Check for updates

#### **OPEN ACCESS**

EDITED BY Milorad Tesic, University of Belgrade, Serbia

REVIEWED BY Rafal Adam Januszek, Andrzej Frycz Modrzewski Krakow University, Poland Nino Cocco,

Campus Bio-Medico University Hospital, Italy \*CORRESPONDENCE Bo Luan

⊠ boluan\_cardio@outlook.com

RECEIVED 22 January 2024 ACCEPTED 07 June 2024 PUBLISHED 25 June 2024

#### CITATION

Sun Y, Zhang B, Zhang X, Zhang X, Bao W, Bai H and Luan B (2024) Impact of coronary collateralization on major adverse cardiovascular and cerebrovascular events after successful recanalization of chronic total occlusion.

Front. Cardiovasc. Med. 11:1374398. doi: 10.3389/fcvm.2024.1374398

#### COPYRIGHT

© 2024 Sun, Zhang, Zhang, Zhang, Bao, Bai and Luan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

# Impact of coronary collateralization on major adverse cardiovascular and cerebrovascular events after successful recanalization of chronic total occlusion

Yurong Sun<sup>1,2</sup>, Bin Zhang<sup>2</sup>, Xinyuan Zhang<sup>3</sup>, Xiaojiao Zhang<sup>2</sup>, Wenqi Bao<sup>2</sup>, Hangrui Bai<sup>2</sup> and Bo Luan<sup>2\*</sup>

<sup>1</sup>Internal Medicine, Dalian Medical University, Dalian, China, <sup>2</sup>Department of Cardiology, People's Hospital of Liaoning Province, The People's Hospital of China Medical University, Shenyang, Liaoning, China, <sup>3</sup>Clinical Medicine, China Medical University, Shenyang, Liaoning, China

**Aims:** This study aims to investigate the effects of coronary collateral circulation (CCC) on the prognosis of chronic total occlusion (CTO) patients with or without metabolic syndrome (MetS).

**Methods:** The study included 342 CTO patients who underwent successful percutaneous coronary intervention at the People's Hospital of Liaoning Province between 1 February 2021 and 30 September 2023. The Rentrop score was used to assess the status of CCC. The outcome was major adverse cardiovascular and cerebrovascular events (MACCEs), defined as a composite of all-cause mortality, cardiac death, non-fatal myocardial infarction (MI), target vessel revascularization (TVR), and non-fatal stroke. Univariate and multivariate logistic analyses were used to investigate the association of CCC, MetS, and MACCEs with odds ratios (ORs) and 95% confidence intervals (CIs). The effect of CCC was further investigated in different MetS, diabetes mellitus (DM), and Syntax score groups.

**Results:** MACCEs were more common in patients with poor CCC compared to those with good CCC (38.74% vs. 16.56%). Statistical differences were found in MACCEs (OR = 3.33, 95% CI: 1.93–5.72), MI (OR = 3.11, 95% CI: 1.73–5.58), TVR (OR = 3.06, 95% CI: 1.70–5.53), and stent thrombosis (OR = 6.14, 95% CI: 2.76–13.65) between the good and poor CCC groups. Poor CCC patients with MetS had a higher incidence of MACCEs (OR = 4.21, 95% CI: 2.05–8.65), non-fatal MI (OR = 4.44, 95% CI: 2.01–9.83), TVR (OR = 3.28, 95% CI: 1.51–7.11), and stent thrombosis (OR = 10.80, 95% CI: 3.11–37.54). Similar findings were also observed in CTO patients with DM and a Syntax score  $\geq$ 23.

**Conclusion:** Poor CCC could increase the risk of MACCEs in CTO patients, particularly those with MetS, DM, and a Syntax score  $\geq$ 23. Further prospective, multicenter studies are needed to validate our findings and to explore potential therapeutic interventions.

#### KEYWORDS

chronic total occlusion, metabolic syndrome, coronary collateral circulation, prognosis, major adverse cardiovascular and cerebrovascular events (MACCEs)

#### Introduction

Chronic total occlusion (CTO) is a common occurrence in patients with coronary artery disease (CAD), affecting a third of patients with CAD (1, 2). The main treatment for CTO is coronary intervention percutaneous (PCI) to achieve revascularization. Previous studies have shown several clinical benefits of successful CTO recanalization, including angina relief, decreased ischemic burden, and even increased survival (3). Coronary collateral circulation (CCC) plays a vital role in maintaining myocardial perfusion in the presence of coronary artery occlusion (4). Previous studies have suggested that welldeveloped collaterals could reduce infarct size and improve ventricular function, benefit CTO-PCI revascularization, and be related to a better long-term prognosis in patients with CAD (4, 5).

Metabolic syndrome (MetS), a disease related to multiple factors, could lead to a poor prognosis for cardiovascular disease (6, 7). It has been reported that diabetic patients with CTO are associated with a higher incidence of revascularization and total adverse cardiovascular events over a period of 5 years (8). Successful CTO revascularization in diabetic patients may be related to better long-term survival benefits, but this is not observed in the non-diabetic population (9–11). Yilmaz et al. (12) found that the incidence of MetS was higher in patients with poor circulation compared to those with good CCC. As MetS is similar to diabetes, we speculate that poor CCC and MetS may also adversely affect the long-term clinical prognosis of CTO patients after PCI.

In this study, we aimed to investigate the effect of CCC on major adverse cardiovascular and cerebrovascular events (MACCEs) in patients with and without MetS after successful CTO-PCI. The findings from this study may have important implications for risk stratification and treatment strategies for patients with CTO-PCI.

#### Methods

#### Study population

This is a retrospective cohort study conducted at the People's Hospital of Liaoning Province between February 2021 and September 2023. The inclusion criteria were as follows: (1) aged  $\geq$ 18 years, (2) diagnosed with CTO, (3) without a history of PCI or coronary artery bypass grafting (CABG), and (4) with complete clinical data. Patients were excluded based on at least one of the following conditions: (1) contraindications for PCI or contrast agent injection; (2) concurrent cardiac diseases like heart failure or pulmonary heart disease; (3) severely impaired liver or kidney functions; and (4) malignant tumors or immune system diseases.

CTO was defined as arteries occluded for a documented duration of occlusion  $\geq$ 3 months with absolutely antegrade flow through the lesion [thrombolysis in myocardial infarction (TIMI) grade 0 flow] (13). The Syntax score served as a reproducible angiographic tool to quantify the extent of coronary artery

disease. MetS was determined based on the criteria of the International Diabetes Federation (14). Participants were required to have a waist circumference of  $\geq$ 94 cm (men) or  $\geq$ 80 cm (women). Meanwhile, participants needed to meet at least two of the following criteria: (1) glucose levels  $\geq$ 5.6 mmol/L or diagnosed diabetes; (2) low high-density lipoprotein cholesterol (HDL-C) levels <1.0 mmol/L (men), <1.3 mmol/L (women), or receiving drug treatment for low HDL-C; (3) triglyceride (TG) levels  $\geq$ 1.7 mmol/L or receiving drug treatment for high TG; (4) blood pressure  $\geq$ 130/85 mmHg or receiving drug treatment for hypertension. The study protocol was reviewed and approved by the Ethics Committee of the People's Hospital of Liaoning Province (Approval No. 2023-K063). All participants signed written informed consent.

#### Data collection

Trained physicians or nurses collected the following information about patients: demographic data, disease characteristics, treatment-related data, and occurrences of MACCEs. Demographic data included age, gender, height, weight, smoking and drinking habits, family history of CAD, history of myocardial infarction (MI), cerebral infarction, diabetes mellitus (DM), and MetS. Before the coronary interventions were performed, information on the characteristics of the disease was collected, including the number of occluded vessels, location of the CTO lesion, left ventricular ejection fraction, number of recanalized vessels in the CTO lesion, complete revascularization, and number of implanted stents. Treatment-related data included the type of therapeutic drugs, such as angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs), β-blockers, statins, and hypoglycemic drugs.

#### Assessment of collateral circulation

The Rentrop scoring system was used to evaluate the grading of coronary collateralization: grade 0 indicates no visible filling of any collateral vessel, grade 1 indicates filling of the side branches by collateral vessels without filling of the epicardial arteries, grade 2 indicates partial filling of the epicardial artery by collateral vessels, and grade 3 indicates complete filling of the epicardial artery by collateral vessels (15). The Rentrop classification, categorized as grade 0 or 1, was defined as a poor coronary collateralization group, and grade 2 or 3 was considered a good group.

#### Outcomes and follow-up

The outcome was MACCEs, consisting of all-cause death, cardiac death, non-fatal MI, target vessel revascularization (TVR), and non-fatal stroke (15). Cardiac death was defined as any death for which a definite non-cardiac cause could not be determined. MI was defined as participants with typical chest

pain, ST-segment deviation, T wave changes, and creatine kinasemyocardial band levels at least three times the upper limit of normal (16). TVR, which included interventions on the target and non-target vessels by PCI or CABG, was performed in patients with severe in-stent restenosis or newly emerged coronary lesions (70% luminal diameter stenosis) (15). The study population was followed up at 3, 6, 9, and 12 months after discharge through office interviews, outpatient visits, telephone consultations, and a review of medical records.

#### Statistical analysis

The normality of continuous variables was tested by skewness and kurtosis, while homogeneity was detected by the Levene test. Continuous variables with a normal distribution were described by the mean  $\pm$  SD (standard deviation), while variables without a normal distribution were described by the median (interquartile range). Categorical variables were expressed as numbers and percentages. Student's t-test was used to compare group differences for continuous variables satisfying normal distribution and homogeneity of variance. A Satterthwaite t-test was used for continuous variables exhibiting normal distribution but lacking homogeneity of variance. For continuous variables that did not exhibit a normal distribution or homogeneity of variance, the Wilcoxon rank-sum test was used to evaluate differences between the two groups. The chi-squared test and Fisher's exact test were conducted to assess categorical variables between different groups, while the Wilcoxon rank-sum test was used for rank data. Covariates with P < 0.05 on univariate logistic analysis were considered potential confounders. Multivariable logistic regression analyses were conducted to investigate the relationship between the status of CCC and MACCEs. The results were presented as odds ratios (ORs) with their corresponding 95% confidence intervals (CIs). Survival curves were plotted for the two groups using the Kaplan-Meier method. Subgroup analyses stratified by MetS were also performed to explore the association between CCC and MACCEs. Model 1 was the crude model. Model 2 was adjusted for history of MI, number of occluded vessels, ACEI or ARB, and statins. The association of CCC with MACCEs was also explored in different DM and Syntax score subgroups. A two-sided P < 0.05 was used to indicate statistical significance. All analyses were performed using R version 4.2.3 (2023-03-15 ucrt).

# Results

#### Characteristics of CTP patients

A total of 342 CTO patients undergoing PCI were enrolled, with an average age of 61.43 years. Among them, 151 patients were classified as having a good CCC. There was statistical significance between the two groups in terms of smoking (P < 0.05). The demographic, clinical, and treatment information is presented in Table 1. Figure 1 illustrates the participants selection process.

#### MACCEs in CTO patients

Table 2 presents the clinical outcomes of CTO patients with good or poor CCC. During the 1-year follow-up period, 99 CTO patients experienced MACCEs. In total, 18 CTO patients succumbed to all-cause death, with 17 of them being attributed to cardiac death. In addition, 78 CTO patients experienced nonfatal MI, while 15 CTO patients suffered a non-fatal stroke. The survival curve of the MetS group was significantly lower than that of the non-MetS group (Figure 2). All participants received coronary angiography during follow-up, with 77 of them undergoing repeat revascularization. Overall, the rate of MACCEs and their components was higher in patients with poor CCC compared to those with good CCC.

# Association between CCC and MACCEs in CTO patients

In model 2, confounders were adjusted, including history of MI, number of occluded vessels, ACEI or ARB, and statin use. Poor CCC was related to a higher incidence of MACCEs (OR = 3.33, 95% CI: 1.93–5.72), non-fatal MI (OR = 3.11, 95% CI: 1.73–5.58), TVR (OR = 3.06, 95% CI: 1.70–5.53), and stent thrombosis (OR = 6.14, 95% CI: 2.76–13.65) (Table 3).

The relationship of CCC status with MACCEs was further assessed in CTO patients with or without MetS. Poor CCC in patients with MetS was associated with higher odds of MACCEs (OR = 4.21, 95% CI: 2.05–8.65), non-fatal MI (OR = 4.44, 95% CI: 2.01–9.83), TVR (OR = 3.28, 95% CI: 1.51–7.11), and stent thrombosis (OR = 10.80, 95% CI: 3.11–37.54) (Table 4).

# Association between CCC and MACCEs in CTO patients with different DM and Syntax score subgroups

Table 5 illustrates the relationship between CCC and MACCEs in different DM and Syntax score subgroups. In DM patients, poor CCC was related to higher odds of MACCEs (OR = 4.42, 95% CI: 1.96–10.97), non-fatal MI (OR = 4.12, 95% CI: 1.70–11.39), TVR (OR = 3.09, 95% CI: 1.34–7.83), and stent thrombosis (OR = 10.98, 95% CI: 2.97–71.98). In CTO patients with Syntax score  $\geq$ 23, poor CCC was associated with a higher incidence of MACCEs (OR = 3.83, 95% CI: 1.43–11.72), non-fatal MI (OR = 5.89, 95% CI: 1.77–27.28), TVR (OR = 3.45, 95% CI: 1.19–11.89), and stent thrombosis (OR = 11.49, 95% CI: 2.64–89.60).

# Discussion

Our study investigated the relationship between CCC and MACCEs in patients who underwent PCI for CTO. The results suggested that poor CCC was associated with MACCEs, non-fatal MI, TVR, and stent thrombosis in CTO patients. Similar findings TABLE 1 Characteristics of CTO patients with good and poor CCC.

| Age cons (Sb)61.45 (137)61.45 (137)61.35 (137) $Z^2 - 0.24$ 81.55Mat77 (12.51)37 (0.55)14.65 (7.57)7.557.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)7.55 (1.77)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total ( <i>N</i> = 342) | Good CCC ( $N = 151$ )   | Poor CCC ( <i>N</i> = 191) | Statistics                              | Р     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|----------------------------|-----------------------------------------|-------|
| Ser. (%)ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Age, mean (±SD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.43 (±10.51)          | 61.68 (±10.24)           | 61.23 (±10.75)             | t = 0.394                               | 0.694 |
| black<br>brandeDis Bis (79,07)Dis (Dis V)Hig (149,07)Hig (149,07)Hig (140,07)Hig (14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sex, n (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                          |                            | $\chi^2 = 0.424$                        | 0.515 |
| Image         17(2.54)         11(0.55)         44 (24.06)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)         1.04 (20.07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Male                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 265 (77.49)             | 120 (79.47)              | 145 (75.92)                |                                         |       |
| Height mean (s20)1.49 (1007)1.10 (1007)1.9 (1007)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1017)1.9 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Female                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77 (22.51)              | 31 (20.53)               | 46 (24.08)                 |                                         |       |
| Weight general (SD)7.3 to (:1.187)7.3 to (:1.73)7.1 to (:1.73)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Height, m, mean (±SD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.69 (±0.07)            | 1.69 (±0.07)             | 1.69 (±0.07)               | t = -0.502                              | 0.616 |
| BML Again*, mon. (SD)         25.52 (±3.40)         25.60 (±2.94)         25.64 (±3.73) $l^-$ = .06         0.061           Smader, (N)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>Weight kg mean (+SD)</td> <td>73 20 (+11 87)</td> <td>73 26 (+10 75)</td> <td>73 16 (+12 72)</td> <td><math>t^{2} = 0.085</math></td> <td>0.932</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weight kg mean (+SD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73 20 (+11 87)          | 73 26 (+10 75)           | 73 16 (+12 72)             | $t^{2} = 0.085$                         | 0.932 |
| Description         Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{1}{2} \frac{1}{2} \frac{1}$ | 25.52 (+3.40)           | 25.60 (+2.94)            | 25.46 (+3.73)              | t' = 0.408                              | 0.684 |
| anome and the set of the set | Smoking $n$ (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.52 (±5.10)           | 25.00 (±2.51)            | 20.10 (±0.70)              | $x^2 = 7.950$                           | 0.001 |
| Terms answer         DO (1257)         GP (1258)         GP (1258)         GP (1511)         I           Correr answer         113 (3304)         62 (41.68)         51 (62.7)         I           Darrer answer         62 (16.13)         24 (15.89)         58 (15.11)         I         I           Newer drakker         62 (18.13)         24 (15.89)         38 (19.9)         I         I           Stromer drakker         62 (18.13)         24 (15.89)         15 (76.16)         131 (90.5)         I         I           Correr drakker         249 (72.81)         115 (76.16)         131 (90.5)         I         I         I           Terms binstory drowary arery disease, n (%)         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Naver smoker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 67 (10 50)              | 25 (16.56)               | 42 (21.00)                 | χ = 7.550                               | 0.015 |
| Journal moderIndIndIndIndIndIndIndIndDanklag, n(%)IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Former or oliver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 162 (47.27)             | 23 (10.30)               | 42 (21.99)                 |                                         |       |
| Larrent manace115 (XM)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80)120 (11.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102 (47.37)             | 04 (42.38)               | 90 (31.31)                 |                                         |       |
| Dramag (%)(%)(%)(%)(%)(%)(%)(%)Forme drinker249 (72.81)115 (76.16)134 (70.16)(%)(%)(%)Forme drinker31 (90.80)12 (73.50)119 (95.9)(%)(%)(%)Eamly history of coronary artery disease, n (%)32 (67.93.2)145 (96.03)184 (94.76)(%)(%)No326 (79.32)145 (96.03)184 (94.76)(%)(%)(%)(%)Yes10 (45.80)6 (33.77)10 (57.20)(%)(%)(%)(%)(%)No146 (42.60)64 (42.38)82 (42.93)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%)(%) <td>Di li (0)</td> <td>113 (33.04)</td> <td>62 (41.06)</td> <td>51 (26.7)</td> <td>2 1 524</td> <td>0.464</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Di li (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 113 (33.04)             | 62 (41.06)               | 51 (26.7)                  | 2 1 524                                 | 0.464 |
| Never0.6 (1) 8.13)24 (1) 38)38 (10)1111Corrent drinker29 (724)115 (76.16)113 (70.16)111Current drinker31 (90.6)12 (75.5)19 (95.5)172 = 0.050.721No326 (95.32)145 (96.00)181 (94.76)111Na16 (42.8)64 (32.8)82 (42.3)111No146 (42.69)64 (42.38)82 (42.30)111No146 (42.69)64 (42.38)82 (42.30)1111Carcbal infarction, n (%)1128 (47.7)165 (65.9)111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 <t< td=""><td>Drinking, n (%)</td><td>(10.10)</td><td></td><td>20 (10 0)</td><td><math>\chi^{-} = 1.534</math></td><td>0.464</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Drinking, n (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (10.10)                 |                          | 20 (10 0)                  | $\chi^{-} = 1.534$                      | 0.464 |
| former draker         249 (7281)         115 (78.16)         134 (78.5)         139 (92.5)         14         1           Family history of coronary artery disease, n (%)         12         127.55         199 (92.5)         141         127.55         199 (92.5)         141         127.55         110 (52.4)         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <t< td=""><td>Never drinker</td><td>62 (18.13)</td><td>24 (15.89)</td><td>38 (19.9)</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Never drinker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 62 (18.13)              | 24 (15.89)               | 38 (19.9)                  |                                         |       |
| Current drinker31 (0.80)12 (7.8)10 (0.8) $\chi^2 = 0.85$ 0.771No326 (95.32)145 (96.00)(81 (0.476)) $\chi^2 = 0.08$ 0.100No16 (42.69)64 (42.38)82 (42.93)1.001.00No116 (62.69)64 (42.38)82 (42.93)1.001.00No116 (63.71)100 (57.07)1.001.001.00No128 (94.73)165 (68.39)1.007.20.78No233 (95.57)128 (94.77)165 (68.39)1.007.2No233 (95.57)128 (94.77)165 (95.39)1.007.2Nes, n (%)120 (57.50)90 (94.80)2.22.21.00No140 (12.57)44 (42.38)96 (13.01)1.001.00No180 (57.57)19.86 (75.57)91 (94.80)1.101.01Syntax score, mean (45D)140 (16.34)1.09 (13.01)1.10 (10.30)1.101.10Syntax score, mean (45D)140 (16.34)1.09 (13.10)1.00 (13.30)1.101.01Number of occulade vesels, n (%)1.00 (13.34)1.00 (13.30)1.00 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)1.10 (13.30)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Former drinker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 249 (72.81)             | 115 (76.16)              | 134 (70.16)                |                                         |       |
| Family history of coronary artery disease, n (%)0016(~16.50)181 (49.70)700No166 (46.80)61.307)181 (49.70)100100100No146 (42.60)64 (42.38)82 (42.93)1100No196 (57.31)67 (57.62)100 (57.07)170.788No196 (57.31)67 (57.62)106 (68.30)70.788No293 (85.67)112 (8(4.77)166 (86.30)710.788No49 (14.33)23 (15.23)26 (15.01)11Mefs, n (%)162 (47.77)64 (42.38)98 (51.31)11No180 (52.63)67 (57.62)33 (48.66)11.160.15Startival lime, day, M (Q,, Q,)36500 (15.03, 36600)36500 (35.00, 36500, 35500 (35.00, 36500)15.00 (27.00, 36600)1Syntax score, mean (3D)1819 (27.78)17.98 (47.39)19.68 (12.77)1.7240.054Number of conductary vessels in the CTO lesion, mean (4D)1.10 (40.37)14.06 (45.37)1.10 (40.37)1.10 (40.37)1.10 (40.37)1204 (85.96)1.11 (46.73)16.85.34)1120.630No126 (63.46)201 (12.52)128 (14.66)111126 (35.84)121 (40.79)14.10 (42.79)0.514No122 (07.18)29 (19.21)14.10 (42.79)0.514No126 (63.46)122 (40.79)14.16 (42.70)11.6No126 (16.84)29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Current drinker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31 (9.06)               | 12 (7.95)                | 19 (9.95)                  |                                         |       |
| No326 (95.32)145 (90.03)18 (94.76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Family history of coronary artery disease, <i>n</i> (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                          |                            | $\chi^2 = 0.085$                        | 0.771 |
| Yes16 (4.88)6 (3.77)(10 (5.24)No1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)1.10 (4.31)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 326 (95.32)             | 145 (96.03)              | 181 (94.76)                |                                         |       |
| History or myocardial infarction, n (%)ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16 (4.68)               | 6 (3.97)                 | 10 (5.24)                  |                                         |       |
| No146 (42.80)64 (24.38)82 (82.93)11Yes196 (57.31)87 (57.62)109 (57.62)109 (57.63) $\chi^2$ - 0.020.78No293 (85.67)12.8 (42.77)16.5 (66.39) $\chi^2$ - 0.020.15Nes293 (85.67)12.8 (42.77)26.1 (50.63) $\chi^2$ - 2.3480.125No16.2 (47.77)64.1 (23.8)99 (48.0) $\chi^2$ - 2.3480.125No16.8 (52.63)35.05 (025.03.6500)80.50 (025.03.6500)80.50 (025.03.6500)10.85Syntax scor, menc(5D)16.8 (57.62)17.98 (47.57)19.84 (47.57)19.84 (47.57)19.84 (47.57)19.84 (47.57)10.98Numer of coulde vessle, in (hTO) lesson, mean (51)14.0 (45.7)17.98 (47.50)19.84 (47.57)10.10 (43.34)1-1.2280.05Numer of coulde vessle, in (hTO) lesson, mean (51.0)14.0 (45.7)14.0 (40.13)10.10 (43.14)10.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)1.10 (43.14)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | History of myocardial infarction, $n$ (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                          |                            | $\chi^2 = 0.000$                        | 1.000 |
| Year196 (57.0)197 (57.2)109 (57.6)109 (57.6)10100Cachainaration, n(%)123 (53.0)165 (63.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0)172 (37.0) <t< td=""><td>No</td><td>146 (42.69)</td><td>64 (42.38)</td><td>82 (42.93)</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 146 (42.69)             | 64 (42.38)               | 82 (42.93)                 |                                         |       |
| Cerchain linkarction, n (%)(m)(m)(m)(m)(m)(m)No293 (85.67)128 (84.77)16.5 (86.39)(m)(m)(m)No(m)(m)2.2 (1.5.3)2.6 (1.5.61)(m)(m)(m)MeS, n(%)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 196 (57.31)             | 87 (57.62)               | 109 (57.07)                |                                         |       |
| No128 (84.77)165 (85.39)111Yes49 (14.30)23 (15.23)26 (13.61)781.02No162 (47.77)40 (12.38)89 (51.31)71No163 (27.77)94 (12.38)89 (51.31)11Yes189 (52.73)875 (75.70)194 (65.75)14.030.13Syntax sore, mean (stD)189 (37.78)17.78 (57.50)14.04 (65.75)11.0 (40.35)11.280.085Number of ecanalized vesels in the CTO lesion, mean (42.00)14.01 (65.75)44.72 (45.64.53)11.27.280.082Number of acculard vesels, n (%)1.09 (40.31)1.10 (40.34)1.09 (40.31)11.01 (40.35)1.67.280.082Number of acculard vesels, n (%)1.294 (55.90)13.13 (65.75)12.8 (14.66.64)1.27.20.08211.00 (40.31)1.01 (40.34)20 (13.25)1.8 (14.64.04)20 (13.25)1.8 (14.64.04)2.0 (13.25)11.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)11.01 (40.34)1.02 (13.25)1.17 (61.26)1.22 (13.01)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01 (40.34)1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cerebral infarction, n (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                          |                            | $\chi^2 = 0.072$                        | 0.788 |
| Yes49 (14.33)23 (15.23)26 (15.61)//////MeS, n (%)162 (47.37)64 (42.38)98 (51.31)77Yes180 (52.63)365.00 (355.00.365.00)365.00 (355.00.365.00)81.50510.50Sunval time, day, M (Q, Q)365.00 (155.00.366.00)365.00 (355.00.365.00)81.57.7010.5810.55Syntax sor, enen (45D)148.93 (47.78)17.98 (47.57)14.98 (47.57)14.98 (45.57)14.12 (45.7)14.34 (46.85.7)14.12 (45.7)Number of oculade vessis, n (%)44.01 (46.75)44.42 (46.57)14.54 (45.83.4)14.12 (45.7)32.10 (40.10)32.10 (40.10)Number of oculade vessis, n (%)48 (14.00)201 (12.5)16.15 (85.34)72.04 (13.10)32.10 (13.16 (15.10)32.10 (13.16 (15.10)32.10 (13.16 (15.10)32.10 (13.16 (15.10)32.10 (13.16 (15.10)32.10 (13.16 (15.10)32.10 (13.16 (15.10)32.10 (13.16 (15.10)32.10 (13.16 (15.10)32.10 (13.16 (15.10)32.10 (13.16 (15.10)32.10 (13.16 (15.10)32.10 (13.16 (15.10)32.10 (13.16 (15.10)32.10 (13.16 (15.10)32.10 (13.16)32.10 (13.16 (15.10)32.10 (13.16)31.10 (13.16 (15.10)32.10 (13.16)32.10 (13.16)32.10 (13.16)32.10 (13.16)32.10 (13.16)32.10 (13.16)32.10 (13.16)32.10 (13.16)32.10 (13.16)32.10 (13.16)32.10 (13.16)32.10 (13.16)32.10 (13.16)32.10 (13.16)32.10 (13.16)32.10 (13.16)32.10 (13.16)32.10 (13.16)32.10 (13.16)32.10 (13.16)32.10 (13.16)32.10 (13.16)3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 293 (85.67)             | 128 (84.77)              | 165 (86.39)                |                                         |       |
| Mefs, n (%)(m)(m)(m)(m)(m)(m)No162 (47.37)64 (42.8)98 (51.31)99 (1.8.7)11Surval lune, day, M (Q, Q)36500 (3500, 36500)36500 (3500, 36500)36500 (3500, 36500)VE-17.480.045Syntax sore, mean (4SD)18.93 (47.78)17.98 (47.57)19.08 (47.87)1 t = -0.210.045LVEF, %, mean (4SD)44.01 (66.75)44.72 (45.7)43.46 (46.88)t = -0.220.74Number of occulade vessels, n (%)1.10 (0.03.0)1.09 (0.03.1)1.10 (0.03.0)1.20 (0.03.0)1.20 (0.03.0)1204 (85.96)131 (86.75)163 (85.34)-0.0452 or 3448 (14.04)20 (13.25)20 (16.85.34)-0.402 or 3111.01 (0.03.0)1.40 (0.03.0)1.40 (0.03.0)1.40 (0.03.0)1.40 (0.03.0)1 cactain of the CTO lesion1216 (63.16)99 (55.6)117 (61.26)2.42 e.05.003.60 (0.00.0)No126 (56.84)52 (34.40)174 (8.74.0)-1.50 (0.00.0)1.50 (0.00.0)1.50 (0.00.0)No126 (56.90.0)122 (80.79)148 (774.09.001.50 (0.00.0)1.50 (0.00.0)1.50 (0.00.0)1.50 (0.00.0)1.50 (0.00.0)No126 (56.90.0)122 (80.79)148 (774.0)1.50 (0.00.0)1.50 (0.00.0)1.50 (0.00.0)1.50 (0.00.0)1.50 (0.00.0)1.50 (0.00.0)1.50 (0.00.0)No126 (57.00.0)120 (10.10.0)126 (10.10.0)1.50 (10.00.0)1.50 (0.00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49 (14.33)              | 23 (15.23)               | 26 (13.61)                 |                                         |       |
| No162 (47.37)64 (42.38)98 (51.31)11Yes180 (52.03)87 (57.62)93 (48.69)11Surviat time, day, M (Q1, Q_))36500 (35500, 36500)36500 (35500, 36500)0500 (35700, 36600)1Syntax sore, mean (4SD)1893 (47.78)17.98 (47.59)19.68 (47.87)1 = -2.0140.045LVEF, M, mean (4SD)44.00 (46.73)44.72 (46.57)43.46 (46.85)t = -2.270.74Number of cacalladed vessels in the CTO lesion, mean (4SD)1.09 (40.31)1.10 (40.35)t = -0.3270.74Number of occluded vessels, n (%)1294 (85.96)131 (86.75)163 (85.34)t = -0.270.742 or 32 or 4 48 (14.04)20 (13.25)28 (14.66).11Location of the CTO lesion144 (14.04)20 (13.25)28 (14.66)1Location of the CTO lesion1126 (63.16)99 (65.56)117 (61.26)No216 (63.16)99 (65.56)117 (61.26)Yes122 (80.79)122 (80.79)148 (77.49)No270 (78.95)122 (80.79)148 (77.49)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MetS, <i>n</i> (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                          |                            | $\chi^2 = 2.348$                        | 0.125 |
| Yes180 (52.3)87 (57.62)93 (48.69)NNSurviat utime, day, M (Q1, Q2)36500 (3500, 3600, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 36500, 3650                                                                          | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 162 (47.37)             | 64 (42.38)               | 98 (51.31)                 |                                         |       |
| Survival time, day, M (Qi, Qa)365.00 (315.00, 366.00)365.00 (365.00, 365.00)365.00 (257.00, 366.00)W = 15.704.500.138Syntax score, mean (sDD)11893 (27.78)17.98 (27.59)19.08 (27.87)1 = -0.140.045LVEF, %, mean (sDD)44.01 (26.75)44.72 (26.57)43.46 (26.68)t = -0.3270.744Number of recanalized vessels in the CTO lesion, mean (4SD)1.10 (40.34)1.10 (40.31)1.10 (40.35)t = -0.3270.744Number of recanalized vessels, n (%)294 (85.66)1.31 (86.75)1.63 (85.34)T62 or 3448 (14.04)20 (13.25)2.8 (14.66)1.71.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180 (52.63)             | 87 (57.62)               | 93 (48.69)                 |                                         |       |
| Syntax score, mean (±SD)18.93 (±7.78)17.98 (±7.59)19.68 (±7.87)t = -2.0140.045LVEF, %, mean (±SD)44.01 (±6.75)44.72 (±6.57)43.46 (±6.85)t = -0.3210.74Number of recanalized vessels in the CTO lesion, mean (±SD)1.10 (±0.34)1.09 (±0.31)1.10 (±0.35)t = -0.3270.74Number of occluded vessels, $n$ (%)294 (85.96)131 (86.75)163 (85.34) $x^2$ = 0.0470.8281294 (85.96)131 (86.75)163 (85.34)112 or 348 (1.04)20 (13.25)28 (14.66)1Lection of the CTO lesion112426.560117 (61.26)1Left anterior descending, $n$ (%)216 (63.16)99 (65.56)117 (61.26)11Yes122 (80.79)148 (77.49)1111If circumflex artery, $n$ (%)270 (78.95)122 (80.79)148 (77.49)11No270 (78.95)122 (80.79)148 (77.49)111No107 (42.98)61 (40.4)86 (45.03)111No147 (42.98)61 (40.4)86 (45.03)1111Number of stents for the CTO vessel, mean (±SD)2.26 (±1.18)2.23 (±1.11)2.28 (±1.15)t = -0.3560.722No4 (1.17)1 (0.66)3 (1.57)11111Yes338 (98.83)150 (99.34)188 (98.43)111No21 (1.59)31 (162.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Survival time, day, M (Q1, Q3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 365.00 (315.00, 366.00) | 365.00 (365.00,365.00)   | 365.00 (257.00, 366.00)    | W = 15,704.500                          | 0.138 |
| IVEF, %, mean (xSD)44.01 (x6.75)44.72 (x6.57)43.46 (x6.85)t = 1.7280.085Number of ceanalized vessels in the CTO lesion, mean (xSD)1.10 (x0.34)1.00 (x0.31)1.10 (x0.35)t = -0.3270.744Number of occluded vessels, n (%)294 (85.96)1.11 (86.75)163 (85.34) $\chi^2 = 0.047$ 0.8281294 (85.96)1.11 (86.75)163 (85.34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Syntax score, mean (±SD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.93 (±7.78)           | 17.98 (±7.59)            | 19.68 (±7.87)              | t = -2.014                              | 0.045 |
| Number of scandized vessels in the CTO lesion, mean (±SD)1.10 (±0.34)1.10 (±0.31)1.10 (±0.35)t = -0.3270.744Number of occluded vessels, n (%)294 (85.96)131 (86.75)163 (85.34)t6.8281294 (85.96)131 (86.75)163 (85.34)tt6.82812 or 348 (14.04)20 (13.25)28 (14.66)tt6.828Location of the CTO lesion48 (14.04)20 (13.25)28 (14.66)ttt6.828No216 (63.16)99 (65.56)117 (61.26)ttttt5.828tttttt5.838tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LVEF, %, mean (+SD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44.01 (+6.75)           | 44.72 (+6.57)            | 43.46 (+6.85)              | t = 1.728                               | 0.085 |
| Number of occluded vessels, $n$ (%)Int (200)Int (200)Int (200)Int (200)Int (200) $\chi^2 = 0.047$ 0.8281294 (85.96)131 (86.75)163 (85.34)Image: Construction of the CTO lesionImage: Construction of the CTO l                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Number of recanalized vessels in the CTO lesion, mean (+SD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.10 (+0.34)            | 1.09 (+0.31)             | 1.10 (+0.35)               | t = -0.327                              | 0.744 |
| Number of vectorie relation in the set of the set  | Number of occluded vessels. <i>n</i> (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                          |                            | $\gamma^2 = 0.047$                      | 0.828 |
| 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 <th< td=""><td>1</td><td>294 (85 96)</td><td>131 (86 75)</td><td>163 (85 34)</td><td>χ οιο 1,</td><td>0.020</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 294 (85 96)             | 131 (86 75)              | 163 (85 34)                | χ οιο 1,                                | 0.020 |
| Location of the CTO lesionas (14.04)L0 (13.2.)L0 (13.2.)L0 (14.04)L0 (13.2.)L0 (13.2.) <thl0 (13.2.)<="" th="">L0 (13.2.)L0 (13.2.)<thl< td=""><td>2 or 3</td><td>48 (14.04)</td><td>20 (13 25)</td><td>28 (14.66)</td><td></td><td></td></thl<></thl0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 or 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48 (14.04)              | 20 (13 25)               | 28 (14.66)                 |                                         |       |
| DecisionImage: constant of the CFO statusImage: constant of the CFO status                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Location of the CTO lecion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 (11.01)              | 20 (13.25)               | 20 (14.00)                 |                                         |       |
| Lit and the descripting $h(n)$ $\chi^2 = 0.300$ 0.00No216 (63.16)99 (65.56)117 (61.26)[Yes126 (63.64)52 (34.44)74 (38.74)[[Left circumflex artery, $n$ (%)270 (78.95)122 (80.79)148 (77.49)[[No270 (78.95)122 (80.79)148 (77.49)[[[Right coronary artery, $n$ (%)72 (21.05)29 (19.21)43 (22.51)[[[No147 (42.98)61 (40.4)86 (45.03)[[[[Yes195 (57.02)90 (59.6)105 (54.97)[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Left anterior descending # (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                          |                            | $x^2 = 0.500$                           | 0.480 |
| No216 (03.10)99 (03.30)117 (01.20) $$ $$ Yes126 (03.40)52 (34.44)74 (38.74)Left circumflex artery, n (%)270 (78.95)122 (80.79)148 (77.49)Yes72 (21.05)29 (19.21)43 (22.51)Right coronary artery, n (%)177 (42.98)61 (40.4)86 (45.03)No147 (42.98)61 (40.4)86 (45.03) </td <td>No.</td> <td>216 (62 16)</td> <td>00 (65 56)</td> <td>117 (61 26)</td> <td>χ = 0.500</td> <td>0.400</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 216 (62 16)             | 00 (65 56)               | 117 (61 26)                | χ = 0.500                               | 0.400 |
| Yes126 (56.84)52 (34.44)74 (36.74) $\chi^2$ Left circumflex artery, n (%)270 (78.95)122 (80.79)148 (77.49)541No270 (78.95)122 (80.79)148 (77.49) </td <td>No</td> <td>210 (03.10)</td> <td>99 (03.30)<br/>52 (24.44)</td> <td>74 (20.74)</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 210 (03.10)             | 99 (03.30)<br>52 (24.44) | 74 (20.74)                 |                                         |       |
| Left circumitex artery, $n$ (%)Left circumitex artery, $n$ (%)Left circumitex artery, $n$ (%) $\chi = 0.5/4$ $\chi = 0.5/4$ $0.5/4$ No270 (78.95)122 (80.79)148 (77.49)Right coronary artery, $n$ (%)72 (21.05)29 (19.21)43 (22.51)No147 (42.98)61 (40.4)86 (45.03)Yes195 (57.02)90 (59.6)105 (54.97)Number of stents for the CTO vessel, mean (±SD)2.26 (±1.18)2.23 (±1.21)2.28 (±1.15)t = -0.3560.722Complete revascularization, $n$ (%)4 (1.17)1 (0.66)3 (1.57)0.633No4 (1.17)1 (0.66)3 (1.57) </td <td></td> <td>126 (36.84)</td> <td>52 (34.44)</td> <td>/4 (38./4)</td> <td>2 0.254</td> <td>0.541</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 126 (36.84)             | 52 (34.44)               | /4 (38./4)                 | 2 0.254                                 | 0.541 |
| No270 (78.95)122 (80.79)148 (77.49)168 (77.49)168 (77.49)Yes72 (21.05)29 (19.21)43 (22.51) $\chi^2 = 0.56$ 0.454Right coronary artery, n (%)147 (42.98)61 (40.4)86 (45.03)1Yes195 (57.02)90 (59.6)105 (54.97)12Number of stents for the CTO vessel, mean (±SD)2.26 (±1.18)2.23 (±1.21)2.28 (±1.15) $t = -0.356$ 0.722Complete revascularization, n (%)4 (1.17)1 (0.66)3 (1.57)-0.633No4 (1.17)1 (0.66)3 (1.57)-0.633No51 (14.91)20 (13.25)31 (16.23) $\chi^2 = 0.380$ 0.537No51 (14.91)20 (13.25)31 (16.23)-0.516β-blockers, n (%)-130 (86.75)160 (83.77)-10.516No42 (12.28)21 (13.91)21 (10.99)-0.516No300 (87.72)130 (86.09)170 (89.01)-10.516No39 (11.4)16 (10.6)23 (12.04)-10.516Yes303 (88.6)135 (89.4)168 (87.96)-10.516No39 (11.4)16 (10.6)23 (12.04)-10.516Yes303 (88.6)135 (89.4)168 (87.96)10.516No194 (56.73)95 (62.91)99 (51.83)10.512No194 (56.73)56 (37.09)92 (48.17)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Left circumflex artery, <i>n</i> (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                          |                            | $\chi = 0.3/4$                          | 0.541 |
| Yes72 (21.05)29 (19.21)44 (22.51) $\chi^2 = 0.560$ 0.454Right coronary artery, $n$ (%)147 (42.98)61 (40.4)86 (45.03) $\chi^2 = 0.560$ 0.454No147 (42.98)61 (40.4)86 (45.03)11Yes195 (57.02)90 (59.6)1105 (54.97)10.633Number of stents for the CTO vessel, mean (±SD)2.26 (±1.18)2.23 (±1.21)2.28 (±1.15) $t = -0.356$ 0.722Complete revascularization, $n$ (%)4 (1.17)1 (0.66)3 (1.57)10.633No4 (1.17)1 (0.66)3 (1.57)11Yes338 (98.83)150 (99.34)188 (98.43)11ACEIs or ARBs, $n$ (%)291 (85.09)131 (86.75)310 (83.77)11Yes291 (85.09)131 (86.75)160 (83.77)11β-blockers, $n$ (%)291 (13.91)21 (10.99)111No42 (12.28)21 (13.91)21 (10.99)11Yes300 (87.72)130 (86.09)170 (89.01)11Statins, $n$ (%)39 (11.4)16 (10.6)23 (12.04)11Yes303 (88.6)135 (89.4)168 (87.96)11Hypoglycemic drugs, $n$ (%)194 (56.73)95 (62.91)99 (51.83)10No194 (56.73)95 (62.91)99 (51.83)101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 270 (78.95)             | 122 (80.79)              | 148 (77.49)                |                                         |       |
| Right coronary artery, $n$ (%)Image and the set of the coronary artery, $n$ (%)Image and the set of the coronary artery, $n$ (%)Image and the set of the coronary artery, $n$ (%)Image and the coronary artery,                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72 (21.05)              | 29 (19.21)               | 43 (22.51)                 | 2                                       |       |
| No147 (42.98)61 (40.4)86 (45.03)IYes195 (57.02)90 (59.6)105 (54.97)IINumber of stents for the CTO vessel, mean (±SD)2.26 (±1.18)2.23 (±1.21)2.28 (±1.15)t=-0.3560.722Complete revascularization, $n$ (%)I10.66)3 (1.57)t=-0.3560.723No4 (1.17)1 (0.66)3 (1.57)II0.633No4 (1.17)1 (0.66)3 (1.57)IIIYes338 (98.33)150 (99.34)188 (98.43) $\chi^2$ =0.3800.537No51 (14.91)20 (13.25)31 (16.23) $\chi^2$ =0.3800.537No51 (14.91)20 (13.25)31 (16.03)IIYes291 (85.09)131 (86.75)160 (83.77)IIβ-blockers, $n$ (%)42 (12.28)21 (13.91)21 (10.99)IIYes300 (87.2)130 (86.09)170 (89.01) $\chi^2$ =0.0610.805No39 (11.4)16 (10.6)23 (12.04)IIYes303 (88.6)135 (89.4)168 (87.96)IINo194 (56.73)95 (62.91)99 (51.83)10521052No148 (43.27)56 (37.09)92 (48.17)II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Right coronary artery, n (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                          |                            | $\chi^2 = 0.560$                        | 0.454 |
| Yes195 (57.02)90 (59.6)105 (54.97)((Number of stents for the CTO vessel, mean (±SD)2.26 (±1.18)2.23 (±1.21)2.28 (±1.15)t = -0.3560.722Complete revascularization, n (%)-0.633-0.633No4 (1.17)1 (0.66)3 (1.57)-0.633Yes338 (98.83)150 (99.34)188 (98.43)-0.633ACEIs or ARBs, n (%)- $\chi^2$ = 0.3800.5370.5370.5370.537No51 (14.91)2.0 (13.25)31 (16.23) $\chi^2$ = 0.4810.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.5160.516 <td>No</td> <td>147 (42.98)</td> <td>61 (40.4)</td> <td>86 (45.03)</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 147 (42.98)             | 61 (40.4)                | 86 (45.03)                 |                                         |       |
| Number of stents for the CTO vessel, mean (±SD) $2.26 (\pm 1.18)$ $2.23 (\pm 1.21)$ $2.28 (\pm 1.15)$ $t = -0.356$ $0.722$ Complete revacularization, n (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 195 (57.02)             | 90 (59.6)                | 105 (54.97)                |                                         |       |
| Complete revacularization, $n$ (%)—0.633No4 (1.17)1 (0.66)3 (1.57)—0.633Yes338 (98.83)150 (99.34)188 (98.43)——ACEIs or ARBs, $n$ (%)— $\chi^2 = 0.380$ 0.537No51 (14.91)20 (13.25)31 (16.23)—…Yes291 (85.09)131 (86.75)160 (83.77)—…β-blockers, $n$ (%)—42 (12.28)21 (13.91)21 (10.99)Yes300 (87.72)130 (86.09)170 (89.01)Statins, $n$ (%)…39 (11.4)16 (10.6)23 (12.04)No303 (88.6)135 (89.4)168 (87.96)Yes303 (88.6)135 (89.4)168 (87.96)No194 (56.73)95 (62.91)99 (51.83)Yes148 (43.27)56 (37.09)92 (48.17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Number of stents for the CTO vessel, mean (±SD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.26 (±1.18)            | 2.23 (±1.21)             | 2.28 (±1.15)               | t = -0.356                              | 0.722 |
| No4 (1.7)1 (0.66)3 (1.57)Indexter (0.57)Yes338 (98.83)150 (99.34)188 (98.43)5ACEIs or ARBs, $n$ (%)Image: (0.57) $\chi^2 = 0.380$ 0.537No51 (14.91)20 (13.25)31 (16.23)Image: (0.57)Yes291 (85.09)131 (86.75)160 (83.77)Image: (0.57)β-blockers, $n$ (%)Image: (0.57)160 (83.77)Image: (0.57)No42 (12.28)21 (13.91)21 (10.99)Image: (0.57)Yes300 (87.72)130 (86.09)170 (89.01)Image: (0.57)Statins, $n$ (%)Image: (0.57)303 (88.6)135 (89.4)168 (87.96)Image: (0.57)No303 (88.6)135 (89.4)168 (87.96)Image: (0.57)0.52No194 (56.73)95 (62.91)99 (51.83)Image: (0.57)0.52Yes148 (43.27)56 (37.09)92 (48.17)Image: (0.57)Image: (0.57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Complete revascularization, n (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                          |                            | _                                       | 0.633 |
| Yes338 (98.83)150 (99.34)188 (98.43)ACEIs or ARBs, $n$ (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 (1.17)                | 1 (0.66)                 | 3 (1.57)                   |                                         |       |
| ACEIs or ARBs, $n$ (%) $\chi^2 = 0.380$ $\chi^2 = 0.421$ $\chi^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 338 (98.83)             | 150 (99.34)              | 188 (98.43)                |                                         |       |
| No51 (14.91)20 (13.25)31 (16.23)IYes291 (85.09)131 (86.75)160 (83.77)I51 $\beta$ -blockers, $n$ (%)IIII1111No42 (12.28)21 (13.91)21 (10.99)II11Yes300 (87.72)130 (86.09)170 (89.01)II10Statins, $n$ (%)IIIIII101110Yes303 (88.6)135 (89.4)168 (87.96)IIIIIHypoglycenic drugs, $n$ (%)IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ACEIs or ARBs, $n$ (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                          |                            | $\chi^2 = 0.380$                        | 0.537 |
| Yes291 (85.09)131 (86.75)160 (83.77) $\beta$ -blockers, $n$ (%)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51 (14.91)              | 20 (13.25)               | 31 (16.23)                 |                                         |       |
| $\beta$ -blockers, $n$ (%) $\chi^2 = 0.421$ $\chi^2 = 0.421$ $0.516$ No         42 (12.28)         21 (13.91)         21 (10.99)             Yes         300 (87.72)         130 (86.09)         170 (89.01)             Statins, $n$ (%)           39 (11.4)         16 (10.6)         23 (12.04)             Yes         303 (88.6)         135 (89.4)         168 (87.96)              Hypoglycemic drugs, $n$ (%)          194 (56.73)         95 (62.91)         99 (51.83)              Yes         148 (43.27)         56 (37.09)         92 (48.17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 291 (85.09)             | 131 (86.75)              | 160 (83.77)                |                                         |       |
| No         42 (12.28)         21 (13.91)         21 (10.99)         Indext or state         Index or state         Index or state         Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | β-blockers, n (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                          |                            | $\chi^2 = 0.421$                        | 0.516 |
| Yes         300 (87.72)         130 (86.09)         170 (89.01) $\chi^2$ $\chi^2$ 0.80           Statins, n (%)         39 (11.4)         16 (10.6)         23 (12.04)         0.805           No         39 (11.4)         16 (10.6)         23 (12.04)         0           Yes         303 (88.6)         135 (89.4)         168 (87.96)         0           Hypoglycemic drugs, n (%)         - $\chi^2$ = 3.779         0.052           No         194 (56.73)         95 (62.91)         99 (51.83)         -           Yes         148 (43.27)         56 (37.09)         92 (48.17)         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42 (12.28)              | 21 (13.91)               | 21 (10.99)                 |                                         |       |
| Statins, $n$ (%) $\chi^2 = 0.061$ $\chi^2 = 0.061$ 0.805           No         39 (11.4)         16 (10.6)         23 (12.04)         6           Yes         303 (88.6)         135 (89.4)         168 (87.96)         6           Hypoglycemic drugs, $n$ (%) $\chi^2 = 3.779$ 0.052           No         194 (56.73)         95 (62.91)         99 (51.83)         6           Yes         148 (43.27)         56 (37.09)         92 (48.17)         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300 (87.72)             | 130 (86.09)              | 170 (89.01)                |                                         |       |
| No         39 (11.4)         16 (10.6)         23 (12.04) $\chi$ $\chi$ Yes         303 (88.6)         135 (89.4)         168 (87.96)              Hypoglycemic drugs, n (%) $\chi^2$ = 3.779         0.052           No         194 (56.73)         95 (62.91)         99 (51.83)             Yes         148 (43.27)         56 (37.09)         92 (48.17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Statins, n (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                          |                            | $\chi^2 = 0.061$                        | 0.805 |
| Yes         303 (88.6)         135 (89.4)         168 (87.96)         μ           Hypoglycemic drugs, n (%)                 0.052           No         194 (56.73)         95 (62.91)         99 (51.83)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39 (11.4)               | 16 (10.6)                | 23 (12.04)                 |                                         |       |
| Hypoglycemic drugs, n (%)         χ² = 3.779         0.052           No         194 (56.73)         95 (62.91)         99 (51.83)            Yes         148 (43.27)         56 (37.09)         92 (48.17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 303 (88.6)              | 135 (89.4)               | 168 (87.96)                |                                         |       |
| No         194 (56.73)         95 (62.91)         99 (51.83)         1           Yes         148 (43.27)         56 (37.09)         92 (48.17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hypoglycemic drugs, <i>n</i> (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                          |                            | $\chi^2 = 3.779$                        | 0.052 |
| Yes         148 (43.27)         56 (37.09)         92 (48.17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 194 (56.73)             | 95 (62.91)               | 99 (51.83)                 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 148 (43.27)             | 56 (37.09)               | 92 (48.17)                 |                                         |       |

SD, standard deviation; t, Student's t-test; t', Satterthwaite t-test;  $\chi^2$ , chi-squared test; -, Fisher's exact test; W, Wilcoxon rank-sum test; BMI, body mass index; LVEF, left ventricular ejection fraction.



TABLE 2 Clinical outcomes of CTO patients with good or poor CCC.

| Variables               | Total ( <i>N</i> = 342) | Good CCC ( <i>N</i> = 151) | Poor CCC ( <i>N</i> = 191) | Statistics        | Р       |
|-------------------------|-------------------------|----------------------------|----------------------------|-------------------|---------|
| MACCEs, $n$ (%)         |                         |                            |                            | $\chi^2 = 19.119$ | < 0.001 |
| No                      | 243 (71.05)             | 126 (83.44)                | 117 (61.26)                |                   |         |
| Yes                     | 99 (28.95)              | 25 (16.56)                 | 74 (38.74)                 |                   |         |
| All-cause death, n (%)  |                         |                            |                            | $\chi^2 = 0.498$  | 0.480   |
| No                      | 324 (94.74)             | 145 (96.03)                | 179 (93.72)                |                   |         |
| Yes                     | 18 (5.26)               | 6 (3.97)                   | 12 (6.28)                  |                   |         |
| Cardiac death, n (%)    |                         |                            |                            | $\chi^2 = 1.010$  | 0.315   |
| No                      | 325 (95.03)             | 146 (96.69)                | 179 (93.72)                |                   |         |
| Yes                     | 17 (4.97)               | 5 (3.31)                   | 12 (6.28)                  |                   |         |
| Non-fatal MI, n (%)     |                         |                            |                            | $\chi^2 = 15.031$ | < 0.001 |
| No                      | 264 (77.19)             | 132 (87.42)                | 132 (69.11)                |                   |         |
| Yes                     | 78 (22.81)              | 19 (12.58)                 | 59 (30.89)                 |                   |         |
| TVR, n (%)              |                         |                            |                            | $\chi^2 = 14.285$ | < 0.001 |
| No                      | 265 (77.49)             | 132 (87.42)                | 133 (69.63)                |                   |         |
| Yes                     | 77 (22.51)              | 19 (12.58)                 | 58 (30.37)                 |                   |         |
| Non-fatal stroke, n (%) |                         |                            |                            | $\chi^2 = 0.356$  | 0.550   |
| No                      | 327 (95.61)             | 146 (96.69)                | 181 (94.76)                |                   |         |
| Yes                     | 15 (4.39)               | 5 (3.31)                   | 10 (5.24)                  |                   |         |
| Stent thrombosis, n (%) |                         |                            |                            | $\chi^2 = 22.798$ | < 0.001 |
| No                      | 286 (83.63)             | 143 (94.7)                 | 143 (74.87)                |                   |         |
| Yes                     | 56 (16.37)              | 8 (5.3)                    | 48 (25.13)                 |                   |         |

 $\chi^2$ : chi-squared test.

were observed in CTO patients with MetS, with even significantly higher odds of MACCEs. This suggests that the CCC status of CTO patients and MetS may have a combined effect on MACCEs.

Our findings were consistent with previous studies on the impact of CCC status on the prognosis of CTO patients (15, 17, 18). CCC is

a beneficial prognostic factor (19). Collateral vessels provide an important alternative route for blood flow, especially in vessel occlusion, and are associated with improved outcomes and reduced ischemic injury (20). Conversely, poor collateralization has been related to adverse events such as myocardial infarction and



#### TABLE 3 Association of CCC with MACCEs in CTO patients.

| Variables        | Outcome/total (n) | Model 1           |         | Model 2           |         |  |  |
|------------------|-------------------|-------------------|---------|-------------------|---------|--|--|
|                  |                   | OR (95% CI)       | Р       | OR (95% CI)       | Р       |  |  |
| MACCEs           |                   |                   |         |                   |         |  |  |
| Good CCC         | 25/151            | Ref               |         | Ref               |         |  |  |
| Poor CCC         | 74/191            | 3.19 (1.90-5.35)  | < 0.001 | 3.33 (1.93-5.72)  | < 0.001 |  |  |
| All-cause death  |                   |                   |         |                   |         |  |  |
| Good CCC         | 6/151             | Ref               |         | Ref               |         |  |  |
| Poor CCC         | 12/191            | 1.62 (0.59-4.42)  | 0.346   | 1.52 (0.55-4.23)  | 0.421   |  |  |
| Cardiac death    |                   |                   |         |                   |         |  |  |
| Good CCC         | 5/151             | Ref               |         | Ref               |         |  |  |
| Poor CCC         | 12/191            | 1.96 (0.67-5.68)  | 0.217   | 1.82 (0.62-5.37)  | 0.276   |  |  |
| Non-fatal MI     |                   |                   |         |                   |         |  |  |
| Good CCC         | 19/151            | Ref               |         | Ref               |         |  |  |
| Poor CCC         | 59/191            | 3.11 (1.76–5.49)  | < 0.001 | 3.11 (1.73-5.58)  | < 0.001 |  |  |
| TVR              |                   |                   |         |                   |         |  |  |
| Good CCC         | 19/151            | Ref               |         | Ref               |         |  |  |
| Poor CCC         | 58/191            | 3.03 (1.71–5.36)  | < 0.001 | 3.06 (1.70-5.53)  | < 0.001 |  |  |
| Non-fatal stroke |                   |                   |         |                   |         |  |  |
| Good CCC         | 5/151             | Ref               |         | Ref               |         |  |  |
| Poor CCC         | 10/191            | 1.61 (0.54-4.82)  | 0.392   | 1.59 (0.53-4.77)  | 0.412   |  |  |
| Stent thrombosis |                   |                   |         |                   |         |  |  |
| Good CCC         | 8/151             | Ref               |         | Ref               |         |  |  |
| Poor CCC         | 48/191            | 6.00 (2.74–13.14) | <0.001  | 6.14 (2.76–13.65) | < 0.001 |  |  |

Ref, reference. Model 1: crude model. Model 2: adjusted for MI history, the number of occluded vessels, ACEIs or ARBs, and statin use.

| Subgroups           | Outcome/total | Model 1                  |         | Model 2                  |         |  |  |  |
|---------------------|---------------|--------------------------|---------|--------------------------|---------|--|--|--|
|                     |               | OR (95% CI) <sup>a</sup> | Р       | OR (95% CI) <sup>a</sup> | Р       |  |  |  |
| Non-MetS            |               |                          |         |                          |         |  |  |  |
| MACCEs              | N = 33/98     | 2.45 (1.13-5.30)         | 0.023   | 2.54 (1.14-5.64)         | 0.022   |  |  |  |
| All-cause mortality | N = 6/98      | 1.33 (0.32-5.50)         | 0.697   | 1.34 (0.31-5.80)         | 0.692   |  |  |  |
| Cardiac death       | N = 6/98      | 1.33 (0.32-5.50)         | 0.697   | 1.34 (0.31-5.80)         | 0.692   |  |  |  |
| Non-fatal MI        | N = 25/98     | 2.09 (0.90-4.84)         | 0.084   | 2.09 (0.90-4.85)         | 0.087   |  |  |  |
| TVR                 | N = 28/98     | 2.80 (1.18-6.62)         | 0.019   | 2.93 (1.20-7.13)         | 0.018   |  |  |  |
| Non-fatal stroke    | N = 5/98      | 1.67 (0.31-8.86)         | 0.549   | 1.66 (0.31-8.86)         | 0.551   |  |  |  |
| Stent thrombosis    | N = 22/98     | 3.42 (1.22-9.56)         | 0.019   | 3.45 (1.22-9.76)         | 0.020   |  |  |  |
| MetS                |               |                          |         |                          |         |  |  |  |
| MACCEs              | N = 41/93     | 4.11 (2.03-8.31)         | < 0.001 | 4.21 (2.05-8.65)         | < 0.001 |  |  |  |
| All-cause mortality | N = 6/93      | 1.93 (0.47-7.97)         | 0.363   | 1.97 (0.47-8.26)         | 0.354   |  |  |  |
| Cardiac death       | N = 6/93      | 2.93 (0.58-14.93)        | 0.195   | 2.92 (0.57-14.92)        | 0.197   |  |  |  |
| Non-fatal MI        | N = 34/93     | 4.44 (2.03-9.70)         | < 0.001 | 4.44 (2.01-9.83)         | < 0.001 |  |  |  |
| TVR                 | N = 30/93     | 3.29 (1.53-7.09)         | 0.002   | 3.28 (1.51-7.11)         | 0.003   |  |  |  |
| Non-fatal stroke    | N = 5/93      | 1.59 (0.37-6.87)         | 0.534   | 1.60 (0.36-7.05)         | 0.532   |  |  |  |
| Stent thrombosis    | N = 26/93     | 10.87 (3.15-37.45)       | <0.001  | 10.80 (3.11-37.54)       | < 0.001 |  |  |  |

TABLE 4 Association of coronary collateral circulation with MACCEs and their components in patients with or without MetS.

<sup>a</sup>Good CCC as the reference.

Model 1: crude model. Model 2: adjusted for myocardial infarction and the number of occluded vessels.

TABLE 5 Association of coronary collateral circulation with MACCEs in different DM and syntax score subgroups.

| Subgroups           | Outcome/total | Model 1                  |         | Model 2                  |         |  |  |
|---------------------|---------------|--------------------------|---------|--------------------------|---------|--|--|
|                     |               | OR (95% CI) <sup>a</sup> | Р       | OR (95% CI) <sup>a</sup> | Р       |  |  |
| DM                  |               |                          |         |                          |         |  |  |
| MACCEs              | N = 36/94     | 3.60 (1.69-8.28)         | 0.001   | 4.42 (1.96-10.97)        | 0.001   |  |  |
| All-cause mortality | N = 6/94      | 2.25 (0.50-15.69)        | 0.330   | 2.81 (0.58-21.12)        | 0.237   |  |  |
| Cardiac death       | N = 6/94      | 4.57 (0.76-87.37)        | 0.164   | 5.25 (0.84-102.25)       | 0.134   |  |  |
| Non-fatal MI        | N = 27/94     | 3.51 (1.50-9.28)         | 0.006   | 4.12 (1.70-11.39)        | 0.003   |  |  |
| TVR                 | N = 27/94     | 2.64 (1.19-6.37)         | 0.022   | 3.09 (1.34-7.83)         | 0.012   |  |  |
| Non-fatal stroke    | N = 5/94      | 1.85 (0.39-13.22)        | 0.469   | 1.86 (0.38-13.39)        | 0.470   |  |  |
| Stent thrombosis    | N = 21/94     | 9.49 (2.65-60.79)        | 0.003   | 10.98 (2.97-71.98)       | 0.002   |  |  |
| Non-DM              |               |                          |         |                          |         |  |  |
| MACCEs              | N = 38/97     | 2.92 (1.49-5.97)         | 0.002   | 2.89 (1.44-6.05)         | 0.004   |  |  |
| All-cause mortality | N = 6/97      | 1.30 (0.36-5.25)         | 0.691   | 1.14 (0.30-4.70)         | 0.844   |  |  |
| Cardiac death       | N = 6/97      | 1.30 (0.36-5.25)         | 0.691   | 1.14 (0.30-4.70)         | 0.844   |  |  |
| Non-fatal MI        | N = 32/97     | 2.91 (1.42-6.33)         | 0.005   | 2.86 (1.37-6.30)         | 0.006   |  |  |
| TVR                 | N = 31/97     | 3.43 (1.61-7.86)         | 0.002   | 3.30 (1.53-7.65)         | 0.003   |  |  |
| Non-fatal stroke    | N = 5/97      | 1.45 (0.34-7.24)         | 0.619   | 1.55 (0.36-7.86)         | 0.561   |  |  |
| Stent thrombosis    | N = 27/97     | 4.95 (2.05-13.90)        | 0.001   | 4.83 (1.97-13.74)        | 0.001   |  |  |
| Syntax score <23    |               |                          |         |                          |         |  |  |
| MACCEs              | N = 50/134    | 3.01 (1.67-5.61)         | < 0.001 | 2.97 (1.62-5.64)         | 0.001   |  |  |
| All-cause mortality | N = 6/134     | 1.75 (0.45-8.44)         | 0.436   | 1.64 (0.41-8.01)         | 0.500   |  |  |
| Cardiac death       | N = 7/134     | 2.06 (0.56-9.72)         | 0.304   | 1.94 (0.52-9.25)         | 0.350   |  |  |
| Non-fatal MI        | N = 40/134    | 2.63 (1.40-5.14)         | 0.003   | 2.53 (1.34-5.00)         | 0.005   |  |  |
| TVR                 | N = 39/134    | 2.96 (1.54-5.97)         | 0.002   | 2.86 (1.47-5.82)         | 0.003   |  |  |
| Non-fatal stroke    | N = 18/57     | 7.85 (2.06-51.64)        | 0.008   | 11.49 (2.64-89.60)       | 0.005   |  |  |
| Stent thrombosis    | N = 30/134    | 5.24 (2.23-14.42)        | < 0.001 | 5.52 (2.30-15.49)        | < 0.001 |  |  |
| Syntax score ≥23    |               |                          |         |                          |         |  |  |
| MACCEs              | N = 24/57     | 3.64 (1.37-10.91)        | 0.013   | 3.83 (1.43-11.72)        | 0.011   |  |  |
| All-cause mortality | N = 6/57      | 1.29 (0.32-6.46)         | 0.728   | 1.31 (0.32-6.70)         | 0.717   |  |  |
| Cardiac death       | N = 5/57      | 1.63 (0.33–11.87)        | 0.570   | 1.83 (0.35-14.12)        | 0.502   |  |  |
| Non-fatal MI        | N = 19/57     | 5.50 (1.69-24.90)        | 0.010   | 5.89 (1.77-27.28)        | 0.009   |  |  |
| TVR                 | N = 19/57     | 3.10 (1.10-10.21)        | 0.043   | 3.45 (1.19-11.89)        | 0.032   |  |  |
| Non-fatal stroke    | N = 2/57      | 1.27 (0.12-27.99)        | 0.846   | 1.37 (0.12-31.04)        | 0.805   |  |  |
| Stent thrombosis    | N = 18/57     | 7.85 (2.06-51.64)        | 0.008   | 11.49 (2.64-89.60)       | 0.005   |  |  |

Model 1: crude model. Model 2: adjusted for myocardial infarction, the number of occluded vessels, ACEIs or ARBs, and statins for the DM subgroup. Adjusted for myocardial infarction, ACEIs or ARBs, and statins for the Syntax score. <sup>a</sup>Good CCC as the reference. mortality (21). In contrast, Li et al. (22) reported that good CCC was not associated with a lower risk of cardiac death or MACCEs in CTO patients. Some factors, such as coronary steal, microcirculation dilation, and endothelial dysfunction, may offset the potential benefits of collateral vessels, thus leading to inadequate oxygen and flow supply through collateral vessels, concomitant with an elevated predisposition to arrhythmias in patients with good CCC. Future studies are needed to clarify the relationship between CCC and MACCEs in CTO patients.

In addition, the impact of poor CCC on MACCEs was particularly pronounced in patients with MetS. MetS constitutes a constellation of risk factors, including central obesity, insulin resistance, hypertension, and dyslipidemia, and is associated with poor coronary collateralization and increased cardiovascular risk (6, 23). Our results revealed that poor CCC in CTO patients with MetS was associated with higher odds of MACCEs and related events.

The mechanisms underlying the association between poor CCC and MACCEs in CTO patients with MetS involve complex pathophysiological interactions. In patients undergoing CTO-PCI, poor CCC may reflect a higher burden of coronary artery burden, with impaired development of collateral vessels unable to sufficiently compensate for the occluded vessel (24). This impaired collateralization may result from genetic predisposition, microvascular dysfunction, or inadequate release of pro-angiogenic factors (25, 26). Inadequate collateral support resulted in ongoing myocardial ischemia, impaired myocardial function, and increased susceptibility to adverse events (27, 28). Furthermore, consistent with our results, stent thrombosis was more prevalent in poor CCC, as collateral flow has been shown to protect against thrombus formation and facilitate myocardial reperfusion (29).

In patients with MetS, poor CCC may further exacerbate the cardiovascular effects associated with the syndrome. The presence of MetS is associated with endothelial dysfunction, chronic inflammation, and a prothrombotic state, all of which may contribute to impaired collateral vessel formation and function (30, 31). The presence of poor CCC in MetS patients may signify an inability to adequately respond to ischemic insults, leading to an increased risk of adverse events (32). There may be a combined effect between MetS and CCC.

In CTO patients with DM or a Syntax score  $\geq$ 23, poor CCC was also related to high odds of MACCEs. It is well established that individuals with diabetes exhibit impaired collateral vessel development due to factors such as endothelial dysfunction, abnormal angiogenesis, and impaired growth factor signaling (33). These factors collectively contribute to reduced collateral vessel formation, resulting in compromised vascular supply to the ischemic myocardium. In the context of CTO patients with diabetes, this impaired collateralization may further aggravate the ischemic burden, leading to a higher risk of adverse cardiovascular events. A higher Syntax score indicates more severe and complex coronary artery disease, indicating the presence of multiple lesions or diffuse disease. In patients with a Syntax score  $\geq 23$ , the extent of atherosclerotic burden is substantial, potentially leading to impaired collateral vessel formation and poorer perfusion to the myocardium. Moreover, the high complexity of lesions in this subgroup may increase the risk of stent thrombosis and TVR.

In patients who underwent CTO-PCI, the extent of CTO disease, blood glucose, blood lipids, and blood pressure should be monitored closely. Identifying patients with poor CCC following CTO-PCI and those with MetS could contribute to risk stratification in patients and guide targeted therapeutic interventions. More attention should be paid to CTO patients with DM and a Syntax score  $\geq$ 23. Strategies aimed at enhancing CCC, such as physical activity, pharmacological interventions, and targeted revascularization strategies, may prove beneficial in these high-risk patient populations. In addition, close monitoring and aggressive management of modifiable risk factors may be warranted for individuals with poor CCC and MetS to mitigate their heightened risk of MACCEs and related events.

The current study has several limitations that need to be considered. First, the study population consisted of a singlecenter cohort, which may limit the generalizability of our findings. Multicenter, large-sample studies are needed in the future. Moreover, there were potential confounding factors that were not accounted for in this analysis, such as medication and calcification of blood vessels. Finally, clinical follow-up was relatively short, and the long-term prognostic relationship between CCC, MetS, and MACCEs was not fully investigated.

# Conclusion

Poor CCC has been associated with an increased risk of MACCEs in CTO patients, particularly those with MetS. Comprehensive risk evaluation and individualized management strategies are essential for patients with poor CCC. Further prospective multicenter studies are needed to confirm our results and investigate potential therapeutic interventions.

# Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors without undue reservation.

# Ethics statement

The studies involving humans were approved by the People's Hospital of Liaoning Province. The studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their written informed consent to participate in this study.

# Author contributions

YS: Conceptualization, Project administration, Supervision, Writing - original draft, Writing - review & editing. BZ: Data curation, Formal Analysis, Investigation, Methodology, Writing – review & editing. XinZ: Formal Analysis, Funding acquisition, Methodology, Project administration, Writing – review & editing. XiaZ: Data curation, Formal Analysis, Investigation, Methodology, Writing – review & editing. WB: Data curation, Formal Analysis, Investigation, Methodology, Writing – review & editing. HB: Data curation, Formal Analysis, Investigation, Methodology, Writing – review & editing. BL: Conceptualization, Project administration, Writing – original draft, Writing – review & editing.

# Funding

The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.

# References

1. Khatri J, Abdallah M, Ellis S. Management of coronary chronic total occlusion. Cleve Clin J Med. (2017) 84:27-38. doi: 10.3949/ccjm.84.s3.03

2. Kearney K, Hira RS, Riley RF, Kalyanasundaram A, Lombardi WL. Update on the management of chronic total occlusions in coronary artery disease. *Curr Atheroscler Rep.* (2017) 19:19. doi: 10.1007/s11883-017-0655-0

3. Azzalini L, Karmpaliotis D, Santiago R, Mashayekhi K, Di Mario C, Rinfret S, et al. Contemporary issues in chronic total occlusion percutaneous coronary intervention. *JACC Cardiovasc Interv.* (2022) 15:1–21. doi: 10.1016/j.jcin.2021. 09.027

4. Cetin MS, Ozcan Cetin EH, Balcı KG, Aydin S, Ediboglu E, Bayraktar MF, et al. The association between whole blood viscosity and coronary collateral circulation in patients with chronic total occlusion. *Korean Circ J*. (2016) 46:784–90. doi: 10.4070/kcj.2016.46.6.784

5. Wu K, Huang Z, Zhong Z, Liao H, Zhou Y, Luo B, et al. Predictors, treatment, and long-term outcomes of coronary perforation during retrograde percutaneous coronary intervention via epicardial collaterals for recanalization of chronic coronary total occlusion. *Catheter Cardiovasc Interv.* (2019) 93:800–9. doi: 10.1002/ccd.28093

6. Liu T, Wu Z, Liu J, Lv Y, Li W. Metabolic syndrome and its components reduce coronary collateralization in chronic total occlusion: an observational study. *Cardiovasc Diabetol.* (2021) 20:104. doi: 10.1186/s12933-021-01297-4

7. Li X, Zhai Y, Zhao J, He H, Li Y, Liu Y, et al. Impact of metabolic syndrome and its components on prognosis in patients with cardiovascular diseases: a meta-analysis. *Front Cardiovasc Med.* (2021) 8:704145. doi: 10.3389/fcvm.2021.704145

8. Mashaly A, Rha S-W, Choi BG, Baek MJ, Ryu YG, Choi SY, et al. Impact of diabetes mellitus on 5-year clinical outcomes in patients with chronic total occlusion lesions. *Coron Artery Dis.* (2018) 29:119. doi: 10.1097/MCA. 00000000000562

9. Zhao S, Chen Y, Wang Q, Zhu B, Wei Z, Wang Z, et al. Benefits of successful percutaneous coronary intervention in chronic total occlusion patients with diabetes. *Cardiovasc Diabetol.* (2022) 21:271. doi: 10.1186/s12933-022-01708-0

10. Zhu Y, Meng S, Chen M, Liu K, Jia R, Li H, et al. Long-term prognosis of chronic total occlusion treated by successful percutaneous coronary intervention in patients with or without diabetes mellitus: a systematic review and meta-analysis. *Cardiovasc Diabetol.* (2021) 20:29. doi: 10.1186/s12933-021-01223-8

11. Tsai C-T, Huang W-C, Teng H-I, Tsai Y-L, Lu T-M. Long term clinical impact of successful recanalization of chronic total occlusion in patients with and without type 2 diabetes mellitus. *Cardiovasc Diabetol.* (2020) 19:119. doi: 10.1186/s12933-020-01093-6

12. Yilmaz MB, Caldir V, Guray Y, Guray U, Altay H, Demirkan B, et al. Relation of coronary collateral vessel development in patients with a totally occluded right coronary artery to the metabolic syndrome. *Am J Cardiol.* (2006) 97:636–9. doi: 10. 1016/j.amjcard.2005.09.103

13. Ybarra LF, Rinfret S, Brilakis ES, Karmpaliotis D, Azzalini L, Grantham JA, et al. Definitions and clinical trial design principles for coronary artery chronic total occlusion therapies: CTO-ARC consensus recommendations. *Circulation*. (2021) 143:479–500. doi: 10.1161/CIRCULATIONAHA.120.046754

# Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

#### Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

14. Ebrahimi H, Emamian MH, Khosravi A, Hashemi H, Fotouhi A. Comparison of the accuracy of three diagnostic criteria and estimating the prevalence of metabolic syndrome: a latent class analysis. *J Res Med Sci.* (2019) 24:108. doi: 10.4103/jrms. JRMS\_858\_18

15. Yang ZK, Shen Y, Dai Y, Wang XQ, Hu J, Ding FH, et al. Impact of coronary collateralization on long-term clinical outcomes in type 2 diabetic patients after successful recanalization of chronic total occlusion. *Cardiovasc Diabetol.* (2020) 19:59. doi: 10.1186/s12933-020-01033-4

16. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018). *Circulation*. (2018) 138:e618–51. doi: 10.1161/CIR.00000000000617

17. Allahwala UK, Kott K, Bland A, Ward M, Bhindi R. Predictors and prognostic implications of well-matured coronary collateral circulation in patients with a chronic total occlusion (CTO). *Int Heart J.* (2020) 61:223–30. doi: 10.1536/ihj.19-456

 Wang B, Han Y-L, Li Y, Jing Q-M, Wang S-L, Ma Y-Y, et al. Coronary collateral circulation: effects on outcomes of acute anterior myocardial infarction after primary percutaneous coronary intervention. *J Geriatr Cardiol*. (2011) 8:93–8. doi: 10.3724/SP. J.1263.2011.00093

19. Seiler C, Meier P. Historical aspects and relevance of the human coronary collateral circulation. *Curr Cardiol Rev.* (2014) 10:2–16. doi: 10.2174/1573403×113099990028

20. Cipolla MJ. Therapeutic induction of collateral flow. *Transl Stroke Res.* (2023) 14:53–65. doi: 10.1007/s12975-022-01019-2

21. Allahwala UK, Nour D, Bhatia K, Ward MR, Lo S, Weaver JC, et al. Prognostic impact of collaterals in patients with a coronary chronic total occlusion: a meta-analysis of over 3,000 patients. *Catheter Cardiovasc Interv.* (2021) 97:E771–7. doi: 10.1002/ccd.29348

22. Li Z, Wang Y, Wu S, Xiao J, Guo L, Meng S, et al. Good coronary collateral circulation is not associated with better prognosis in patients with chronic total occlusion, regardless of treatment strategy. *Hellenic J Cardiol.* (2023) 69:9–15. doi: 10.1016/j.hjc.2022.12.001

23. Mouquet F, Cuilleret F, Susen S, Sautière K, Marboeuf P, Ennezat PV, et al. Metabolic syndrome and collateral vessel formation in patients with documented occluded coronary arteries: association with hyperglycaemia, insulin-resistance, adiponectin and plasminogen activator inhibitor-1. *Eur Heart J.* (2009) 30:840–9. doi: 10.1093/eurheartj/ehn569

24. Allahwala UK, Khachigian LM, Nour D, Ridiandres A, Billah M, Ward M, et al. Recruitment and maturation of the coronary collateral circulation: current understanding and perspectives in arteriogenesis. *Microvasc Res.* (2020) 132:104058. doi: 10.1016/j.mvr.2020.104058

25. Stoller M, Seiler C. Salient features of the coronary collateral circulation and its clinical relevance. *Swiss Med Wkly.* (2015) 145:w14154. doi: 10.4414/smw.2015.14154

26. Rocic P. Why is coronary collateral growth impaired in type II diabetes and the metabolic syndrome? *Vascul Pharmacol.* (2012) 57:179–86. doi: 10.1016/j.vph.2012.02.001

27. Seiler C. Assessment and impact of the human coronary collateral circulation on myocardial ischemia and outcome. *Circ Cardiovasc Interv.* (2013) 6:719–28. doi: 10. 1161/CIRCINTERVENTIONS.113.000555

28. Ozdemir S, Barutcu A, Aksit E, Duygu A, Ozturk FK. Contradictory effect of coronary collateral circulation on regional myocardial perfusion that assessed by

quantitative myocardial perfusion scintigraphy. Cardiol Res. (2021) 12:193-200. doi: 10.14740/cr1262

29. Vural A, Kurt D, Karagöz A, Günaydın ZY. Well-developed coronary collateral circulation is associated with higher thrombus burden in the setting of ST-segment elevation myocardial infarction. *Tex Heart Inst J.* (2022) 49:e217574. doi: 10.14503/THIJ-21-7574

30. Nair J, Kakkar VV, Shanker J. Comparative analysis of inflammatory gene expression levels in metabolic syndrome & coronary artery disease. *Indian J Med Res.* (2017) 145:777–85. doi: 10.4103/ijmr.IJMR\_1678\_14

31. Jia G, Hill MA, Sowers JR. Vascular endothelial mineralocorticoid receptors and epithelial sodium channels in metabolic syndrome and related cardiovascular disease. *J Mol Endocrinol.* (2023) 71:e230066. doi: 10.1530/JME-23-0066

32. Chilian WM, Penn MS, Pung YF, Dong F, Mayorga M, Ohanyan V, et al. Coronary collateral growth—back to the future. *J Mol Cell Cardiol.* (2012) 52:905–11. doi: 10.1016/j.yjmcc.2011.12.006

33. Waltenberger J. Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. *Cardiovasc Res.* (2001) 49:554–60. doi: 10.1016/s0008-6363(00)00228-5