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Exploring the shared biomarkers
between cardioembolic stroke
and atrial fibrillation by WGCNA
and machine learning
Jingxin Zhang1†, Bingbing Zhang1†, Tengteng Li1, Yibo Li1, Qi Zhu1,
Xiting Wang2* and Tao Lu1*
1School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China, 2Chinese Medicine
School, Beijing University of Chinese Medicine, Beijing, China
Background: Cardioembolic Stroke (CS) and Atrial Fibrillation (AF) are prevalent
diseases that significantly impact the quality of life and impose considerable
financial burdens on society. Despite increasing evidence of a significant
association between the two diseases, their complex interactions remain
inadequately understood. We conducted bioinformatics analysis and employed
machine learning techniques to investigate potential shared biomarkers
between CS and AF.
Methods: We retrieved the CS and AF datasets from the Gene Expression
Omnibus (GEO) database and applied Weighted Gene Co-Expression Network
Analysis (WGCNA) to develop co-expression networks aimed at identifying
pivotal modules. Next, we performed Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on
the shared genes within the modules related to CS and AF. The STRING
database was used to build a protein-protein interaction (PPI) network,
facilitating the discovery of hub genes within the network. Finally, several
common used machine learning approaches were applied to construct the
clinical predictive model of CS and AF. ROC curve analysis to evaluate the
diagnostic value of the identified biomarkers for AF and CS.
Results: Functional enrichment analysis indicated that pathways intrinsic to the
immune response may be significantly involved in CS and AF. PPI network
analysis identified a potential association of 4 key genes with both CS and AF,
specifically PIK3R1, ITGAM, FOS, and TLR4.
Conclusion: In our study, we utilized WGCNA, PPI network analysis, and
machine learning to identify four hub genes significantly associated with CS
and AF. Functional annotation outcomes revealed that inherent pathways
related to the immune response connected to the recognized genes might
could pave the way for further research on the etiological mechanisms and
therapeutic targets for CS and AF.
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GRAPHICAL ABSTRACT
1 Introduction

Epidemiological evidence suggests that the incidence of

ischaemic stroke in young adults (18-50 years) has increased

substantially (1). There’s an emerging agreement that numerous

strokes with unidentified causes may not stem from cerebral

disorders like microvascular emboli and hemorrhages, but rather

from vascular emboli in other organs. The role of cardiac embolism

in ischemic stroke is progressively increasing (2). Cardioembolic

stroke (CS), which accounts for 20%–25%, is the most severe

subtype of ischemic stroke. Characterized by a poor outcome and

high recurrence, its primary causes include atherosclerosis, patent

foramen ovale, and atrial fibrillation. Clinical studies using

extended rhythm monitoring indicate that unexplained embolic

strokes originate from Subclinical Atrial Fibrillation (SAF) (3), with

Atrial Fibrillation (AF) increasing the risk of stroke by fivefold (4).

One quarter of stroke cases involve Cardioembolic Stroke

associated with Nonvalvular Atrial Fibrillation (NVAF) (5).

Additional research indicates that Atrial Fibrillation (AF) is the

predominant cause underlying CS, with estimates suggesting AF

accounts for 15% of global stroke cases (6). Concurrently, the

incidence and prevalence of AF are expected to increase in the

forthcoming years, posing one of the most significant challenges in

epidemiology and public health (7). However, the co-morbidity
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mechanisms between CS and AF remain unclear, necessitating an

extensive comprehension of their association.

Immune mediators induce the infiltration of multiple

inflammatory cells within the ischemic lesion, contributing to

further cerebral ischemic injury. In CS, immune processes

involve brain tissue and the entire organism and are linked to

disability and mortality (8). This intensified inflammatory

response also contributes to the prothrombotic state linked to AF

(9). These findings suggest a possible mechanistic correlation

between CS and AF. Although existing clinically relevant studies

have shown a correlation between CS and AF, the genetic and

molecular biological processes underlying these pathophysiologic

mechanisms have not yet been fully elucidated.

Weighted gene co-expression network analysis (WGCNA) is a

analytical method for characterizing molecular mechanisms and

reconstructing gene co-expression networks through topological

overlap (10). In the realm of medical research, machine learning

techniques are frequently leveraged to discern latent biomarker

predictors and therapeutic targets within both tumorous and

non-tumorous pathologies. This application empowers physicians

to forecast patient outcomes and assess their receptiveness to

subsequent treatments (11). The Gene Expression Omnibus

(GEO) database, encompasses a vast collection of experimentally

sequenced high-throughput genomic data contributed by
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researchers (12). WGCNA and machine learning approaches can

be utilized for the analysis of gene expression in high-

dimensional datasets across multiple sample groups. These

methods enable the categorization of highly similar genes into

distinct modules, which can subsequently be analyzed to

determine the correlation between key modules or hub genes

within these modules and the clinical traits of patients (13), as

well as to uncover various pathological processes and their

associated characteristic genes (14).

In this study, utilizing differential analysis of gene sets and the

WGCNA approach, co-expression networks were constructed to

identify gene network modules associated with CS and AF.

Subsequently, protein-protein interaction (PPI) networks and

network-based node-mining algorithms were employed to

analyze and identify hub genes within these networks based on

the enrichment of shared gene pathways. Several commonly used

machine learning algorithms were employed to assess the

diagnostic value of the identified hub genes/biomarkers for AF

and CS. As a result, the common pathogenesis of CS and AF was

elucidated, and our study may provide novel insights for

subsequent investigations into mechanisms and hub genes. These

findings may provide potential new targets for the diagnosis and

treatment of CS and AF, thereby contributing to improved stroke

diagnosis and prevention in clinical practice.
2 Materials and methods

2.1 Data sources and preparation

Gene expression profiles of CS and AF were obtained from the

GEO database (www.ncbi.nlm.nih.gov/geo). Inclusion criteria

included: (1) AF human atrial tissue and CS blood samples present

in the dataset; (2) The dataset contained samples from at least 15

patients; (3) The dataset was sourced from articles published

between 2012 and 2022. Detailed information is available in Table 1.

Filtering removed negative or zero values that did not impact the

overall biological analysis and were not suitable for logarithmic

transformation, whereas weak signals lacked the strength to

indicate significant gene expression differences. Normalization

rendered each gene expression value as independent data,

facilitating subsequent computational processes. The R software

(version 4.0.5) and Bioconductor package were utilized to process

the original expression data, construct the expression matrix, and

correspond probes with their respective gene symbols. Following
TABLE 1 Brief description of CS and AF source dataset.

Disease Data
chip

Sample size

Normal
control

Disease

CS GSE58294 23 69 Gene expression in perip

AF GSE41177 6 32 Region-specific gene expr

AF GSE79768 12 14 Differential left-to-right a
Implications for arrhythm

AF GSE115574 31 28 Molecular signatures of h
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the download of the chip dataset, the probe identification numbers

(IDs) were converted to gene symbols. If a gene corresponded to

multiple probes, they were grouped, and the group with the

highest mean was selected. Robust Multi-array Averaging (RMA)

was employed for background correction and imputation of

missing values. Subsequently, the Median Absolute Deviation

(MAD) was applied to identify genes exhibiting high expression

variability for subsequent analyses, and the pre-processed data

were further analyzed using R software.
2.2 Screening the overlapping of differential
expression genes

In this study, we identified and analyzed differentially

expressed genes (DEGs) from comprehensive gene samples

derived from CS and AF. DEGs were meticulously identified in

both the control and disease groups. Subsequently, the results

were visually represented through volcano plots generated using

R software. The statistical significance threshold for identifying

differentially expressed genes in these plots was set at P < 0.05.

The overlapping DEGs were then identified by taking the

intersection of the DEGs from the AF and CS groups.
2.3 Weighted gene co-expression network
analysis

2.3.1 Hierarchical cluster analysis
In this study, genes falling within the top 1,000 of MAD were

included in the analysis. Recognizing the potential bias introduced

by outlier samples in modular analysis, an appropriate threshold

was established to identify and eliminate these outliers using

hierarchical clustering. The clustering analysis was executed using

the hclust function from the STATS package in R, enabling the

categorization of samples into distinct functional modules

denoted by different colors.
2.3.2 Scale-free network construction and
intensity matrix calculation

In accordance with the scale-free topology criterion, a

biologically meaningful scale-free network was constructed using

the Soft Threshold exponent (β), which was computed through

the Soft Threshold algorithm in the WGCNA package. The

pickSoftThreshold function was employed to select the value of β
Data source Year

heral immune cells following cardioembolic stroke is sexually dimorphic 2014

ession profiles in the left atria of patients with valvular atrial fibrillation 2013

tria gene expression ratio in human sinus rhythm and atrial fibrillation:
ogenesis and thrombogenesis

2016

uman chronic atrial fibrillation in primary mitral regurgitation 2021
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for which SFT.R.sq is around 0.9, ensuring a robust and biologically

relevant network. The Pearson correlation matrix was calculated

for all gene pairs.

2.3.3 Co-expressed and key gene module
construction

We employed the Topological Overlap Matrix (TOM) in

conjunction with the dynamic tree-cutting algorithm to identify

gene modules. Utilizing the connection strengths obtained earlier,

we calculated the Topological Overlap (TO), enabling the

measurement of gene pair connectivity. A hierarchical average

chain clustering method based on TO was utilized to discern

gene co-expression modules. This method not only gauges the

connectivity between gene pairs but also facilitates the grouping

of genes with similar expression patterns.

Upon determining the gene grouping modules, we calculated the

eigenvector value (Module Eigengene, ME) for each module. We

performed calculations to integrate the correlation between genes

and traits (Gene Significance, GS) and the correlation between

module eigenvectors and gene expression profiles (Module

Membership, MM) with the gene significance of the module itself

(Module Significance, MS). Candidate genes’ significance p-values

were computed using the t-test, where GS was defined as the

logarithm (lg) of the mediated p-value (GS = lgP) for each gene. MS

was the average GS of all participating genes in the module. The

module associated with the disease was identified as the one with

the highest MS value. We utilized the Pearson algorithm to analyze

the correlation between modules and clinical trait associations. We

selected modules with the highest correlation with clinical traits as

the key modules, which were visualized in the trait gene network.
2.4 Protein-protein interaction (PPI)
network construction

Protein-protein interaction (PPI) network were established by

STRING database and Cytoscape software (3.10.1). The PPI

network was constructed by selecting the ones with scores greater

than 0.15. Then the PPI file was imported into Cytoscape, and

the PPI network was analyzed and visualized using the

“CytoHubba” plug-in of the software. The common genes in the

network (the genes with the most interactions) were filtered by

Maximum Neighborhood Component (MNC) algorithm, and the

10 genes with the highest scores were filtered according to the

MNC algorithm and defined as top hub genes.
2.5 Functional enrichment analysis of hub
genes for CS and AF

The Gene Ontology (GO) analysis of DEGs was conducted to

elucidate the roles of gene products related to biological processes

(BP), cellular components (CC), and molecular functions (MF).

Additionally, the KEGG pathway database was utilized to identify

and describe the functions of molecules and genes. We utilized

the Metascape database for extensive bioinformatics analysis of
Frontiers in Cardiovascular Medicine 04
genes and proteins. Metascape allows for comprehensive

biofunctional annotation, enrichment analysis, protein interaction

network analysis, and drug response profiling. The collection of

hub genes related to CS and AF was entered into the search field

of Metascape, designating “H. sapiens” as the organism. Entries

displaying three or more significantly enriched genes and a

P-value less than 0.01 were deemed significant.
2.6 Construction of machine learning
models

We evaluated the significance of candidate hub gene sets and

biomarker genes in the diagnosis of CS and AF. Meticulously, we

constructed two commonly used machine learning models:

Random Forests (RF) and Support Vector Machines (SVM). The

construction and subsequent analysis of these models were

facilitated by the Scikit-learn library, an open-source Python

library widely recognized for its extensive collection of efficient

tools for machine learning and statistical modeling.

To assess the predictive performance of our biomarker-based

models, we implemented a rigorous evaluation process that involved

generating Receiver Operating Characteristic (ROC) curves to

provide a comprehensive overview of the models’ classification

abilities across various thresholds. Additionally, we computed the

corresponding Area Under the Curve (AUC) values, a metric that

offers a single scalar representation of the models’ overall

performance. By utilizing these advanced analytical techniques, we

aimed to elucidate the potential clinical relevance of candidate gene

and hub gene sets within the diagnostic landscape of CS and AF.
2.7 Mendelian randomization (MR) analysis

The dataset for AF was retrieved from https://csg.sph.umich.

edu/willer/public/afib2018/, while the stroke data was sourced

from https://www.finngen.fi/en. The instrumental variables were

chosen based on specific criteria: (1) a genome-wide significance

level (P < 5.0 × 10−8); (2) an r2 value under 0.001 within a

clumping window spanning 10,000 kilobases; and (3) an

F-statistic score exceeding 10.

Mendelian randomization (MR) analysis employed five distinct

methods: MR Egger, Weighted median, Inverse variance weighted,

Simple mode, and Weighted mode. Assessments of heterogeneity

were executed utilizing MR-PRESSO. To examine pleiotropic

effects, the MR Egger approach was implemented.

TwoSampleMR package was applied in the above analysis.
3 Results

3.1 Construction and processing of CS and
AF datasets

The dataset for CS was obtained from the GEO database,

specifically the GSE58294 (15) (PMCID: PMC4103830) series,
frontiersin.org
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which included a total of 92 samples: 23 normal control samples

and 69 samples from individuals diagnosed with cardiogenic

embolic stroke. In the case of AF, we utilized three datasets:

GSE41177 (16) (PMID: 23183193), GSE79768 (17) (PMID:

27494721), and GSE115574 (18) (PMCID: PMC8538404),

encompassing a total of 123 samples. A concise description of

the source data is provided in Table 1, while the detailed

information can be retrieved from the GEO database.
3.2 Identification of DEGs and key module
genes of CS

Using R software for data sorting and analysis of the CS dataset

(GSE58294), we identified a total of 23,337 genes. After applying the

criteria of |Log FC| > 0.4 and P < 0.05, we identified 3,203

differentially expressed genes (DEGs), with 1,667 being

upregulated and 1,536 downregulated. Volcano plots depicting

differential gene expression in CS (Figure 1A) were generated with

a stringent |LogFC| threshold of 1. The analysis revealed the top

10 significantly differentially expressed genes (DEGs) associated

with each condition. In the CS cohort, 9 genes exhibited notable

upregulation, while 11 genes showed marked downregulation. The

findings are summarized in Supplementary Table 1.

Following data preprocessing, the top 10,000 most variable

genes in the CS dataset, as determined by the MAD score, were

selected for analysis. A sample hierarchical clustering map was

generated through WGCNA analysis, as shown in Figure 1B. The

CS dataset samples were effectively classified into two clusters:

normal (shown in white) and disease (shown in red). Notably, no

outliers were detected. Figure 1C illustrates the relationship

between the fitting index and the soft threshold (β). Specifically, a

soft threshold (β) of 7 was identified as the first instance where

the SFT.R.sq value exceeds 0.9, indicating an optimal fit (closer to

1). The second relationship depicted is between the average

connectivity and β, confirming the biological relevance of the

scale-free network properties in the CS. The soft threshold of β = 7

was identified as optimal for gene module delineation, resulting in

the clustering of genes in the CS into 17 modules. The modules

contained varying gene counts, ranging from 60 to 2,398, with the

respective gene clustering tree depicted in Figure 1D.

The heatmaps were created to visually depict the correlation

between gene modules and clinical features within the CS

(Figure 1E), which shows that the brown module had the

strongest correlation with CS (r = 0.83, P = 4e-25), with red

indicating a positive correlation and blue indicating a negative

correlation. The brown module associated with CS contained 863

genes. To pinpoint key genes associated with CS, the correlation

between modules and clinical features was determined by

calculating GS and MM. The x-axis represented the degree of

association of genes within the module, whereas the y-axis

depicted the degree of association of genes with the trait. The

scatterplot of MM vs. GS in the brown module, revealing a

correlation of 0.81 and P < 1e-200, demonstrated a high

correlation between the gene module and clinical traits, as shown

in Figure 1F.
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3.3 Identification of DEGs and key module
genes of AF

We processed and analyzed three datasets: GSE79768,

GSE115574, and GSE41177, which led to the identification of

23,335 genes employing a batch effect removal method. Employing

the same filtering criteria, we discerned 1,886 DEGs, comprising

992 upregulated and 894 downregulated genes. Volcano plots

depicting differential gene expression in AF (Figure 2A) were

generated with a stringent |LogFC|threshold of 1. Within the

AF cohort, 14 genes evidenced significant upregulation,

contrasted by 6 genes displaying pronounced downregulation.

Next, 10,000 genes were identified in the AF dataset after

preprocessing. The sample hierarchy clustering map was

generated using WGCNA analysis, as shown in Figure 2B.

Samples from the three AF datasets were categorized into two

clusters: normal (represented in white) and disease (represented

in red). Importantly, two outliers were detected. Using the scale-

free topology criterion, the optimal soft threshold (β) was

determined (Figure 2C). Specifically, when soft threshold (β) is

set to 10, the first instance where SFT.R.sq exceeds 0.9 is observed.

Then, β = 10 was identified as the optimal soft threshold for

gene module delineation. This led to the clustering of genes from

the AF datasets into 12 modules. The gene counts within these

modules ranged from 60 to 5,980, with the respective module

cluster tree shown in Figure 2D. The heatmap was plotted to

represent the correlation between gene modules and clinical

features related to AF (Figure 2E). The top three modules were

selected as key module, including salmon (r = 0.31, P = 5e-04),

greenyellow (r =−0.29, P = 0.001) and pink (r = 0.23, P = 0.01).

They contained 57, 104 and 145 genes, respectively. The

scatterplot of MM vs. GS in the salmon and greenyellow module

demonstrated a correlation between the gene module and clinical

traits, as shown in Figure 2F.
3.4 Identification of shared hub genes
between CS and AF

A Venn analysis was performed on all differentially expressed

genes between the two diseases, as shown in Figure 3A. This

revealed 476 overlapping genes. Eliminating duplicates and

confirming gene IDs via Uniprot, an additional 67 genes were

excluded, leading to a final count of 409 shared DEGs for AF

and CS.

Subsequently, A PPI network was then constructed by

visualizing the shared DEGs of CS and AF using the STRING

database. Only interactions with experimentally validated

combination scores greater than 0.15 were maintained. Visualized

using Cytoscape software (Figure 3C), the resulting PPI network

consists of 297 nodes symbolizing genes and 876 edges indicating

gene interactions. The network topology was analyzed using the

MNC algorithm in CytoHubba within Cytoscape software,

assigning scores to each node based on their significance. This

analysis led to the identification of the top 10 genes (CTNNB1,
frontiersin.org
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FIGURE 1

(A) Differentially expressed genes in CS. (B) Sample clustering dendrogram for CS. (C) Correlation between the fitting index and soft threshold (left),
and the relationship between average connectivity and soft threshold (right). (D) Dendrogram of co-expression network module clustering in CS, with
different colors indicating distinct modules. (E) Heatmap displaying the correlation between gene modules and clinical traits of CS; red signifies
positive correlation, while blue indicates negative correlation. (F) Scatter plot of the brown module’s module membership (MM) vs. gene
significance (GS), with a correlation coefficient (cor) of 0.81, suggesting a strong association between the gene module and clinical features.

Zhang et al. 10.3389/fcvm.2024.1375768
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FIGURE 2

(A) Differentially expressed genes in AF. (B) Sample clustering dendrogram for AF. (C) Correlation between the fitting index and soft threshold (left), and
the relationship between average connectivity and soft threshold (right). (D) Dendrogram of co-expression network module clustering in AF, with
different colors indicating distinct modules. (E) Heatmap displaying the correlation between gene modules and clinical traits of AF; red signifies
positive correlation, while blue indicates negative correlation. Scatter plot of the salmon (F) and greenyellow (G) module’s module membership
(MM) vs. gene significance (GS), with a correlation coefficient (cor) of 0.37 and 0.27, respectively.

Zhang et al. 10.3389/fcvm.2024.1375768
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FIGURE 3

(A) A Venn diagram depicting the distribution of DEGs between CS and AF. (B) A Venn diagram showing the overlap of key module hub genes in CS and
AF. (C) A PPI network graph of shared DEGs for CS and AF, with darker colors indicating higher interaction scores. (D) A PPI network graph of shared
key module hub genes for CS and AF. (E) The top hub gene PPI network that integrates the top 10-ranking genes from the shared DEGs and module
genes for CS and AF.

Zhang et al. 10.3389/fcvm.2024.1375768
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TABLE 2 Pathway analysis of GO and KEGG enrichment for shared hub genes between CS and AF.

GO class ID Description Count P-value
BP GO:0050867 Regulation of cell activation 29 3.98E-08

GO:0002269 Leukocyte activation 27 6.46E-08

GO:0002218 Innate immune response 31 9.55E-08

GO:0002751 Endocytosis 23 1.32E-06

GO:0002839 Positive regulation of immune response 25 1.91E-06

CC GO:0072557 IPAF inflammasome complex 3 1.00E-05

GO:0005925 Focal adhesion 18 2.40E-05

GO:0009897 External side of plasma membrane 17 8.91E-05

GO:0005911 Cell-cell junction 19 8.91E-05

GO:0005769 Early endosome 17 9.12E-05

MF GO:0019904 Protein domain specific binding 24 1.45E-05

GO:0003841 Acyltransferase activity 25 2.45E-05

GO:0003779 Actin binding 18 3.89E-05

GO:0005159 Insulin-like growth factor receptor binding 4 5.50E-05

GO:0001792 Immunoglobulin receptor activity 3 0.000199526

KEGG hsa05133 Pertussis 9 1.23027E-06

hsa04662 B cell receptor signaling pathway 8 2.51189E-05

hsa05418 Fluid shear stress and atherosclerosis 10 2.95121E-05

hsa05323 Rheumatoid arthritis 8 5.24807E-05

hsa04613 Neutrophil extracellular trap formation 11 8.70964E-05

hsa04613 T cell receptor signaling pathway 8 0.000114815

hsa04141 Protein processing in endoplasmic reticulum 10 0.000165959

hsa04670 Leukocyte transendothelial migration 8 0.000218776

hsa04071 Sphingolipid signaling pathway 8 0.000323594

hsa05202 Transcriptional misregulation in cancer 10 0.000436516

Zhang et al. 10.3389/fcvm.2024.1375768
VEGFA, PPARG, ITGAM, PIK3R1, UBE2I, CFL1, TLR4, FOS, and

ARRB1) as the principal shared DEGs. Biological information for

these genes is presented in Supplementary Table 2.

Through WGCNA analysis, the brown module genes of CS and

the three modules (salmon, greenyellow, and pink) genes of AS

were recognized as the key module genes for CS and AF,

respectively. We then conducted a Venn analysis between the

two disease groups (Figure 3B). The analysis indicated that 22

genes were common as shared key module genes. Subsequently, a

PPI network was constructed based on these genes, and consists

of 13 nodes symbolizing genes and 31 edges, as depicted in

Figure 3D. The MNC algorithm was also utilized on the network

to pinpoint the top 10 shared module genes (SRM, MRPL4,

PMPCA, SEC61A1, MRPS7, MRPS18B, UBE2S, SNF8, TSR3,

SELENOO). Lastly, we merged the top 10 shared DEGs with top

10 shared module genes to form a PPI network (designated as the

top-hub-gene network) using STRING, as presented in Figure 3E.
3.5 Enrichment analysis of shared hub gene
between CS and AF

We aggregated the 434 DEGs and the 22 module genes to form

a hub gene set, which altogether consists of 410 genes. In order to

elucidate the potential molecular biological processes common to

disease-related genes and, importantly, to uncover the co-

morbidity mechanism between CS and AF, the functional

analysis was performed using GO terms and KEGG pathway

enrichment within the Metascape database. Table 2 displays the
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top 5 pathways associated with Cellular Component (CC),

Molecular Function (MF), and Biological Process (BP) from the

GO functional enrichment analysis, as well as the top 10 related

pathways from the KEGG enrichment analysis.

In terms of Biological Process (BP), the Gene Ontology (GO)

terms were predominantly enriched in categories such as Innate

Immune Response, Leukocyte Activation, and Regulation of Cell

Activation. Regarding Cellular Component (CC), the genes were

primarily enriched in the IPAF Inflammasome Complex and Cell-

Cell Junction. For Molecular Function (MF), the genes showed

enrichment in functions related to Protein Domain-Specific Binding

and Acyltransferase Activity. The results were shown in Figure 4A.

The KEGG pathway enrichment analysis identified 64

pathways, which are summarized in a reclassification table in

Figure 4B. We conducted a hierarchical heatmap analysis of

overlapping gene expression in CS and AF, as shown in

Figure 4C. Besides, the top 16 pathways visualized using a

mulberry bubble map in Figure 4D. The analysis revealed a

clustering of hub genes in several pathways, including Pertussis,

B Cell Receptor Signaling, Fluid Shear Stress and Atherosclerosis,

Rheumatoid Arthritis, and Neutrophil Extracellular Trap

Formation. By integrating the outcomes from the top genes

within the top-hub-gene network and the pathway classification

depicted in the mulberry bubble map (Figures 3E, 4D), we

identified the shared genes as potential biomarkers between CS

and AF, which include PIK3R1, ITGAM, FOS, and TLR4. These

genes were found to be enriched across multiple pathways, with a

notable focus on the Neutrophil Extracellular Trap Formation

pathway, which is essential for host immunity and plays a key role
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FIGURE 4

(A) Bar graph illustrating the GO enrichment analysis of the shared hub genes between CS and AF. (B) Categorization of KEGG pathways that are
significantly enriched with the identified hub genes. (C) Heatmap of regulatory trends in differentially expressed overlapping genes between AF
and CS. (D) Mulberry diagrams representing the KEGG pathway enrichment analysis for the hub genes, providing a visual representation of their
involvement in various biological processes.
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in metastatic diseases. The summary classification emphasized that

the hub genes common to both CS and AF were primarily

associated with inflammatory system-related pathways.
3.6 Assessing the diagnostic value of
identified biomarkers for AF and CS

We integrated 409 shared DEGs for AF and CS with 22 shared

key module genes to form a candidate hub gene collection that

encompasses 431 genes. Concurrently, we constructed a key hub

gene set composed of 20 genes by combining the top 10 key

genes identified from each of the two PPI networks. To assess

the diagnostic value of candidate hub genes and key hub genes

identified from the PPI network in predicting AF and CS

diseases, we developed models using Random Forest and Support

Vector Machines. ROC curves were plotted, and model

performance was evaluated based on AUC values, accuracy,

precision, sensitivity, and specificity.

We randomly divided the samples from all groups and

employed 5-fold cross-validation. The results indicate that both

the candidate hub genes and the key hub genes achieved good

predictive performance, as shown in Figure 5. The performance

of the AF prediction model, built using the RF (Figure 5A) and

SVM (Figure 5B) algorithm, yields an AUC value of 0.959 and

0.878 when the candidate hub genes are employed, and an AUC
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value of 0.866 and 0.755 when utilizing the key hub genes,

respectively. The performance of the AF prediction model, built

using the RF (Figure 5C) and SVM (Figure 5D) algorithm, yields

an AUC value of 0.999 and 1.000 when the candidate hub genes

are employed, and an AUC value of 0.988 and 0.987 when

utilizing the key hub genes, respectively.
3.7 Causal estimates of AF on stroke based
on MR analysis

We collected genome-wide association study (GWAS)

summary data for AF from individuals (N = 60,620 AF cases and

970,216 controls). Additionally, we obtained GWAS data on

stroke from individuals in the FINNGEN (N = 43,132 stroke

cases and 297,867 controls). After screening, a total of 141

instrumental variables were obtained for AF, as shown in the

Supplementary Table. Subsequently, five methods were used for

MR analysis, with results presented in Table 3 and Figure 6A.

The results indicate that AF has a causal association effect on

stroke and can be considered a risk factor. Furthermore, using

Inverse variance weighted and MR-Egger methods, heterogeneity

was found in the exposure factor SNP (P < 0.05), as shown in

Figure 6B. The MR-Egger intercept test was employed to detect

the presence of pleiotropy. The results showed no evidence of

pleiotropy (p = 0.8607).
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FIGURE 5

Performance of candidate gene-based machine learning models for predicting CS and AF. “F1 features” represents the potential hub gene, while
“F2 features” signifies the crucial hub gene. (A) RF algorithm-based AF prediction model, yields AUC value of 0.959 (F1 features as input) and 0.866
(F2 features). (B) SVM algorithm-based AF prediction model, yields AUC value of 0.878 (F1) and 0.755 (F2). (C) RF algorithm-based CS prediction
model, yields AUC value of 0.999 (F1) and 0.988 (F2). (D) SVM algorithm-based CS prediction model, yields AUC value of 1.000 (F1) and 0.987 (F2).

TABLE 3 Causal estimates of AF on stroke.

MR methods SE OR (CI) P-value
Inverse variance weighted 0.0144 1.1254 (1.0940, 1.1576) <0.01

Weighted median 0.0243 1.1491 (1.0957, 1.2051) <0.01

MR-egger 0.0281 1.1206 (1.0606, 1.1840) <0.01

Simple mode 0.0567 1.1580 (1.0362, 1.2940) <0.01

Weighted mode 0.0247 1.1540 (1.0995, 1.2112) <0.01
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In the subsequent phase, a reverse MR analysis was

conducted, treating stroke as the exposure and AF as the

outcome. This analysis aimed to investigate whether stroke

increases the risk of AF. The results showed no causal

association effect of stroke on AF. This finding is particularly

interesting because it indicates a unidirectional relationship

where AF influences stroke risk but stroke does not appear to

increase the risk of AF. In conclusion, AF has a significant

causal association effect on stroke.
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4 Discussion

Stroke etiology is complex (19), defined by the abrupt

occurrence of brain edema and neurological damage due to

tissue injury in localized brain areas, leading to sympathetic

activation, immunosuppression, as well as various complications

(e.g., gastrointestinal hemorrhage, infections, and lower extremity

deep vein thrombosis) and sequelae (e.g., cognitive and memory

impairments, and limb mobility disorders). Clinically, strokes are

classified into subtypes based on the “Trial of Org 10172 in acute

stroke treatment” (TOAST) criteria, with CS being the most

rapidly developing subtype, accounting for 30% of all strokes

(20). Most patients with cryptogenic embolism are diagnosed

with CS. CS etiology primarily involves heart diseases such as

AF, heart failure, left ventricular embolism, mechanical aortic

valve, infective endocarditis, aortic coarctation, and other cardiac

disorders, with AF-related strokes making up over 79% of CS

cases. Currently, primary treatments for cardiac stroke include
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FIGURE 6

(A) Scatter plots of MR analyses. (B) Heterogeneity test of MR analysis.
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anticoagulation, bridging therapy, intravenous thrombolysis, and

mechanical thrombolysis, which have been shown to improve

both early and long-term prognosis (21). Consequently, a

multifaceted approach to studying stroke-related disease targets is

necessary, paying attention to subtype-related diseases. For

example, Malik et al. investigated genome-wide associations

across multiple ancestries in 520,000 individuals, identifying 32

loci linked to stroke and its subtypes (22).

A typical bioinformatics algorithm for constructing gene co-

expression networks from high-throughput gene expression

microarray data is the WGCNA combined with machine learning

techniques. Compared to conventional bioinformatics algorithms,

WGCNA establishes the correlation between gene expression

profiles and clinical information, thereby facilitating the exploration

of novel therapeutic targets and offering new insights into the

pathogenesis of comorbidities and combination therapy strategies.

In a study by Huang K et al. (23), utilizing the WGCNA approach,

it was discovered that STAT4, CX3CR1, COL1A2, and SH2D1B,

with STAT4 and COL1A2 being significant mechanisms implicated

in the co-morbidities of heart failure and depression, offer new

targets for investigating the pathogenesis of heart failure and

depression, as well as for treating these conditions. Wang et al. (24)

identified the co-morbidity hub genes associated with systemic

lupus erythematosus (SLE) and metabolic syndrome, and utilized

the genes to construct a diagnostic model employing Random
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Forest and LASSO algorithms. Several studies have investigated the

gene expression patterns related to clinical syndrome and stroke

using WGCNA. In the work of Liu et al. (25), WGCNA was

employed to identify OTULIN and NFIL3 as pivotal genes in heart

failure-induced stroke. Zhao et al. (26) concluded from their

WGCNA analysis that MAPK14 could act as a potential biomarker

for CS and may have the capability to forecast the

physiopathological condition of CS patients.

In our study, we initially retrieved clinical information and high-

throughput gene expression data from the GEO database. We

employed the Weighted WGCNA method to construct gene co-

expression networks. Furthermore, we conducted differential gene

analysis, PPI network analysis, and machine learning approaches to

identify five hub genes significantly associated with CS and AF,

including PIK3R1, ITGAM, FOS, CTNNB1, and TLR4. Further

analysis showed that MRPL4, PMPCA, SEC61A1, MRPS7,

MRPS18B, UBE2S, SNF8, and TSR3 are among the top 10 shared

WGCNA genes.

For AF disease, we selected 3,257 significant module genes

(greenyellow, turquoise, and salmon module) and 1,886 DEGs,

resulting in an overlap of 998 genes. Further analysis revealed

that VEGFA, UBE2I, and FOS are among the top 10 shared

DEG hub genes. For CS disease, we selected 863 significant

module genes (brown module) and 3,203 DEGs, resulting in an

overlap of 414 genes. We conducted a hierarchical heatmap
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analysis of overlapping gene expression in CS and AF, as shown

in Figure 4C. Our findings reveal that out of 475 differentially

expressed genes, 130 are consistently down-regulated and 207

are up-regulated in both CS and AF. Furthermore, 71 genes

are up-regulated in AF but down-regulated in CS, while 67 are

down-regulated in AF and up-regulated in CS. Notably, 71%

of these genes exhibit parallel expression trends in both

conditions. With the exception of CTNNB1, all key regulatory

genes identified align in their expression patterns.

Consequently, CTNNB1 has been omitted from the hub gene

list. Further examination of the four ultimately identified key

shared genes was conducted to assess their differential

expression patterns and WGCNA gene module. Notably,

PIK3R1 and TLR4 satisfied these criteria.

The PPI network illustrates the complex interactions among

proteins. Given the lack of direct overlapping genes between the two

diseases, we sought to place these genes within a broader

biomolecular interaction network to investigate their potential

biological connections. This approach does not amalgamate these

molecules per se, but rather capitalizes on extensive biological

knowledge to observe the relationships exhibited by the two diseases

within complex networks. As a result, we identified key genes

(PIK3R1, ITGAM, FOS, and TLR4) using this methodology. We

contend that this method surpasses the limitations of solely

identifying key genes based on overlapping genes, which neglects the

intricate biological relationships. This analytical technique

supplements traditional Venn analysis, which only considers whether

genes overlap, overlooking the complex interplay among them.

Subsequently, GO functional enrichment analysis revealed a

significant correlation between each functional annotation

process and immune and inflammation-related pathways.

Additionally, KEGG pathway analysis indicated that hub genes

associated with CS and AF were substantially enriched in

immune response-related pathways. Notably, ITGAM were

identified as common genes exhibiting genetic associations

among various autoimmune diseases (27), consistent with the

results from the GO functional enrichment analysis.

The above biological pathway findings are also consistent with

several previous studies. Shi et al. (28) reported that TPA-mediated

cerebral hemorrhage during IV thrombolysis for stroke,

representing an immune invasion of the neurovascular unit, could

be counteracted by precise immune modulation during therapy. In

the study by Simone et al. (29), they analyzed the percentages of

CD2 + T-bet + T cells and CD4 +GATA7 + T cells in the peripheral

blood from patients with atherosclerotic thrombosis and CS,

suggesting that circulating CD4 + T-bet + T cells might act as

biomarkers for atherosclerotic thrombosis, indicating CS, and

offering new perspectives on peripheral adaptive immune responses

in acute stroke. Apart from the work by Ding et al. (30), who

initially identified C1QC, VSIG4, and CFD as potential peripheral

blood biomarkers for AF-related CS using bioinformatics

approaches, no further studies exploring the molecular mechanisms

underlying comorbidities associated with CS and AF were found.

Our study faces certain limitations: (1) The use of public databases

with a modest sample size may introduce data bias; (2) The heavy

reliance on bioinformatics algorithms for biomarker identification,
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without integrating findings from literature reviews and guidelines, is

another constraining factor. Looking ahead, we aim to undertake

large-scale clinical studies and perform animal model experiments to

substantiate the proposed biomarkers. Furthermore, a systematic

review will be conducted to distill common biomarkers, ensuring a

multi-faceted evidence base for the disease under study.

In summary, our findings suggest that PIK3R1, ITGAM, FOS,

and TLR4 are potential common biomarkers and therapeutic

targets for both CS and AF. Further investigation into the

immune response could elucidate the molecular mechanisms

underlying these diseases, potentially offering novel insights for

the management of their co-morbidities. However, future

experimental validation is required.
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