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An explainable machine learning
approach using contemporary
UNOS data to identify patients
who fail to bridge to heart
transplantation
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Benjamin Shickel1 and Mohammad A. Al-Ani2

1Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of
Florida, Gainesville, FL, United States, 2Division of Cardiovascular Medicine, University of Florida,
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Background: The use of Intra-aortic Balloon Pump (IABP) and Impella devices as
a bridge to heart transplantation (HTx) has increased significantly in recent times.
This study aimed to create and validate an explainable machine learning (ML)
model that can predict the failure of status two listings and identify the clinical
features that significantly impact this outcome.
Methods: We used the UNOS registry database to identify HTx candidates listed
as UNOS Status 2 between 2018 and 2022 and supported with either Impella
(5.0 or 5.5) or IABP. We used the eXtreme Gradient Boosting (XGBoost)
algorithm to build and validate ML models. We developed two models: (1) a
comprehensive model that included all patients in our cohort and (2) separate
models designed for each of the 11 UNOS regions.
Results: We analyzed data from 4,178 patients listed as Status 2. Out of them,
12% had primary outcomes indicating Status 2 failure. Our ML models were
based on 19 variables from the UNOS data. The comprehensive model had an
area under the curve (AUC) of 0.71 (±0.03), with a range between 0.44
(±0.08) and 0.74 (±0.01) across different regions. The models’ specificity
ranged from 0.75 to 0.96. The top five most important predictors were the
number of inotropes, creatinine, sodium, BMI, and blood group.
Conclusion: Using ML is clinically valuable for highlighting patients at risk,
enabling healthcare providers to offer intensified monitoring, optimization, and
care escalation selectively.

KEYWORDS

heart transplantation, machine learning, UNOS, intra-aortic balloon pump, Impella

1 Introduction

Temporary mechanical circulatory support (tMCS) enables clinicians to stabilize

cardiogenic shock patients until HTx (1, 2). Since the 2018 heart allocation update,

tMCS utilization has tripled (3). Intra-aortic balloon pump (IABP) or Impella (5.0 and,

more recently, 5.5 versions) is used in approximately half of heart transplantation

patients. These devices significantly differ in hemodynamic effects, vascular access, and

complication risk profile. The majority of IABP and Impella evidence comes from the

population of acute coronary syndrome or peri-cardiac intervention use. Identifying the
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suitable device for the right patient at the right time to achieve

optimal pre and post-HTx outcomes remains a formidable task

and a knowledge gap (4).

In the current healthcare landscape, precision medicine is

gaining momentum, and machine learning (ML) is proving to be

a valuable resource for clinicians to understand intricate

relationships between hemodynamics demographics, tMCS, and

medical history and the dynamics of HTx listing practices.

Previous studies have investigated the application of ML on

United Network for Organ Sharing (UNOS) data for predicting

post-heart transplant mortality (5–7) and survival on waiting lists

(8). However, the reported model performances ranged from an

AUC of 0.5–0.7, indicating the challenges associated with the

complex nature of the data and patient characteristics highlighted

by the heterogeneous clinical phenotypes, high acuity, and

rapidly developing tMCS.

It is worth noting that many of the ML models were developed

using data from before the 2018 heart allocation update was

implemented and at a time when mechanical circulatory support

was rarely used and linked to unfavorable outcomes. This study

aims to employ explainable ML methods to rank and weigh the

clinical factors determining the failure of status two listings.

Developing and optimizing such models is vital for the

upcoming continuous distribution heart transplant system to

be adaptable to demographic and practice changes, unlike

its predecessors (9).
2 Methods

2.1 Study population

We utilized the UNOS registry to identify heart transplant

candidates listed between 2018 and 2022 as UNOS Status 2 and

supported with Impella (5.0 or 5.5) or intra-aortic balloon pump.

The local institutional review board approved the study, and

informed consent was waived due to minimal risk to participants.
2.2 Features description

Sociodemographic features included age at the time of listing,

gender, race, body mass index, and height. BMI and height were

included as they are essential determinants of waitlist time and

have implications on anatomic suitability to certain tMCS devices.

We split Race into five categories: Asians, Black, Hispanic, White,

and others. Lifestyle and habits features included only smoking

history. Biological characteristics included blood groups

categorized into A, B, AB, and O. Medical devices and treatment

features included tMCS device, implanted defibrillator, mechanical

ventilation, dialysis (intermittent hemodialysis and continuous

renal replacement therapy), and multiorgan transplantation (Heart

and Liver, Heart and Kidney). Clinical hemodynamics, measured

within 24 h prior to MCS, included pulmonary capillary occlusion

pressure, cardiac index, resting heart rate, and pulmonary artery

pulsatility index (PAPi), which was calculated as the pulmonary
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artery pulse pressure divided by the right atrial pressure.

Biochemistry features, measured within 24 h prior to MCS,

included creatinine, aspartate aminotransferase, total bilirubin,

albumin, sodium, and international normalized ratio. Medication

and drug administration features included whether the patient

was on antiarrhythmics, vasopressin, dopamine, dobutamine,

epinephrine, milrinone, and the number of inotropes. Geographic

features included the UNOS region. UNOS divides the United

States into 11 transplant regions. The purpose of these regions is

to ensure a balance between the availability of organs and the

number of people waiting for transplants in any given area. We

have included the region in model derivation to account for the

wide variation in tMCS utilization between regions (4, 10). We

excluded region 6 due to the small number of patients (<150

patients). The primary outcome is the failure of tMCS, which

encompasses various scenarios where the device fails to keep the

patient in a stable enough condition to receive a heart transplant.

It is defined as death while on the waiting list, being too sick to

transplant, being listed as an inactive patient due to a high risk of

transplantation (Status 7) or upgrading to UNOS status 1.
2.3 Data preprocessing

We considered patient characteristics significantly different

between the two groups (patients successfully transplanted while

on Status 2 vs. patients who failed to transplant) as the input

features for ML models (Table 1). To eliminate the highly

correlated features from hemodynamic and biochemical

measurements, PAPi was created by using pulmonary systolic

pressure (PASP), pulmonary dynamic pressure (PADP), and

central venous pressure (CVP). Thus, PASP, PADP, and CVP

were removed from the data. Additionally, we found that mean

artery pressure is highly correlated with pulmonary capillary

occlusion pressure, and blood urea nitrogen is highly correlated

with creatinine. Therefore, blood urea nitrogen and mean artery

pressure were subsequently removed. For each patient, we created

two missing value indicators to check if the patient had any

missing values in the hemodynamic and biochemical

measurements. In total, 19 features were included to train and

evaluate the ML models. Categorical features were encoded into

numerical values and handled directly by the ML algorithm.
2.4 Machine learning modeling

We applied eXtreme Gradient Boosting (XGBoost) to build

the ML models. XGBoost is an ensemble learning algorithm

based on decision trees in which models are developed

sequentially to increase the performance of the prior trees by

using gradient descent to minimize errors (11). We developed

two types of models: (1) a comprehensive model that included

all patients in our cohort and (2) distinct models designed for

each of the 11 UNOS regions. For region-specific models, we

only considered regions with a minimum of 150 patients,

excluding region 6.
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TABLE 1 Comparison of patients’ characteristics between patients who
were successfully transplanted during status 2 and those who failed
to transplant.

Variable Failure
N = 504)

Non-failure
(N = 3,674)

p-value

AGE (SD) 52.3 (13.6) 54.3 (12.37) <0.001

Body mass index (SD) 27.95 (4.95) 27.17 (4.87) <0.001

Height, years (SD) 175.9 (10.2) 174.32 (9.8) <0.001

Female (%) 96 (19.0%) 885 (24.1%) 0.014

Race (%) <0.001

Asian 26 (5.2%) 141 (3.8%)

Black 178 (35.3%) 1,007 (27.4%)

White 249 (49.4%) 2,075 (56.5%)

Hispanic 44 (8.7%) 412 (11.2%)

Other 7 (1.4%) 39 (1.1%)

Smoking (%) 188 (37.3%) 1,449 (39.4%) 0.382

Blood group (%) <0.001

A 141 (28.0%) 1,386 (37.7%)

AB 20 (4.0%) 134 (3.6%)

B 77 (15.3%) 595 (16.2%)

O 266 (52.8%) 1,559 (42.4%)

Device (%) <0.001

IABP 389 (77.2%) 3,139 (85.4%)

Impella 115 (22.8%) 535 (14.6%)

Implemented defibrillator (%) 352 (69.8%) 2,524 (68.7%) 0.639

On mechanical ventilation (%) 13 (2.6%) 21 (0.6%) <0.001

On dialysis (%) 24 (4.8%) 120 (3.3%) 0.111

Diabetes mellitus (%) 158 (31.3%) 1,124 (30.6%) 0.769

Cardiomyopathy 0.558

Ischemic 133 (26.4%) 921 (25.1%)

Non-ischemic 371 (73.6%) 2,753 (74.9%)

Multiorgan transplantation
Heart and liver (%) 7 (1.4%) 46 (1.3%) 0.964

Heart and kidney (%) 31 (6.2%) 348 (9.5%) 0.019

Hemodynamics
Pulmonary capillary occlusion
pressure, mmHg (SD)

25.9 (8.0) 24.4 (7.8) 0.004

Cardiac index, L/min/m2 (SD) 1.9 (0.5) 1.9 (0.6) 0.309

Resting heart rate, beats/min
(SD)

99.4 (19.1) 89.7 (19.0) 0.001

Pulmonary artery pulsatility
index (SD)

2.7 (2.5) 3.2 (3.5) 0.020

Biochemistry
Creatinine, mg/dl (SD) 1.8 (1.7) 1.5 (1.3) 0.001

Aspartate aminotransferase,
IU/L (SD)

43.4 (109.1) 40.9 (94.7) 0.709

Total bilirubin, mg/dl (SD) 1.3 (1.5) 1.2 (1.2) 0.149

Albumin, g/dl (SD) 3.6 (0.5) 3.7 (0.5) 0.002

Sodium, mmol/L (SD) 134.0 (5.2) 135.2 (4.2) <0.001

International normalized ratio 1.5 (0.5) 1.4 (0.4) 0.018

On antiarrhythmics (%) 253 (50.2%) 1,639 (44.6%) 0.021

On dopamine (%) 53 (10.5%) 182 (5.0%) <0.001

On vasopressin (%) 65 (12.9%) 76 (2.0%) <0.001

On epinephrine (%) 94 (18.7%) 209 (5.7%) <0.001

On milrinone (%) 353 (70.0%) 2,239 (60.9%) <0.001

UNOS region (%) <0.001

1 27 (5.4%) 140 (3.8%)

2 61 (12.1%) 341 (9.3%)

3 84 (16.7%) 455 (12.4%)

4 55 (10.9%) 378 (10.3%)

5 48 (9.5%) 575 (15.7%)

(Continued)

TABLE 1 Continued

Variable Failure
N = 504)

Non-failure
(N = 3,674)

p-value

6 17 (3.4%) 55 (1.5%)

7 34 (6.7%) 351 (9.6%)

8 27 (5.4%) 263 (7.2%)

9 47 (9.3%) 304 (8.3%)

10 35 (6.9%) 301 (8.2%)

11 69 (13.7%) 511 (13.9%)

On antiarrhythmics (%) 253 (50.2%) 1,639 (44.6%) 0.021

Number of inotropes (SD) 1.1 (0.8) 0.7 (0.6) <0.001

Missing value indicator
Missing any hemodynamic
measurements (%)

319 (63.3%) 2,432 (66.2%) 0.216

Missing any biochemical
measurements (%)

423 (83.9%) 2,919 (79.5%) 0.022

Bold values indicate statistically significant.
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2.5 Handling missing and imbalanced data

We have taken several measures to deal with missing data and

class imbalance in our dataset and chose the one that enhanced the

performance of our ML model. To impute missing data, we

examined four methods: (1) mean imputation, where missing

values are replaced with the feature’s mean value; (2) median

imputation, where missing values are replaced with the feature’s

median value; (3) K-nearest neighbor imputation, which predicts

and fills in missing data based on the similarity of k-nearest data

points, and (4) XGBoost’s built-in imputation mechanism, which

utilizes gradient boosting to handle missing values in a way that

reduces prediction errors. For counteracting data imbalance, we

explored three methods: under-sampling, Synthetic Minority

Oversampling Technique (SMOTE), and assigning increased

weights to the minority classes during the training process. Under-

sampling reduces the number of majority class samples, SMOTE

generates synthetic samples for the minority class, and assigning

increased weights to the minority classes during training gives

more importance to the minority class samples. Supplementary

Table S1 shows the best combination of data imputation and data

resampling strategies determined for each model.
2.6 Model performance and evaluation

We evaluated the performance of our models by conducting

internal validation to ensure rigor and enhance confidence in

model generalizability. We utilized a 5 × 5 nested cross-validation

(CV) approach consisting of inner and outer loops where data is

divided into folds. In each outer fold, one-fifth of the patient’s

records were an independent test set, and the rest (four-fifths)

were a training set. The outer training set was then equally split

into five inner folds served as an independent validation set, and

the other four folds served as an inner training set (inner loop).

The inner loop is responsible for model training and

hyperparameter tuning (the process of searching for the optimal

combination of hyperparameters of the model). In contrast, the
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outer loop is responsible for error estimation and generalization.

We used grid search for hyperparameter tuning, in which

exhaustive combinations of the chosen hyperparameters were

applied to train the models. The average value and standard

deviation of the area under the curve (AUC), accuracy, balanced

accuracy, sensitivity, and specificity from the five outer folds were

calculated and reported. The data preprocessing, imputation, and

grid search steps were implemented using the Python Sklearn

package. The XGBoost algorithm was implemented using the

XGBoost package.
2.7 Model interpretation & feature ranking

We used the SHapley Additive exPlanation (SHAP) to interpret

the trained ML models. SHAP is a model-agnostic explanation

technique that is commonly used to interpret the results from

the ML model. We generated the SHAP summary plot to

visualize the importance and association between each feature

and the outcome. The association is represented using a sign and

a magnitude. The sign of the SHAP value indicates the

directionality of the association between the corresponding

feature and the outcome (e.g., a positive SHAP value indicates

that the related feature contributes to a higher risk of transplant

failure while on status 2). The magnitude of the SHAP value

indicates the relative contribution of the prediction. We

computed the SHAP value for all the patients in the test set in

each outer fold. After five iterations (five outer folds), each

patient was assigned a SHAP value for each feature. We

developed a heatmap summarizing the rank of features across

models trained for different UNOS regions (12, 13).
2.8 Statistical analysis

We compared the characteristics of patients successfully

transplanted during Status 2 and those who failed to transplant.

Two sample t-test was used to compare the numerical

characteristics that are normally distributed, while the Wilcoxon

rank sum test was used to compare the numerical characteristics

that are not normally distributed. We used the Chi-square test to

examine the independence of categorical characteristics between
TABLE 2 Performance metrics of predicting failure on transplant of status 2

Region Accuracy Balanced accuracy
All patients 0.72 (0.02) 0.65 (0.02)

1 0.74 (0.02) 0.56 (0.09)

2 0.79 (0.03) 0.65 (0.06)

3 0.76 (0.01) 0.54 (0.04)

4 0.69 (0.07) 0.45 (0.06)

5 0.90 (0.05) 0.56 (0.06)

7 0.85 (0.02) 0.51 (0.03)

8 0.86 (0.01) 0.55 (0.07)

9 0.82 (0.06) 0.61 (0.10)

10 0.86 (0.02) 0.53 (0.03)

11 0.78 (0.05) 0.65 (0.07)

Each value is the mean and standard deviation of the 5-fold nested cross-validation.
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the two groups. The significance level was set at p < 0.05.

Statistical analyses were done using the open-source package

scipy in Python.
3 Results

In our study, we analyzed data from 4,178 patients listed as

Status 2. Among them, 12% experienced primary outcomes

indicating Status 2 failure. Impella 5.0 or 5.5 was used in 15.6%

(650 patients) of the cohort, while the remainder were supported

with IABP. Table 1 compares demographic, clinical, and

biochemical characteristics between the failure group (N = 504)

and the non-failure group (N = 3,674). Several variables such as

age, BMI, height, race, blood group (A, B, AB, or O), device type

used (IABP vs. Impella), sodium, vasoactive medications, and

UNOS region (11 regions) show statistically significant

differences between the two groups. Notably, the failure group

was slightly younger and had higher BMI, had lower creatinine,

albumin, sodium, and INR, and had a different distribution of

blood groups and vasoactive medications used.

The ML model’s performance in predicting the primary

outcome (status 2 failure) across various UNOS regions is

outlined in Table 2. The area under the curve (AUC) of the

comprehensive model was 0.71 (±0.03) for all regions, with a

range between 0.44 (±0.08) and 0.74 (±0.01). The models’

specificity (survival on Status 2) ranged between (0.75–0.96). The

accuracy varies by region, with the highest accuracy of 0.90 being

achieved in Region 5 and the lowest accuracy of 0.69 being

observed in Region 4. The table also shows the balanced

accuracy, a more nuanced measure when classes are imbalanced.

The balanced accuracy scores were generally lower across all

regions, with an overall value of 0.65. The AUC suggests

moderate predictive power at 0.71 overall, but this metric also

shows regional variations. The sensitivity scores were notably low

across all regions. On the other hand, specificity scores were

consistently high, indicating good performance in identifying

true negatives (success on Status 2).

The SHAP ranking, illustrated in Figure 1, shows the top 15 most

essential features in predicting Status 2 failure. We found that the lead

outcome determinants were sodium (region 1), the number of
using XGBoost across different UNOS regions.

AUC Sensitivity Specificity
0.71 (0.03) 0.54 (0.04) 0.75 (0.02)

0.60 (0.11) 0.30 (0.25) 0.82 (0.08)

0.71 (0.04) 0.44 (0.10) 0.85 (0.02)

0.59 (0.05) 0.21 (0.08) 0.86 (0.01)

0.44 (0.08) 0.13 (0.07) 0.77 (0.07)

0.72 (0.08) 0.17 (0.11) 0.96 (0.05)

0.60 (0.08) 0.09 (0.07) 0.93 (0.02)

0.69 (0.06) 0.16 (0.15) 0.93 (0.02)

0.72 (0.11) 0.32 (0.18) 0.89 (0.06)

0.59 (0.10) 0.11 (0.06) 0.94 (0.02)

0.74 (0.01) 0.49 (0.17) 0.82 (0.07)
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FIGURE 1

The rank of the top 15 most essential features in predicting status 2
failure. The X-axis represents the SHAP values dichotomized into
two regions: positive SHAP values (>0) on the right side and
negative SHAP values (<0) on the left side. Dots on the right side
represent positive contributions toward predicting status 2 failure.
While dots on the left side represent a negative contribution
toward predicting status 2 failure. For continuous features (e.g.,
Creatinine), the color ranges from blue to red, indicating low to
high contribution to the outcome. For categorical features [e.g.,
Multi-organ (Kidney)], red dots signify the presence of the
condition (e.g., the patient has a kidney transplant), whereas blue
dots indicate its absence.
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inotropes (region 2, overall), PAPi (region 3), BMI (region 4, 5, 10),

international normalized ratio (INR) (region 7, 8), on

antiarrhythmics (region 9), height (region 11). The number of

inotropes, creatinine, sodium, BMI, and blood group were the top

five most important predictors in the overall model. The number of

inotropes has the highest impact on predicting status 2 failure;

higher numbers increase the likelihood of status 2 failure. Similarly,

elevated creatinine levels increase the risk of status 2 failure. Sodium,

BMI, Blood Group, INR, Region, Height, and Albumin seem to

have a neutral impact on predicting the outcome. The concentration

of heart resting points suggests that higher values could be

associated with increased risk in some patients. PAPi, race, PCWP,

and age are centered around zero SHAP value, indicating a lower

influence on predicting the outcome. The device ranked 15th

among all included variables (out of 19), indicating lower

importance. Figure 2 shows the heatmap summarizing the rank of

features across models trained for different UNOS regions. Finally,

Supplementary Table S2 shows the device utilization ratio (# IABP:

# Impella) and the ratio between the number of patients successfully

bridging to transplant and those who failed across regions.
4 Discussion

In this study, we aimed to use explainable ML methods to

develop and validate a data-driven model that predicts the failure
Frontiers in Cardiovascular Medicine 05
of status 2 listing and ranks the clinical features that have the

most impact on the primary outcome. The latter function is vital

as it provides patients and care teams with actionable targets to

address so they can improve the outcomes of tMCS or specific

reasons to consider an alternative BTT strategy. Our results show

that the specificity of the ML models was consistently high,

indicating good performance in identifying true negatives

(success on Status 2). There is, however, significant regional

variability in feature ranking, which indicates that such ML

methods need to be tuned to accommodate not only the patient

and the machine but also the HTx practice context. While the

models seem adept at identifying BTT failure (high specificity), it

has limited ability to confidently assure that those predicted to

do well until transplantation will indeed remain stable (low

sensitivity). Despite this shortcoming, the current ML model

proves clinically helpful in highlighting patients at risk so that

intensified monitoring, optimization, and care escalation can be

selectively lamented.

The most predictive features vary across regions, and notable

patterns emerge. The number of inotropes consistently appeared

important in predicting status 2 failure in most regions. A higher

number indicates greater disease severity and contributes

positively to the risk of status 2 failure. Elevated serum

creatinine and International Normalized Ratio (INR) indicate

that poor kidney and liver function reserves are also major

outcome determinants. BMI also appeared in many regions,

suggesting the role of both obesity and malnutrition as

influencing factors. Further investigation is needed to

understand whether weight affects BTT outcomes due to

intrinsic patient factors or by affecting waitlist time. The role

of race is highlighted in many areas, which suggests the

potential for racial disparities in healthcare utilization. Finally,

the significance of age and blood group were not uniform

between regions, indicating that these factors can be mitigated

by optimizing practice patterns.

Contrary to expectations, the type of tMCS device (IABP vs.

Impella) was less significant than patient-related factors in

predicting Status 2 failure. However, it shows that using Impella

can increase the risk of failure to bridge to transplantation,

which is consistent with the current stream of evidence that

IABP-supported patients fare better than most other status 2

listed patients (14, 15). Impella provides robust circulatory

support for the left ventricle, with maximal blood flow over

5 L/min. However, this benefit is often reduced by some degree

of aortic regurgitation and decreased LV preload (16). On the

other hand, the IABP requires smaller vascular access (8 Fr vs.

23 Fr) and has a variable hemodynamic response that depends

on vascular stiffness, body size, and the ability of the left

ventricle to augment function in response to afterload reduction

[8]. In reality, most status 2 patients require partial left

ventricular unloading, and the transplant community continues

to lack any pragmatic prospective study in comparing IABP vs.

Impella, specifically as BTT. The available data from post-acute

coronary syndrome state is not translatable to a population with

a high prevalence of acute on chronic systolic failure that are

likely to utilize the device for weeks rather than hours or days.
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FIGURE 2

Heatmap of feature ranking generated from XGBoost trained across UNOS regions. The features are ordered by the ranking from the comprehensive
XGBoost model. The numbers indicate the rank of the feature importance for each cohort. The grey blocks indicate that the region and mechanical
ventilation are not used as input features for machine learning models built on separate UNOS regions.

Mardini et al. 10.3389/fcvm.2024.1383800
A few studies have explored the potential of ML for predicting

post-heart transplant mortality (5–7) and survival on waiting lists

(8) using UNOS data. These models, with AUC values ranging

from 0.5 to 0.7, highlight the complexities associated with the

data and the diversity of patient demographics. Notably, a

significant portion of these models was based on data that

predates the 2018 heart allocation update. Additionally, during

that time, mechanical circulatory support was still in its early

stages and often resulted in suboptimal outcomes. Our study

addressed this knowledge gap by using explainable ML methods

and focusing on contemporary data, especially after the 2018

heart allocation update, to create a more refined predictive

model. Our work aimed to overcome the limitations of previous

models and provided a better understanding of the factors that

influence transplant outcomes in today’s medical landscape. A
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direction to include explainable ML models in a continuously

learning national transplant system will allow continued data

feed for model training and lead to optimized performance that

matches the current state of the HTx practice environment.

This innovative approach naturally comes with several

limitations that any adopter of these results must understand.

First, the model is trained on a dataset with high missing rate

that has inherent variability in reporting. Second, the model does

not reflect variation between different health systems within each

region. Third, the performance parameters were derived using

5-fold cross validation from the same dataset, which is less ideal

than external validation. However, external validation was not

possible and is not necessarily relevant because the model is

fitted explicitly to a region and practice era. Ideally, resting this

model will require prospective testing of a locally optimized
frontiersin.org
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version of the ML model to guide decisions and prove its effect

on outcomes.
5 Conclusion

ML XGboost model can identify UNOS status 2 patients at

high risk of deterioration while on tMCS with high specificity

and limited sensitivity. This is an innovative approach to

selecting the right tMCS for the right patient, identifying targets

for intensified patient monitoring and optimization guided by

the model’s feature selection and developing an adaptive and

continuously learning heart transplant system.
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