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Coronary microvascular
dysfunction in autoimmune
rheumatic diseases: beyond
coronary flow velocity reserve
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Elisabetta Zanatta1,2 , Giovanni Civieri1 , Sabino Iliceto1 and
Francesco Tona1*
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Autoimmune rheumatic diseases (ARDs) are a heterogeneous group of disorders
characterized by an inappropriate immune reactivity against different body
tissues. Patients affected by ARDs present increased cardiovascular morbidity
and mortality, which significantly impacts long-term prognosis. Endothelial
dysfunction, inflammation, oxidative stress, and autoimmunity are strictly
involved in atherosclerosis progression and coronary microvascular
dysfunction (CMD), both of which contribute to increased cardiovascular risk.
CMD represents the inability of the coronary microvasculature to respond with
vasodilation to increased cardiac metabolic demands and can be assessed by
non-invasive and invasive imaging tests. Coronary flow velocity reserve
assessed by echocardiography has been demonstrated to accurately identify
ARDs patients with CMD. However, stress cardiac magnetic resonance (CMR)
accurately assesses myocardial ischemia, perfusion, and viability in ARDs
patients. The myocardial perfusion reserve index (MPRI) is a robust
semiquantitative imaging marker that represents the vasodilatory capacity of
the coronary microcirculation in response to a vasodilator stress. In the
absence of significant coronary stenosis, ARDs patients revealed a reduced
MPRI in comparison with the general population, regardless of the presence
of myocardial fibrosis. Identification of CMD in asymptomatic patients could
be crucial to precociously start targeted medical therapy, avoiding major
adverse cardiac events in this clinical setting. This review aims to summarize
the current evidence regarding CMD in ARDs patients, focusing on the role of
stress CMR and the promising myocardial perfusion analysis.
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major adverse cardiovascular event; MBF, myocardial blood flow; MPRI, myocardial perfusion reserve index;
NO, nitric oxide; Nox, NADPH oxidases; PET, positron emission tomography; RA, rheumatoid arthritis;
SLE, systemic lupus erythematous; SPECT, single-photon emission computed tomography; SS, systemic
sclerosis; TIMI, thrombolysis in myocardial infarction; TNF-α, tumor necrosis factor-α.
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Autoimmune rheumatic diseases

Autoimmune rheumatic diseases (ARDs) include a

heterogeneous group of disorders characterized by an impairment

of tolerance to self-antigens and/or immunoregulation, responsible

for an inappropriate immune reactivity against different body

tissues (1). In particular, ARDs include rheumatoid arthritis

(RA), spondyloarthropathies, systemic lupus erythematosus (SLE),

systemic vasculitis, inflammatory cardiomyopathies, mixed

connective tissue diseases, and systemic sclerosis (SS). In recent

years, the introduction of novel targeted therapy for ARDs has

reduced disease-related mortality, although in the absence of a

relevant impact on long-term prognosis. In fact, although the

average 5-year survival rate in ARDs patients under optimized

treatment is currently similar to the general population (2), the

long-term life expectancy is significantly lower (3). Interestingly,

the reduced long-term life expectancy cannot be attributed to the

progression of rheumatic illness but to cardiovascular diseases

(CVD), which significantly impact the patient’s prognosis (4). In

ARDs patients, CVD could be responsible for not only accelerated

atherosclerosis but also coronary microvascular dysfunction (CMD)

(5). Moreover, CVD in ARDs patients could be asymptomatic or

with few symptoms for a long time and become clinically overt

after many years with a poor prognosis (6).
Coronary microvascular dysfunction

Coronary microcirculation guarantees the correct blood flow,

according to the oxygen requirement, by regulating the resistance

of the vascular component (7). The large epicardial coronary

arteries (500 µm–5 mm in diameter) are conductance vessels,

offering very little resistance. Their main role, secondary to the

endothelium-dependent dilatation, is to transport adequate blood

quantity. Conversely, pre-arterioles and arterioles control the

coronary blood flow, representing the coronary microvasculature.

In particular, the epicardial pre-arterioles (100–500 µm in

diameter) play as a “pressure controller” at the origin of the

arterioles and respond to flow-related stimuli with endothelium-

dependent vasoreactivity. The intramyocardial arterioles

(<100 µm in diameter) have the highest resistance and,

depending on the vessel size, respond by myogenic control or

metabolites. In fact, medium-sized arterioles (40–100 µm in

diameter) present stretch receptors in the vascular smooth

muscle cells and react to pressure variations, leading to

vasoconstriction when the intraluminal pressure increases and,

conversely, to vasodilation when the pressure decreases. On the

contrary, the small arterioles (<40 µm in diameter) are responsive

to the intramyocardial concentration of metabolites. Therefore,

an increased metabolic activity leads to vasodilation, responsible

for pressure reduction in medium-sized arterioles, myogenic

dilation, and subsequently increased flow upstream. Finally, in

response to the endothelium-dependent vasodilation, pre-

arteriole and epicardial coronary artery dilation occurs (8).

Capillaries and venules represent the final part of the coronary
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circulation, and, as well as epicardial arteries, they act as

capacitance vessels. This final part of the coronary circulation is

crucial for the exchange of oxygen, nutrients, and metabolites

between blood and myocardial tissue. Morpho-functional

abnormalities of the coronary microcirculation could lead to

inadequate blood and oxygen transport, contributing to the

pathogenesis of myocardial ischemia (9).

CMD is due to the incompetence of the coronary

microvasculature to respond to the increased cardiac metabolic

requests (10). Thus, it could be due to the inability to increase

coronary blood flow because of functional impairment, the

structural damage of the coronary microcirculation (vasodilatory

abnormality), and/or the reduction of coronary blood flow

(coronary microvascular vasospasm) (8). Thus, this condition

could be secondary to cardiac or systemic conditions,

responsible for left ventricular (LV) hypertrophy (hypertrophic

cardiomyopathy, aortic stenosis) (11), or to diseases related to

chronic inflammation (10, 12, 13).

Clinically, patients with CMD present exercise-related angina,

evidence of ischemia in non-invasive tests, and either no stenosis

or no functionally relevant coronary stenosis (14, 15). Myocardial

contractility evaluation could help clinicians in the differential

diagnosis between coronary artery disease (CAD) and CMD. An

epicardial coronary stenosis, in fact, typically produces a

localized myocardial perfusion impairment with a segmental

reduction of LV contractility. Conversely, in patients with

CMD, the myocardial perfusion impairment is usually global

without segmental wall motion abnormalities, because it is not

related to a single coronary artery (16). Consequently, CMD

patients present a preserved or slightly reduced LV systolic

function. Although the absence of obstructive epicardial

coronary stenosis, CMD, more frequent in female patients,

represents an important cause of myocardial ischemia and is

associated with a greater risk for major adverse cardiovascular

events (MACEs) (17–20). Nevertheless, due to the similarity

with angina symptoms, microvascular angina could be

diagnosed only after the exclusion of an obstructive epicardial

coronary stenosis.
Mechanisms contributing to CMD
in ARDs

The long-term prognosis of ARDs patients is closely related to

CVD. As reported by Shinomiya et al. (21) in a Japanese

population, the prognostic impact of CVD changed dramatically

during the last years, making malignancy the most common

cause of mortality in RA patients. Similarly, the increased CV

risk documented in patients with ankylosing spondylitis, psoriatic

arthritis, and SLE (22–24) has not been completely attributed to

CAD. Thus, CMD has been advocated as a possible explanation

of the increased CV risk in ARDs patients, sharing some

pathophysiological determinants with ischemic disease.

The pathogenesis of CMD in ARDs has not been fully

addressed and remains a debated topic of investigation (8). The

clinical inflammation burden in arthritis patients demonstrated
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to be associated with microvascular flow impairment (25).

Accordingly, the use of anti-inflammatory biological therapies,

such as antitumor necrosis factor-α (TNF-α) treatments, has

been shown to improve coronary and peripheral microvascular

dysfunction (26). On the other side, although influenced by the

observational nature of the study and the inflammation burden

evaluation, the longitudinal Dudley Rheumatoid Arthritis

Comorbidity Cohort (DRACCO) study did not evidence any

correlation between cumulative inflammatory burden and

endothelial function in a 6-year follow-up (27). In addition, a

recent meta-analysis (28) across over 20 studies revealed that

coronary flow reserve (CFR) in ARDs, although lower than that

in the general population, seems not to be related to

inflammation, dyslipidemia, obesity, age, or arterial blood

pressure. Therefore, the role of inflammation in determining

CMD in ARDs is still controversial.

Endothelial dysfunction represents the primum movens

in the microcirculatory impairment, as well as in the

atherosclerotic process, and it is due to an imbalance between

vasodilation and vasoconstrictive release factors (8, 29).

Endothelial dysfunction and arterial stiffness have been

described in many chronic inflammatory conditions, including

inflammatory bowel disease and psoriasis (30, 31). Endothelial

dysfunction is common in ARDs patients, playing a crucial

role in both macro- and microvascular dysfunction (10, 32,

33). Systemic endothelial dysfunction is closely related to both

reduced availability of nitric oxide (NO) and increased

production of reactive oxygen species, secondary to oxidative

stress (34). In fact, increased levels of inflammatory mediators,

such as interleukin-17 (IL-17), interferon-γ (INF-γ), and TNF-

α, activated NADPH oxidases (Nox) enzymes and increased

reactive oxygen species production, acting a pivotal role in the

pathogenesis of arthritis and endothelial dysfunction (34).

Haruna et al. (35) demonstrated that angiotensin receptor

blockers inhibit Nox expression, improving endothelial

function in animal models of arthritis. Therefore, oxidative

stress could be responsible for both local and systemic RA-

related vascular damage.

In addition to the pathogenesis of ARDs, T-cells, natural killer

(NK) cells, and monocytes play a role also in endothelial

dysfunction and CMD in rheumatic diseases (36). NK cells

promote vasoconstriction of arterioles and could dysregulate

CD28 null (CD4+ and CD8+), producing pro-inflammatory

cytokines (TNF-α, INF-γ, IL-2) involved in oxidative stress,

endothelial dysfunction, and arteriolar rarefaction (37).

Moreover, lymphocyte activation could determine oxidative

stress, playing a key role in the pathogenesis and vascular

dysfunction of ARDs patients. T-cells and antigen-presenting

cells express Nox2 that mediates their activation and immune

functions (38). Finally, overexpression of pro-inflammatory

cytokines (IL-18, IL-33, and TNF-α) has been identified in

RA patients with vascular impairment, confirming the key

role in both the inflammatory process and the development

of endothelial dysfunction (39). Finally, an imbalance in

sympathetic/parasympathetic activation can determine motility

dysfunction, acting directly on vascular smooth cells (40).
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Assessment of coronary microvascular
dysfunction

Based on the functional assessment of the coronary arteries,

CMD diagnosis could be performed with invasive and non-

invasive methods [(14, 15), Figure 1]. Echocardiography

demonstrated to properly evaluate the endothelium-independent

microvascular function with the assessment of coronary flow

velocity reserve (CFVR) on the left anterior descending artery

(41). CFR, first introduced by Gould in 1974, describes the

ability of coronary flow to respond with dilation to an increase

in metabolic requirements (42, 43). As a dimensionless value,

CFVR is defined by the ratio between hyperemic and basal

diastolic coronary blood flow velocity (44). During stress

(physical or pharmacological-induced with vasodilators), this

ratio may increase up to five times the resting values (43). This

crucial parameter has been demonstrated to be strongly related

to coronary artery lesion severity angiographically detected and

intracoronary Doppler flow wire measurements in ischemic heart

disease (41). A value of CFVR ≤2.5 is considered abnormal, and

it could be due to an epicardial coronary stenosis or myocardial

bridge and to CMD (45, 46). In particular, in the absence of an

epicardial coronary artery stenosis or bridge, a reduced CFVR is

an expression of CMD, and it could be related to (1) a reduced

peripheral resistance in basal condition, responsible for an

increased coronary flow at baseline and/or (2) high hyperemic

peripheral resistance that reducing the arteriolar vasodilatory

capability (7). In ARDs patients, a CFVR of ≤2.5 has been

demonstrated to correctly identify CMD in the absence of

epicardial coronary stenosis (47, 48).

Cardiac magnetic resonance (CMR) represents a non-invasive

method to detect chronic perfusion defects, inducible ischemia,

and CMD with vasodilator administration (49).

Single-photon emission computed tomography (SPECT)

evaluates the differences in the radionuclide distribution, in the

different regions of myocardium, before and after stress (50).

Thus, SPECT could detect microvascular impairment through the

identification of the relative blood perfusion to the different

regions of the myocardium. Moreover, due to the limitations of

radiotracers, characterized by low first-pass extraction, significant

roll-off uptake at higher flow rates and intestinal uptake, and

poor camera sensitivity and temporal resolution, the use of

SPECT is quite limited (51). Conversely, positron emission

tomography (PET) with 18 F-fluorodeoxyglucose can determine

the absolute myocardial blood flow (ml/gr/min), allowing an

accurate and precise CMD assessment (50). The myocardial

perfusion reserve assessed by PET has been demonstrated to be

accurate and reproducible (52, 53). In addition, this parameter

has been correlated to adverse outcomes, suggesting a possible

prognostic role in the risk stratification of ischemic patients (54).

Due to the possibility of detecting and monitoring myocardial

inflammation, the combined use of PET-CMR resulted

particularly useful in inflammatory cardiomyopathy, such as

sarcoidosis (55). However, similarly to SPECT, PET has some

limitations as well regarding radiation exposure, radiotracer cost,

and diffusion of the exam (56).
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FIGURE 1

Non-invasive assessment of coronary microvascular dysfunction.

Cecere et al. 10.3389/fcvm.2024.1372703
Finally, perfusion coronary computed tomography angiography

(CCTA) revealed its non-inferiority to SPECT in myocardial

inducible ischemia detection (57). Similar to CMR, perfusion

CCTA, using pharmacological stressors, accurately identifies the

presence of a hypodense area due to reduced perfusion during

hyperemia (58). However, due to the heterogeneity of evidence in

the literature regarding pharmacologic stress agents, imaging

sequence acquisition and post-processing, and different scanner

machines used, an expert consensus regarding the use and

feasibility of perfusion CCTA is lacking. Therefore, based on the

high negative predictive value of CCTA, the addition of perfusion

evaluation to the standard CCTA protocol acquisition could be

considered in those patients with coronary stenosis with unknown

hemodynamic significance (59, 60).

Accordingly, the European Guidelines on chronic coronary

syndrome suggested with an indication IIb the non-invasive

assessment of CFR with transthoracic echocardiography on the

left anterior descending artery, CMR, and PET (14).

Finally, CMD could be also assessed invasively with coronary

angiography. The first invasive evidence of CMD was the

observation of “slow” coronary flow in patients with chest pain

and no obstructive coronary lesions (61). In the absence of a

significant coronary lesion, the slow flow was attributed to the

high coronary microvasculature resistance, which delayed the

contrast passage in the distal part of the coronary. It is possible

to quantify the contrast agent velocity passage in the coronary

artery. In fact, the thrombolysis in myocardial infarction (TIMI)

criteria evaluates the grade of opacification after contrast

administration, assigning a score from 0, no reperfusion, to 3,

optimal reperfusion. Secondly, the corrected TIMI frame count

counts the number of cine frame numbers needed by the

contrast agent to reach standardized distal coronary landmarks

(62). In addition, CMD could be assessed invasively through the

index of myocardial resistance, based on the hyperemic and basal

intracoronary pressure (63), reflecting functional and/or

structural coronary abnormalities (8). Finally, the intracoronary
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administration of vasoactive agents (acetylcholine or ergonovine)

could assess the endothelium-dependent microvascular function.

These vasoactive agents produce a massive stimulation of NO,

resulting in vasodilation in normal coronary arteries. On the

contrary, in CMD patients, the administration of vasoactive

agents cannot contrast the vasoconstriction, induced by the

endothelial dysfunction (64).
Stress CMR in the CMD evaluation:
from acquisition to interpretation

Stress CMR has been demonstrated to accurately assess

myocardial ischemia and viability, as well as CMD, revealing a

good correlation with PET (65). In comparison to other non-

invasive imaging tests, stress CMR presents some technical

advantages, principally connected to its high spatial resolution

and excellent safety profile, without the use of ionizing radiation

or iodinated contrast agents (65–67). Finally, the complete

independence from the patient’s acoustic window and soft tissue

attenuation makes CMR very promising in the CMD evaluation.

Stress CMR is based on the identification of signal changes of

contrast agents that pass through the cardiac chambers and

myocardium during dynamic contrast-enhanced perfusion

imaging (Figure 2). To evaluate the efficacy of myocardial

perfusion in response to increased metabolic requests, it is

essential to compare the stress and rest images. Myocardial stress

imaging is obtained with intravenous vasodilator administration,

commonly using adenosine, dipyridamole, regadenoson, or

adenosine triphosphate (66). Each vasodilator agent presents

peculiar pharmacokinetic and hemodynamic properties, so the

choice depends on local preferences. Adenosine, commonly used

for echocardiographic CFVR evaluation, requires a continuous

infusion based on the patient’s weight (140 μg/kg/min) in an

intravenous catheter, different from that used for contrast

administration. Adenosine increases coronary blood flow
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FIGURE 2

Standard stress cardiac magnetic resonance study protocol. After localizer acquisition, a vasodilator is administered to achieve adequate myocardial
stress. Consequently, stress perfusion images are acquired in a three-slice short axis, and gadolinium-based contrast is injected. After stress, cine
imaging is acquired. Finally, rest first-pass perfusion imaging and late gadolinium enhancement sequences are acquired to assess viability.

Cecere et al. 10.3389/fcvm.2024.1372703
approximately 3–5-fold and is contraindicated in patients with

asthma and advanced atrioventricular block (68). Dipyridamole

requires a 4 min infusion at a dose of 0.56 mg/kg. Conversely to

adenosine, dipyridamole is characterized by a longer half-life

with a consequent prolonged duration of side effects and less

reproducible vasodilation (69). Regadenoson presents the

advantage of using a non-weight-based fixed dose (400 μg) with

a half-life of 20 min (66). Due to its longer half-life, regadenoson

could require aminophylline administration to easily terminate

the side effects of vasodilation, as well as for dipyridamole.

Different from adenosine, regadenoson is contraindicated only

for patients with advanced atrioventricular blocks, which is safe

in asthma patients. Due to its properties, regadenoson is the

most used vasodilator in clinical practice. Adenosine triphosphate

shares with adenosine the same hemodynamic effects, requiring

a slightly longer infusion, but it is used mainly in the

Asian–Pacific regions (68).

During vasodilator administration, an evaluation of correct

myocardium activation, in terms of an effective increase of

cardiac metabolic requests, is mandatory. In fact, an accurate

stress CMR is based not only on a correct imaging acquisition

but also on an effective increase of myocardium metabolic

requests, responsible for a greater coronary blood flow. An

increase in heart rate of >10 bpm or a reduction of systolic blood

pressure of >10 mmHg with classical vasodilation-induced

symptoms (palpitation, dyspnea) is considered markers of an

efficient hyperemic response after 2–3 min of vasodilator agent

infusion (66). During adenosine infusion, the evidence of a

splenic switch-off represents a sign of an appropriate response to

the vasodilator. In fact, adenosine plays an action on the A1/A2B

receptors in the splenic blood vessels, producing vasoconstriction
Frontiers in Cardiovascular Medicine 05
and a consequent reduction of spleen intensity (70). In the

presence of an inadequate hyperemic response, an increase in

adenosine dose (up to 210 μg/kg/min) could be considered to

reach evaluable myocardial stress (71).

After vasodilator administration, gadolinium-based contrast

is injected (0.2 mmol/kg of body weight), followed by saline

flush (≥30 ml) into a peripheral vein. Therefore, the distribution

of gadolinium-based contrast into cardiac chambers and,

consequently, to myocardium allows the evaluation of early

myocardial perfusion with electrocardiogram-gated fast

T1-sensitive sequences, performed in stress and, subsequently, in

the rest (72). In these sequences, an impaired perfusion is

responsible for a slow contrast agent diffusion and a reduced

T1 signal, in comparison to normal segments.

After 10 min from the stress myocardial perfusion imaging,

the rest perfusion imaging could be acquired. In particular,

the rest perfusion sequences should be performed with the same

image position and the same dose of gadolinium-based

contrast, without vasodilator agent administration. Cine sequence

images are usually obtained between stress and rest imaging

perfusion acquisition.

Stress perfusion CMR is usually interpreted qualitatively in

routine clinical practice, comparing stress and rest images to

identify a true perfusion defect (67). A true perfusion defect is

characterized by a persistent hypointensity of >5 RR intervals

beyond peak myocardial enhancement across more than two

pixels. Depending on the extension of the perfusion defect, this

persistent hypointensity could be subendocardial or transmural

with the involvement of the entire wall thickness, following the

coronary distribution (67). A perfusion defect presents only in

the stress perfusion imaging could be likely due to a true
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hypoperfusion, secondary to a coronary stenosis (Figure 3).

Conversely, a transient and less than one-pixel-wide hypointensity,

which appears when contrast arrives in the left ventricular cavity

but before myocardial enhancement, could be due to a dark

rim artifact.

LGE sequences are acquired 10 min after the rest perfusion

acquisition and allow us to identify the presence of myocardium

fibrosis and assess viability. An ischemic LGE pattern is

characterized by a subendocardial or transmural hyperintense

stria, depending on the extension of the ischemic process. The

wall thickness extension of LGE, as well as the number of

segments involved in the ischemic process, has an important

prognostic value. In particular, Kim et al. (73) demonstrated that

the change of recovery in cardiac function was 60%, 40%, 10%,

and 1% for wall thickness infarcts involving 1%–25%, 26%–50%,

51%–75%, and >75% thickness infarct, respectively. Perfusion

defect, in the absence of LGE, could be due to a dysfunctional

myocardium secondary to stunning or hibernation (74).
Semiquantitative and quantitative
myocardial perfusion analysis with
stress CMR

Patients with CMD usually present coronary arteries free of

significant lesions. The absence of an inducible perfusion defect

has excellent accuracy in identifying low-risk patients with

known or suspected CAD (75). However, the absence of a

perfusion defect is not synonymous with normal coronary flow

because it could hide a CMD. Myocardial perfusion in stress

CMR could be evaluated with visual or quantitative assessment.

Visual assessment of myocardial perfusion in CMD patients

demonstrated a sensitivity of 41% (95% CI: 27%–57%) (76).

Thus, a more accurate and reproducible evaluation of myocardial

perfusion could be obtained with quantitative assessment. Semi-

and fully quantitative methods revealed high sensitivity and
FIGURE 3

Stress cardiac magnetic resonance in a 68-year-old man with atypical chest
visible as subendocardial hypointense stria (red arrow) in the anterior wall in
delayed post-contrast sequences. Rest perfusion images do not reveal any p
a functionally significant left anterior descending artery disease. ICA, invasiv
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specificity, allowing a more accurate evaluation of CMD (77–79).

These quantitative methods are based on the signal intensity

during the first pass of gadolinium-based contrast to the

myocardium. The evaluation of the signal intensity profile is

related to semiquantitative methods and allows us to evaluate the

myocardial perfusion reserve index (MPRI), using a dedicated

post-processing software (67). After loading stress and rest

perfusion imaging in the dedicated module, the endocardium

and epicardium are manually traced in the basal, mid, and apical

slices of both stress and rest perfusion images. A segment of the

LV blood cavity, with the exclusion of papillary muscles, is

traced in each image. To provide LV myocardial segmentation,

the superior and inferior insertion points of the right and

left walls are labeled. Finally, the signal intensity of the

myocardium and LV blood pool are automatically generated by

the software. MPRI is a robust semiquantitative imaging marker

that represents the vasodilatory capacity of the coronary

microcirculation in response to a vasodilator stress (Figure 4)

(80, 81). MPRI is calculated as the ratio between stress and rest

upslope normalized to the upslope of the LV blood pool (82, 83).

Similar to echocardiography and PET, a reduced MPRI is a sign

of reduced coronary vasodilation in response to hemodynamic

stress and could be useful for the CMD diagnosis (84, 85).

A global MPRI of ≥2.0 is considered normal (86, 87).

Several evidence showed that CMD patients presented an

unfavorable outcome with a greater risk of cardiovascular death,

non-fatal myocardial infarction, non-fatal stroke, and

hospitalization due to heart failure or unstable angina (88–90).

Reduced myocardial perfusion assessed by stress CMR has been

demonstrated to be predictive of MACEs in a women’s cohort

with myocardial ischemia without significant coronary artery

lesions, suggesting its prognostic role (91). Furthermore, Zhou

et al. (86) demonstrated that an MPRI of ≤1.47 can predict

MACEs in CMD patients (HR = 3.14; 95% CI: 1.58–6.25;

p = 0.001). Therefore, MPRI emerged as a useful diagnostic and

prognostic marker of impaired myocardial perfusion, in the
pain and negative T waves in the anterior leads. A true perfusion defect is
the stress perfusion imaging, in the absence of myocardial fibrosis in the
erfusion defects. Invasive coronary angiography confirms the presence of
e coronary angiography; LGE, late gadolinium enhancement.
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FIGURE 4

Cardiac magnetic resonance semiquantitative myocardial perfusion assessment. After loading stress and rest perfusion imaging in the dedicated
module, the endocardium and epicardium are manually traced in both rest and stress perfusion images (red and green contours, respectively). A
segment of the left ventricular (LV) blood cavity, with the exclusion of papillary muscles, is traced in each image (orange contour in the LV cavity).
To provide LV myocardial segmentation, the superior and inferior insertion points of the right and left walls are labeled (blue and pink points,
respectively). Finally, the signal intensity of the myocardium and LV blood pool are automatically generated by the software, and a bull’s eye is
provided. In the bull’s eye, the myocardial perfusion reserve index (MPRI) is automatically derived by the software.

Cecere et al. 10.3389/fcvm.2024.1372703
absence of significant coronary stenosis in CMD patients, helping

clinicians in patient risk stratification.

Finally, stress CMR could also estimate the myocardial blood

flow (MBF) in units of milliliters of blood per minute per gram

(ml/min/g), allowing a fully quantitative analysis of myocardial

perfusion. To correctly estimate the MBF, an accurate

measurement of the arterial input function is crucial, using a

dual-bolus method or a dual-sequence technique (81, 92).
MPRI in ARDs patients

CVD strongly impacts the long-term prognosis of ARDs

patients. Therefore, the identification of CMD, as a significant

determinant of increased CV risk, becomes crucial to address the

best therapeutic management and clinical follow-up for patients

with ARDs. As previously described, several non-invasive and

invasive methods could be used to identify CMD. Recently, stress

CMR revealed its potential to evaluate myocardial ischemia,

perfusion, and tissue characterization, avoiding the well-known

echocardiography limitations in image acquisition. MPRI has

been widely evaluated in ARDs patients with promising results.

Chen et al. (17) have demonstrated that among women with

CMD (19/207 patients), patients with ARDs presented reduced

MPRI (p = 0.008), not captured by the echocardiographic CFVR

(p = 0.07). Confirming this result, MPRI has been evaluated in

many ARDs (Table 1).

SLE is a systemic autoimmune disorder, more prevalent in

females, characterized by chronic and systemic inflammation.

Morbidity and mortality in SLE are mainly due to cardiac

manifestations, especially CAD and myocarditis (10). SLE
Frontiers in Cardiovascular Medicine 07
patients demonstrated to have a 7.5-fold increased risk of

developing CAD in comparison to the general population (10).

Although an accelerated atherosclerotic process could partially

explain this increased CV risk, myocardial ischemia potentially

due to CMD has been hypothesized. A significant CFVR

reduction has been reported in young women affected by SLE,

confirming the presence of coronary microvascular impairment

(99, 100). Accordingly, an impaired microvascular perfusion

visually assessed with stress CMR has been identified in a small

cohort of 20 SLE female patients with chest pain and non-

obstructive CAD on CCTA (93). In this study, SLE emerged as

the only determinant of a reduced subepicardial MPRI, which

has been identified in patients when compared to the control

group (2.0 ± 0.4 vs. 2.4 ± 0.4; p = 0.031). Sandhu et al. (94)

evaluated the prognostic role of MPRI in a small group of SLE

female patients with chest pain who underwent CCTA and stress

CMR at baseline and after 5 years. This study demonstrated that

after 5-year of follow-up, the majority of SLE patients had

persistent angina (11/17 patients) and nearly half had similar or

worsened MPRI compared to the baseline, confirming that CMD

represents a major cause of persistent chest pain in the absence

of obstructive coronary lesions in this subset of patients.

Systemic sclerosis is a connective tissue disease characterized by

vascular dysfunction, autoimmunity, and increased fibroblast

activity, responsible for systemic diffuse fibrosis (95). Cardiac

involvement is mainly due to the fibrinoid necrosis of intramural

coronaries, detected by pathology, that determines diffuse

myocardial fibrosis, hypoperfusion, and, consequently, CMD

(96). The absence of significant epicardial coronary stenosis

confirms that the high microcirculation resistance, secondary to

vascular fibrosis, compromises myocardial perfusion (101).
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TABLE 1 Myocardial perfusion reserve index performed by cardiac magnetic resonance in ARDs patients.

Author, study Disease Vasodilator
stressor used

Study—aims Patients included Results

Chen MT, et al.
Frontiers in Cardiov
Medicine (17)

ARDs Adenosine/
regadenoson

Determine MPRI in women
with CMD and ARDs

207 women with CMD: 19
women had ARDs

Women affected by ARDs had
lower functional capacity and
lower MPRI

Ishimori ML, et al.
JACC Cardiovascular
Imaging (93)

Systemic lupus
erythematosus (SLE)

Adenosine/
regadenoson (in two
asthma patients)

Evaluate the presence of
myocardial perfusion defect and
MPRI in female SLE patients

– 20 SLE female with typical
and atypical chest pain

– 10 asymptomatic reference
control womenMPRI was
evaluated globally, in the
subendocardium and
subepicardium

– SLE patients had lower
subepicardial MPRI
compared to controls

– SLE was the only predictor
of subepicardial MPRI

Sandhu VK, et al.
Arthritis Care Res
(94)

Systemic lupus
erythematosus (SLE)

Adenosine Evaluate the serial changes in
chest pain, CMD, and
obstructive CAD in patients
with SLE in a 5-year follow-up
study

20 SLE females with chest pain
and no obstructive CAD by
CCTA who underwent stress
CMR → were re-evaluated at 5
years

– 11/17 had persistent chest
pain → 5/14 had CMD on
follow-up

Mavrogeni S, et al.
International Journal
of Cardiology (95)

Systemic sclerosis
(SS)

Adenosine Evaluate myocardial perfusion–
fibrosis in SS using CMR
(MPRI and LGE)

– 7 asymptomatic SS patients
(5 with diffuse and 2 with
limited SS)

– 7 controls
– 5 patients with CAD

– Non-segmental,
subendocardial perfusion
defects were identified in all
SS patients

– Segmental, subendocardial
perfusion defects were
identified in 3/5 CAD

– The lowest MPRI in patients
with diffuse SS

– LGE in SS was diffuse

Mavrogeni SI, et al.
Inflammation and
allergy, (96)

Systemic
sclerosis (SS)

Adenosine Evaluate inflammation,
myocardial perfusion, and
fibrosis in diffuse systemic
scleroderma.
Two-year follow-up

– 46 asymptomatic patients
with diffuse SS

– 20 controls
– 20 patients with CAD

– 44/46 had lower MPRI
compared to controls

– LGE was diffuse and greater
than controls, but not in
comparison with CAD
patients

– In follow-up (available in
11/44 patients) SS patients
presented further MPRI
deterioration and diffuse
subendocardial fibrosis

Mavrogeni S, et al.
IJC (97)

Peripheral
Raynaud’s
phenomenon

Adenosine Evaluate myocardial perfusion
in patients with peripheral
Raynaud’s phenomenon

– 20 RP due to connective
tissue diseases

– 20 patients with primary RP
– 20 controls

– MPRI was lower in RP
patients than in controls

– Patients with secondary RP
had a more severe reduction
of MPRI

Mavrogeni SI et al. J
of Clinical Medicine,
(98)

Antiphospholipid
syndrome (APS)

Adenosine Determine the prevalence of
silent myocardial ischemia and
fibrosis in patients with APS
and SLE/APS without known
CAD
Identify potential association
between CMR findings and
APS-related and classic CVD
risk factors and coronary
angiography findings
12-month follow-up

– 44 patients with APS without
prior cardiac disease → 22
with primary APS and 22
with SLE/APS

– 44 age-/gender-matched
controls

– Median MPRI was lower in
APS than controls,
independently of LGE

– LGE was present in 16/44
APS patients → 16 patients
underwent coronary
angiography → only 2/16
had CAD

– At follow-up, 3/44 patients
had CAD (presented the
lowest MPRI values)

APS, antiphospholipid syndrome; ARDs, autoimmune rheumatic diseases; CAD, coronary artery disease; CCTA: coronary computed tomography angiography; CMD, coronary microvascular
dysfunction; CMR, cardiac magnetic resonance; CVD, cardiovascular; LGE, late gadolinium enhancement, MPRI, myocardial perfusion reserve index; RP, Raynaud’s phenomenon, SLE,

systemic lupus erythematous; SS, systemic sclerosis.
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Accordingly, CMR widely reported diffuse and non-segmental

myocardial fibrosis, not related to coronary artery distribution, as

a manifestation of diffuse hypoperfusion (95, 102, 103). As an

expression of impaired coronary microvasculature, a reduced

CFVR has been found in about 50%–60% of clinically
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scleroderma patients (104, 105). Mavrogeni et al. (95) showed

that SS patients had lower MPRI in comparison with CAD

patients (1.2 ± 0.5 vs. 1.8 ± 0.2) and, consequently, than controls

(1.2 ± 0.5 vs. 2.46 ± 0.3, p < 0.001). After 2 years of follow-up, a

further reduction of MPRI from the baseline has been reported
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(0.5 ± 0.1 vs. 0.9 ± 0.2), in the absence of significant morpho-

functional modifications, confirming the pivotal role of CMD in

the cardiac involvement in SS patients (103). A potential role of

nifedipine in the improvement of myocardial perfusion has been

advocated, suggesting a possible reversibility of the perfusion defect

(106). Likewise, Allanore et al. (107) described an interesting role

of bosentan in myocardial perfusion and function in SS patients.

Similar to other ARDs, cardiac involvement, in terms of CMD,

has been associated with a poor prognosis (101, 108).

Peripheral Raynaud’s phenomenon, first reported by Raynaud

in 1892 as episodic digital ischemia in response to cold exposure

or emotion in the absence of any arterial occlusion, could be

associated with cardiac manifestations (97, 109). Similarly to

CMD, Raynaud’s phenomenon involves mainly young women

(110), and it could be primary or secondary to other ARDs or

connective tissue disorders (111). As a vasospastic disorder

responsible for color and trophic skin changes, coronary

microvasculature has been demonstrated to be strongly involved

in the natural history of the disease. In fact, recently, a

lower MPRI has been reported in patients with Raynaud’s

phenomenon, both for primary and secondary forms, in

comparison to the control group (1.7 ± 0.6 vs. 3.5 ± 0.4, p < 0.001,

and 0.7 ± 0.2 vs. 3.5 ± 0.4, p < 0.001, respectively). Patients with

secondary Raynaud’s phenomenon seem to have a more severe

coronary microvasculature impairment in comparison with those

with primary one (0.7 ± 0.2 vs. 1.7 ± 0.6, p < 0.001) (97).

Finally, patients affected by antiphospholipid syndrome (APS)

have been demonstrated to have CMD. APS is a rare systemic

autoimmune disease, characterized by vascular thrombosis,

pregnancy morbidity, and persistent positive APL antibodies, often

associated with SLE (as secondary APS) (1, 112). Thus, according

to other ARDs, APS patients presented lower MPRI values when

compared to controls (1.5 vs. 2.7, p < 0.001), regardless of the

presence of myocardial fibrosis. Myocardial fibrosis was detected in

one-third of APS patients (16/44 patients); twelve patients

underwent coronary angiography, revealing CAD in only two

patients. Interestingly, in the 12-month follow-up, three patients

with the lowest MPRI values experienced ischemic events (one

patient with myocardial infarction and two patients with unstable

angina) (98). Thus, MPRI was able to identify CMD and,

interestingly, the lowest value resulted associated with MACEs,

revealing a prognostic role in APS patients.

Although MPRI has been studied in a small cohort of ARDs

patients, reflecting the real-world prevalence of these diseases, the

precocious identification of abnormal myocardial perfusion could

have important clinical repercussions. Firstly, stress CMR

emerges as a valuable and reproducible non-invasive tool, able to

identify CMD in ARDs patients. Secondly, the recognition of

cardiac involvement in ARDs patients without angina-related

symptoms allows us to start therapy early, aiming to reduce the

CMD’s negative prognostic role on MACEs. Although a specific

therapy for CMD in ARDs patients has not been reported, the

beneficial role of antianginal and anti-atherosclerotic therapy in

CMD patients has been extensively described (113). In fact, beta-

blockers, nitrates, and calcium-channel blockers are widely

demonstrated to improve angina symptoms and exercise capacity
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in CMD patients (114). Beta-blockers are considered the first-line

therapy for CMD patients for their role in reducing adrenergic

activity and myocardial oxygen demand through the NO-mediated

vasodilatory effect (16). Nitrates could be considered in patients

with acute anginal episodes and an abnormal vasodilatory reserve

(115). Finally, calcium-channel blockers are the first-line therapy

for patients with vasospasm-mediated CMD (115, 116). Moreover,

considering the possible overlap of CMD with atherosclerosis,

the use of angiotensin-converting enzyme inhibitors or receptor

blockers, statins, and aspirin revealed a beneficial effect, in terms

of endothelial function improvement, plaque, and oxidative stress

reduction and anti-inflammation role in CMD patients (113).

Finally, non-pharmacologic treatment including exercise, weight

loss, and smoking cessation has been demonstrated to improve CFR

and angina-related symptoms in CMD patients (117, 118).

Therefore, based on these promising results and the potential

clinical repercussions of an early CMD diagnosis, the role of

MPRI should be further investigated to establish its validity also

in other clinical settings.
Conclusions

Patients with ARDs present an increased CV risk, not fully

explained by atherosclerotic progression. CMD emerges as a

crucial determinant of CV risk in these patients, as the result of

inflammation, endothelial dysfunction, oxidative stress, and

autoimmunity. Although several non-invasive and invasive

imaging tests can identify CMD, stress CMR has been

demonstrated to accurately assess myocardial ischemia, viability,

and CMD in ARDs patients. Early CMD diagnosis in

asymptomatic patients may allow us to start a precocious therapy

to significantly impact the natural history of the disease.
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