data (25, 26, 53), in viral-induced lung

injury, LRG1 upregulation drives endothelial cell proliferation

and the angiogenic responses required for tissue repair by

activating SMAD1/5 signaling (90).

Elevated levels of circulating LRG1 have also been reported in

severe COVID-19 patients in blood, plasma, and tissue proteomic

studies (151–156). Although most of these studies associate

elevated LRG1 expression with an early immune and

inflammatory response, it is possible that LRG1 exerts an

angiopathic role in the pulmonary microvasculature related to

COVID-19. In fact, a dysregulated cytokine immune response,

known as a “cytokine storm”, has been established and studied

extensively in patients with COVID-19 (157). This includes

highly elevated expression of pro-inflammatory cytokines that

correlates with COVID-19 disease severity and requires

immediate attention, as excessive activation of immune cells can

lead to complicated and potentially lethal medical syndromes

(158). Among others, IL-6 is a key player in this cytokine

response with significantly elevated circulating levels in the

plasma of patients with COVID-19, and consequently it has been

reported to contribute to the related vascular pathology

(159, 160). Blocking IL-6 signaling as a therapeutic intervention

has been extensively studied in many diseases (161, 162), and

COVID-19 randomized controlled clinical trials with biologics

targeting the IL-6 receptor, including the Tocilizumab antibody,

have shown evidence of clinical benefit (163–166). Elevation of

both IL-6 and LRG1 in patients with COVID-19 suggests that

circulating pro-inflammatory IL-6 may induce systemic and local

upregulation of angiopathic LRG1 in the pulmonary

microvasculature. Indeed, IL-6 upregulates LRG1 expression in

human pulmonary microvascular endothelial cells, and this effect

is reversed when IL-6 signaling is blocked by the tocilizumab

antibody (26). Upregulated LRG1 in turn may contribute to the

development of a destabilized vasculature with prominent

endothelial dysfunction and vascular leakage during impaired

lung tissue wound healing (Figures 1, 4). This LRG1-dependent

microangiopathy may be mediated by the pro-angiogenic TGF-β-

SMAD1/5 signaling arm, as evidenced in other endothelial-
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related disease settings (25, 26, 90). As reported in experimental

CKD, and described above, dysregulated microvascular

endothelial cells in the lung in COVID may also be a driver of

fibrosis (37), linking LRG1 to these two key pathogenic processes.
LRG1 and inflammation-associated
disease

Over the past decade several studies have provided evidence that

LRG1 is involved in various inflammatory and autoimmune

diseases, and may act as a useful clinical and diagnostic biomarker

(23, 167–174). In such conditions, levels of LRG1 are upregulated

at the site of inflammation, with expression induced by pro-

inflammatory cytokines secreted by various cell types, followed by

the initiation of a series of downstream vascular events. During

inflammation, one of the key vascular responses is an increase in

vessel permeability that, alongside other inflammatory changes,

facilitates the extravasation of immune molecules and cells to the

site of injury (175). In addition to tissue resident cells, recruited

immune cells provide an additional source of angiogenic factors

that play a part in the inflammatory and reparative response. Over

time this response resolves but under certain chronic conditions

unresolved inflammation, including the persistence of LRG1

expression, continues through an imbalance of stimulatory,

inhibitory and disruptive factors, and can give rise to long-term

vasculopathic outcomes (176) (Figure 2).

Osteoarthritis (OA) is the most common inflammatory joint

disorder, with aberrant endothelial cell proliferation, vascular

penetration, and synovial fibrosis being the main disease leading

mechanisms that contribute to structural damage and pain (177).

Lrg1 transcript has been found to be upregulated in chondrocytes

upon IL-6 stimulation (178). In OA the pro-inflammatory

cytokine TNF-α, a key player in the pathophysiology of the

disease and major activator of pro-angiogenic factors (179, 180),

was also shown to induce LRG1 expression in the subchondral

bone and articular cartilage (64). In this setting it promoted

angiogenesis, mesenchymal stem cell migration and aberrant bone

formation via MAPK-dependent p38/p65 signaling. This highlights

a new potential mechanism through which LRG1 promotes

abnormal neovascularization coupled with de novo bone

formation. Supplementary to its role in angiogenesis in OA, LRG1

has also been shown to contribute to synovial fibrosis and joint

stiffness by promoting secretion of extracellular matrix in synovial

cells, cell migration and wound healing (46), further suggesting

that LRG1 not only affects endothelial cells but also other cells in

the cartilage exerting multiple parallel pathogenic responses.

Although LRG1has attracted substantial interest with regards to its

use as a clinical biomarker in a plethora of inflammatory conditions,

little is known about its mechanistic involvement in the development

and progression of vascular defects in these conditions. Nevertheless,

LRG1 has been implicated in Kawasaki disease, an acute systemic

vasculitis causing inflammation of small to medium sized blood

vessels resulting in cardiovascular complications (181, 182). The

main cytokines responsible for inducing LRG1, TFN-α and IL-6, are

elevated in the plasma of patients with Kawasaki disease, and a
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proteomic analysis of serum exosomes of patients with coronary artery

aneurysms caused by Kawasaki disease showed upregulated LRG1

levels, although no causal link with pathology was shown (183).

Similarly, another study on Kawasaki disease in children identified

LRG1 as a potential trigger of endothelial cell activation and cardiac

remodeling that closely associated with IL-1β signaling (184). The

cell source contributing to increased circulating LRG1 levels in these

conditions has not yet been identified but evidence from other

conditions suggests that upon inflammatory stimulation LRG1 is

most likely produced by endothelial cells, where it exerts its

vasculopathic effects via autocrine and paracrine pathways on the

endothelium and the adjacent mural cells, respectively. Although the

exact vascular pathogenesis in Kawasaki disease is not well

understood, vascular complications include necrotizing arteritis

associated with neutrophilic and immune cell infiltration, the release

of pro-inflammatory cytokines, luminal myofibroblast proliferation

and progressive obstruction of the coronary lumen have all been

linked with LRG1 in other conditions and so it is likely that it plays

a role in this and other vasculitides. In support of this, LRG1 has

also been found to be a promising serum biomarker for large vessel

vasculitis (LVV) (185), and antineutrophil cytoplasmic antibody

(ANCA)-associated vasculitis (AAV) (186, 187).

Inflammation is a hallmark of cardiovascular disease and

destabilized vasculature, and frequently serves as a trigger during

the early stages of disease, while increased expression of

inflammatory cytokines is associated with a higher risk of

cardiovascular diseases (188). Thus, LRG1 may be anticipated to

initiate or mediate inflammatory responses to some extent in

conditions with cardiovascular risk. In fact, LRG1 has been shown

to promote cardiovascular disease by regulating endothelial

dysfunction and inflammation through TGF-β and SMAD1/5/8

signaling in endothelial cells, interrupting normal endothelium-

dependent vasodilation and availability of nitric oxide (129).

Furthermore, in a recent study employing the Western diet

apolipoprotein E knockout (ApoE−/−) mouse model of

atherosclerosis, LRG1 was detected within the atherosclerotic

plaque, particularly in calcified regions (93). The cell source of

LRG1 was found to be endothelial cells that had been activated by

inflammatory mediators. Furthermore, this study demonstrated

that LRG1 was responsible for inducing vascular smooth muscle

cell activation and vessel calcification via a SMAD1/5 signaling

pathway (Figure 4). The authors conclude that LRG1 is a

significant contributor to the development of plaque

complications and therefore a potential therapeutic target. On the

other hand, and in contrast to most other studies, in arterial

stenosis it was suggested that endothelial LRG1 could serve as a

negative regulator of inflammation in response to TNF-α by

inhibiting expression of ICAM1 and VCAM1 and thus blocking

monocyte recruitment, offering a significant atheroprotective effect

(189). Interestingly, this is consistent with what has been observed

in cancer (see below) where endothelial anergy, as indicated by

ICAM1 and VCAM1 expression, is reversed upon LRG1 inhibition.

Exactly how LRG1 mediates vascular inflammation is not

clear although there is growing evidence for LRG1 regulating a

pro-inflammatory accumulation of immune cells. In particular,

LRG1 is involved in neutrophil function modulating NETosis,
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which is closely associated with inflammatory processes (17).

NETosis has been described as a form of necrosis and is

associated with many diseases including COVID, thrombosis

and CKD, as well as wound healing and other vascular

processes (190–192). As mentioned above, a recent study

suggested that LRG1 mediates NETosis and contributes to poor

wound healing in diabetic mice (17). Although future work is

required to unravel the role of LRG1 in regulating neutrophil

function, we speculate that NETosis might be an important

additional mechanism through which LRG1 may impact on

vascular structure and function.
LRG1 and cancer

LRG1 expression has been studied in a range of malignancies

where it has been shown to be elevated and to associate with

poor prognosis and survival (23, 61, 62, 193, 194). In addition,

raised blood LRG1 levels have been established as a tumor

biomarker with potential clinical value and also as a predictive

marker for cancer onset (30, 59, 60, 62, 193, 195–200). A

growing number of studies support an integral role for LRG1 in

cancer, where it has been shown to control cell viability and

apoptosis, and promote epithelial cells to undergo EMT, a crucial

step in tumor progression and metastasis (27, 28, 30, 31, 80–84,

201–203). In particular, LRG1 acts directly on tumor cell

proliferation, migration, and invasion contributing to tumor

growth and survival (Table 1), and these functions have been

described in detail elsewhere (23, 29, 193). Consistent with LRG1

playing a role in tumor progression, LRG1 blockade in different

tumor models inhibits growth and improves survival and thus

has been proposed as a potentially beneficial therapeutic target

(29, 32). There is also accumulating evidence that LRG1 has

important angiocrine and angiopathic functions in cancer, not

only by promoting the development of destabilized and

immature neo-vessels, but also by impairing already established

co-opted vasculature (Figure 3). As widely acknowledged,

growing tumors require a constant supply of oxygen and

nutrients, and serving these needs often relies on a concomitant

developing vascular network. The tumor vasculature, however, is

typically abnormal exhibiting impaired structure and function. In

particular, tumor blood vessels are immature, tortuous and

chaotic in organisation, with an abnormal vessel wall

characterized by a discontinuous endothelium, incomplete

coverage of mural cells, and atypical basement membrane

structures leading to poor perfusion and leakiness (204). These

characteristics also create a hypoxic and acidic environment

within the tumor tissue that favours malignancy and metastasis

and combine to reduce immune cell infiltration and effective

immune responses, and restrict the delivery of therapeutics and

effectiveness of radiotherapy.

The angiogenic potential of LRG1 has been assessed and

described in various types of tumors, including colorectal, gastric,

pancreatic, ovarian, and non-small-cell lung cancer (193).

Specifically, LRG1 has been proposed to enhance the angiogenic

process through acting directly on endothelial cells to induce
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proliferation and migration, but also indirectly through stimulating

proangiogenic factors such as VEGFA (84). Moreover, LRG1 has

been associated with increased microvessel density, suggesting

that it impacts tumor vascular growth (26). As in other diseases,

the direct effect of LRG1 on vessel function is believed to be

mediated primarily through modification of canonical TGF-β and

SMAD signaling, but in all likelihood also through

hyperactivation of non-canonical TGF-β pathways. Alternative

mechanisms for LRG1-driven angiogenesis have been proposed

including regulation through HIF-1α, which is associated with

resistance to cancer chemotherapy and increased patient

mortality (205). HIF-1α knockdown was shown to block LRG1-

mediated angiogenesis, EMT, and tumor invasiveness, and is

consistent with LRG1 being induced in response to hypoxia (84).

In another study, ERK mediated phosphorylation of ELK4 in a

human colorectal cell line resulted in complex formation with

SP1/3 and the induction of LRG1 gene expression (69). This, it

was argued, results in enhanced tumor angiogenesis through

activation of the TGF-β-SMAD1/5 pathway in endothelial cells.

Whatever the mechanism, the evidence is clear that LRG1 plays

a central role in driving abnormal vessel formation in solid tumors.

In line with LRG1 driving vessel abnormalization, strong

evidence indicates that vessel structure and function in tumors can

be improved by knocking out Lrg1 or by its inhibition. Indeed,

restoring vessel function, a process referred to as vascular

normalization, represents a promising strategy to facilitate drug

delivery, enhance cytotoxic T cell function, and increase the tumor

response to standards of care and immunotherapies (206, 207). In

this context, Lrg1 gene deletion, or functional blockade of the

protein, has been shown to improve tumor vascular function as

manifested by better perfusion, reduced tumor hypoxia and

reduced vascular leakage (32). In particular, vessel size, basement

membrane and perivascular mural cell coverage of the endothelium

were all significantly increased in the absence of LRG1 (32). As a

likely consequence of vascular normalization, LRG1 inhibition not

only led to significant improvements in the delivery and efficacy of

anti-tumor therapies, but also improved immune-cell infiltration

(32). This may partly be explained by re-activation of anergic

endothelial cells to allow leukocyte infiltration, seen for example by

increased ICAM-1 and VCAM-1 expression. Collectively, these

data show that the angiopathic functions of LRG1 not only

promote a pro-oncogenic vascular microenvironment in primary

and metastatic tumors, but also contribute to immune modulation.

Unpublished data from our lab show that in addition to the

vascular normalization effects, inhibition of LRG1 also promotes

tumor infiltration of T-cells by modulating the immunosuppressive

tumor microenvironment, thereby supporting a switch from being

immunologically “cold” to “hot”.

Angiogenesis is not the only means through which tumors

obtain a vascular supply. Vessel co-option is a surrogate

mechanism whereby tumor cells employ the established

vasculature to support growth, survival, and metastasis. In a

recent study where, in the presence of sunitinib, tumor growth

escapes from VEGF-dependent angiogenesis through vessel co-

option, single cell transcriptomics revealed a surprisingly similar

signature between tumor co-opted endothelial cells and pericytes
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and their healthy non-tumor bearing counterparts (208). This

finding was further confirmed in other vessel co-opted tumor

metastatic models. The similarity in the cell transcriptome was

predominantly due to the lack of genes associated with

angiogenesis and pericyte activation that are observed in

angiogenic tumors. Intriguingly, however, Lrg1 was found to be

one of the top 10 genes that were differentially expressed in co-

opted postcapillary vein endothelial cells compared to normal

endothelium (208). This suggests that Lrg1 is one of the few

genes to be expressed in both tumor angiogenic and co-opted

endothelial cells. Further studies, however, will be required to

determine whether Lrg1 induction in co-opted vessels exerts

similar vasculopathic effects as observed in angiogenic tumor

vessels and in vessels of other diseases.

Aside from endothelial cells, a major cell source of LRG1 in

cancer is frequently the tumor cells (Figure 1) but this is not

always the case. As in other diseases, there is evidence that LRG1

is also expressed by other cell types including fibroblasts, and

immune cells. In all experimental studies conducted thus far,

however, LRG1 expression has been shown to co-localize with

vessel markers, such as CD31 and CD34 (60, 209) illustrating its

ubiquitous presence in tumor endothelial cells. Recent work on

the role of LRG1 in cancer showed that in some cancer models

Lrg1 expression was mostly restricted to the vascular

endothelium, with no expression detected in the perivascular

mural cell population or the cancer cells themselves (29, 32).

Nevertheless, this was sufficient to impact on tumor growth as

Lrg1 knock-out or antibody blockade were still effective in

reducing tumor growth. Interestingly, using similar tumor

models it has been shown that the primary tumor induces

systemic vascular LRG1 expression and that this primes the

vascular metastatic niche and promotes tumor metastasis (29).

This priming was also associated with an expansion of NG2+

perivascular mural cells, which have been described as effective

mediators of metastasis (210). LRG1 induction in the tumor

mass and systemically in cancer is most probably through IL-6

and STAT3, with contributions from other signaling pathways.

Indeed, in metastasis models the STAT3 signaling pathway has

been shown to mediate LRG1-driven tumor metastasis, and that

this can be significantly reduced in Lrg1 deficient mice or

following LRG1 antibody blockade (28, 29, 31). Through a

different mechanism, liver endothelium-derived LRG1 has been

shown to promote tumor growth and metastasis of colorectal

cancer in a paracrine manner through binding to the HER3

receptor, leading to its phosphorylation and activation (202). If

evidence from other diseases translates to cancer, other cell

sources of LRG1 are likely to impact the tumor

microenvironment. In particular, fibroblasts and neutrophils are

a key source in other disease settings and their contribution to

cancer merits further investigation.
Conclusion

Over the last 10 years our understanding of how the secreted

glycoprotein LRG1 contributes to physiological and pathological
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processes has grown exponentially and, in the latter case,

demonstrates beyond doubt that it plays a significant

contributing role in disease. Whilst we are only just beginning to

appreciate the extensive biological role of LRG1, it is clear that

much of its activity is mediated through its switching effect on

the ubiquitous and complex TGF-β signaling network. Not

surprisingly, therefore, the biological effect of LRG1 is wide

ranging and highly cell and context dependent, reflecting the

biological diversity of TGF-β activity. Accordingly, LRG1 exerts

pleiotropic effects depending on the cell target and the influence

of other environmental cues, affecting not only the vasculature

but also other cell types that are under the influence of TGF-β

including epithelial cells, cancer cells, immune cells, and

fibroblasts, that in turn may also feedback to affect vascular

function. Whilst much speculation remains surrounding the

normal physiological role of LRG1, the weight of evidence that it

exerts pathological effects is now compelling even though its

acceptance as a mainstream pathogenic effector molecule is only

just gaining traction. Amongst its effects, those it has on the

vasculature are likely to be of substantial clinical importance in a

wide range of diseases including cancer, chronic kidney disease,

diabetic retinopathy, and emphysema. Indeed, its potential role

as a major pathogenic mediator of systemic cardiovascular

disease is only just beginning to be considered.

LRG1 has been found to be over-expressed in many disease

tissues, where its local production, especially under chronic

inflammatory conditions, appears to exacerbate pathological

cell dysfunction. This is in line with its likely physiological role

as a component of the repair mechanism. Thus, LRG1 can

induce de-differentiation of epithelial, endothelial and pericyte

cells to support the wound healing process, but under

chronically stressed cell conditions, LRG1 is not switched off

and its persistence has destabilizing effects resulting in aberrant

pathological responses (Figure 2). In the context of vascular

function, LRG1 can act on endothelial cells and mural cells

affecting the fine interactive balance needed for a stable and

mature vasculature (Figure 4). In its sustained and heightened

presence, existing and new vessels become unstable and

reactive resulting in vascular leakage, fragility, and the failure

of new vessels to mature (Figure 3). It presents, therefore, an

intriguing and potentially valuable therapeutic target. Critically,

LRG1 is particularly attractive in the context of therapeutic

targeting of TGF-β signaling as this has been fraught with

setbacks, predominantly because TGF-β and its receptors all

have critical housekeeping roles. To date no essential

homeostatic role for LRG1 has been described rendering it a

potentially more suitable therapeutic target. Thus, we reason

that inhibiting LRG1 will block the pathogenic activity of TGF-

β without disturbing these key homeostatic functions. We

anticipate, therefore, that over the next decade our

understanding of LRG1 biology will be substantially enhanced

and that its therapeutic targeting in multiple indications will be

well advanced.
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