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Genome-wide association
studies reveal differences in
genetic susceptibility between
single events vs. recurrent events
of atrial fibrillation and myocardial
infarction: the HUNT study
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Trondheim, Norway, 2K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science
and Technology, Trondheim, Norway, 3Department of Internal Medicine, University of Michigan, Ann
Arbor, MI, United States, 4Clinic of Cardiology, St. Olavs University Hospital, Trondheim, Norway,
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Genetic research into atrial fibrillation (AF) and myocardial infarction (MI) has
predominantly focused on comparing afflicted individuals with their healthy
counterparts. However, this approach lacks granularity, thus overlooking
subtleties within patient populations. In this study, we explore the distinction
between AF and MI patients who experience only a single disease event and
those experiencing recurrent events. Integrating hospital records, questionnaire
data, clinical measurements, and genetic data from more than 500,000 HUNT
and United Kingdom Biobank participants, we compare both clinical and
genetic characteristics between the two groups using genome-wide
association studies (GWAS) meta-analyses, phenome-wide association studies
(PheWAS) analyses, and gene co-expression networks. We found that the two
groups of patients differ in both clinical characteristics and genetic risks. More
specifically, recurrent AF patients are significantly younger and have better
baseline health, in terms of reduced cholesterol and blood pressure, than
single AF patients. Also, the results of the GWAS meta-analysis indicate that
recurrent AF patients seem to be at greater genetic risk for recurrent events.
The PheWAS and gene co-expression network analyses highlight differences in
the functions associated with the sets of single nucleotide polymorphisms
(SNPs) and genes for the two groups. However, for MI patients, we found that
those experiencing single events are significantly younger and have better
baseline health than those with recurrent MI, yet they exhibit higher genetic
risk. The GWAS meta-analysis mostly identifies genetic regions uniquely
associated with single MI, and the PheWAS analysis and gene co-expression
networks support the genetic differences between the single MI and recurrent
MI groups. In conclusion, this work has identified novel genetic regions
uniquely associated with single MI and related PheWAS analyses, as well as
gene co-expression networks that support the genetic differences between
the patient subgroups of single and recurrent occurrence for both MI and AF.
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1 Introduction

Myocardial infarction (MI) and atrial fibrillation (AF) are two

prevalent cardiovascular diseases. AF, in particular, is a well-

established risk factor for several other cardiovascular conditions.

The severity and mortality risk associated with AF increase

significantly upon relapse. To manage and prevent new AF events, a

range of medical and interventional therapies are available. These

treatments aim to either normalize the rhythm or stabilize the heart

rate. Among these approaches, AF ablation has emerged as a

leading clinical treatment. However, its success rate varies, and

approximately 20%–40% of patients may require additional

treatment (1). Similarly, MI is a severe heart diagnosis associated

with high mortality rates. Upon survival, the heart is most likely

weakened, making the patient vulnerable to other diseases. In fact,

33% of patients experiencing MI die within a year (all causes of

death) (2). However, some patients experience only a single event of

MI and lead a normal and healthy life afterward. Most MI patients

undergo cardiac catheterization and percutaneous coronary

interventions in the acute phase, while medical therapies targeting

clotting of blood and lipids, as well as lifestyle interventions, are

provided to reduce the chance of recurrent events. Still, a significant

proportion of MI patients suffer from relapse.

Many studies have been conducted to identify genetic variants

that likely affect the risk of AF (3, 4) and MI (5, 6). While multiple

variants have been identified and later replicated in other studies,

these variants were identified when comparing all included cases

of AF or MI with healthy controls. Some studies have been

conducted to understand the genetics of patients experiencing

recurrent AF (1, 7–10) and MI events (11–13). These are,

however, mostly focused on either the patients’ response after

treatment or the genetic effects on recurrence from known

AF/MI variants or genes. Little effort has been made regarding

the comparison of genetics between patients experiencing a

single event vs. patients experiencing recurrent events.

To date, no comprehensive genome-wide association studies

(GWAS) analysis has directly compared the genetic profiles of

patients with recurrent events to those experiencing single events

in either AF or MI. In this study, we explore whether statistically

significant genetic differences exist between patients who

encounter recurrent events (defined as two or more occurrences)

of AF or MI and patients who only experience a single event.

Notably, we do not differentiate cases based on the specific

treatment received after the initial AF or MI event. By adopting

this approach, we aim for a broad comparison to uncover

potential genetic distinctions between patients with single events

and those with recurrent events.
2 Methods

2.1 Cohorts

2.1.1 The HUNT study
The Trøndelag Health study (HUNT) is a health-related

population-based longitudinal study based on four rounds of
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data collection: HUNT1 (1984–1986), HUNT2 (1995–1997),

HUNT3 (2006–2008), and HUNT4 (2017–2019). With a unique

database covering clinical measurements, questionnaire data, and

biological samples from roughly 230,000 inhabitants of the

Trøndelag county from 1984 onward, it is one of the largest

health study ever performed (14). A great benefit of the HUNT

study is the connection to other health-related registries by use

of the Norwegian unique personal identification number. These

health registries include hospital and general practitioner

registries, cancer registries, cause of death registries, and the

prescription database.

In the current study, genotype data for 69,621 participants

from HUNT2 and HUNT3 were used, and these were linked to

questionnaire data and clinical measurements from HUNT1,

HUNT2, and HUNT3, regional hospital records, the Nord-

Trøndelag Hospital Trust (HNT), and the Norwegian Cause of

Death Registry (COD). The HNT registry contains all ICD9 and

ICD10 codes for hospital visits of these HUNT participants from

August 1987 to April 2017. The COD registry spans the same

period, with registered ICD9 and ICD10 codes for the primary

and secondary causes of death.

2.1.2 The United Kingdom Biobank
The United Kingdom Biobank (UKBB) is a health-related

population-based study consisting of approximately 500,000

middle-aged UK inhabitants. Sampling of the participants took

place from 2006 to 2010, when questionnaires, clinical

measurements, and biological samples were collected. Similar to

the HUNT study, it is also linked to electronic health records

that contain information about the participants’ hospital, general

practitioner, and death records with ICD9 and ICD10 diagnose

codes (15). Genotyped data are available for more than 480,000

of the participants, and in the current study, we use these data

together with relevant questionnaire data, clinical measurements,

and hospital and death records for the genotyped participants (of

European ancestry). The hospital records span from December

1992 to September 2021. The death registry spans from 2006

until September 2021.
2.2 Genotyping and imputation

Genotyping and imputation of the HUNT and UKBB

participants have been described elsewhere (16, 17). Briefly,

genotyping was performed using one of three Illumina

HumanCoreExome arrays: 12 v.1.0, 12 v.1.1 with custom content

(UM HUNT Biobank v1.0) according to standard protocols for

the HUNT participants, and standard protocols for Affymetrix

Applied Biosystems UK BiLEVE Axiom or Applied Biosystems

UK Biobank Axiom array for the UKBB participants. Standard

quality control was performed for the HUNT genotyping, as well

as a UKBB-specific quality control for the UKBB genotyping.

Imputation in HUNT was performed using 2,202 whole-genome

sequenced samples from HUNT together with the Haplotype

Reference Consortium (HRC) reference panel (18, 19), resulting

in 25 million genetic markers. For UKBB, the HRC and
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UK10Kþ1000 Genomes reference panel were used, resulting in

90 million variants.
2.3 Definitions of traits and outcomes

Hospital records of HUNT and UKBB participants were

used to determine cases of MI and AF as well as the number

of events for each participant. An MI event is defined as the

patient having a registered diagnosis of ICD10:I21-I24 or

ICD9:410. An AF event is defined as a diagnosis of ICD10:I48

or ICD9:427.3.

In both UKBB and HUNT records, each diagnosis is registered

as a main or bi-diagnosis (denoted as first and second diagnosis in

UKBB), and we take both of them into consideration when

determining the number of events for each participant. Limiting

our analysis to only the main diagnosis while excluding

bi-diagnoses introduces potential errors and significantly reduces

the available data. Bi-diagnoses can be interpreted in various

ways. For instance, consider a scenario where a patient is

admitted to the hospital with a primary diagnosis, and additional

diagnoses are identified and documented during that initial visit.

Despite being new diagnoses, these are categorized as

bi-diagnoses. Had they been the sole disease and reason for the

hospital visit on that day, they might have been recorded as the

main diagnoses. Alternatively, a physician might infer from

historical records that certain other conditions (such as AF or

MI) are relevant to the primary diagnosis and include them as

bi-diagnoses, even if they are not recent events. Given the diverse

reporting practices related to bi-diagnoses, we employ selective

filtering to distinguish single events from recurrent events of

MI and AF.

A first event is defined as the initial visit during which a specific

diagnosis appears in the medical records, either as a primary

(main) or as a secondary (bi-diagnosis) diagnosis. Subsequently,

a second event is established if there exists a time gap of more

than 1 month between the initial event and any subsequent

occurrences. The second event must meet one of the following

criteria: (i) it is recorded as a main diagnosis or (ii) it is a

bi-diagnosis and the sole diagnosis documented on that

particular day (indicating a genuinely new event reported at that

time). Subsequent events are similarly categorized as second

events, with a minimum interval of 1 month from the previously

defined event. This event definition ensures the selection of new

occurrences, except in cases where only main diagnoses are

exclusively considered.

In our investigation of comparing patients with recurrent

events to those who remain relapse-free, it is crucial to

address the potential misclassification of patients with only a

single recorded event. Specifically, we need to ensure that such

patients are not erroneously categorized due to premature

mortality before experiencing subsequent events. Analyzing the

HUNT dataset, we observe that approximately 80% of

secondary events occur within a 5-year window for AF and a

7-year window for MI. To mitigate this potential bias, we

apply the following filtering criteria: First, we exclude single-
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event participants who have passed away either due to the

phenotype itself or within the specified time frames after the

initial AF or MI event. These time frames align with the

observed secondary event patterns in the HUNT and UKBB

datasets. Second, we remove participants registered with only a

single AF or MI event if it occurred less than 5 (AF) or 7

(MI) years before the censoring dates (6 April 2017 for HUNT

and 12 November 2021 for UKBB). The three trait groups are

denoted as single AF/MI: participants that experience only one

event of AF/MI, and recurrent AF/MI: participants that

experience more than one event of AF/MI, while satisfying the

conditions specified above.

Baseline and clinical characteristics, as well as information

about other relevant diseases identified with the participants,

were taken from the HUNT and UKBB hospital records,

questionnaires, and clinical measurements. Participants were

defined to have diabetes and/or hypertension if they have ever

been registered with the ICD codes ICD10:E10-E14 or

ICD9:250 for diabetes and/or ICD10:I10-I15 (excluding I11.0),

and ICD9:401-405 for hypertension. The smoking variable was

derived from the HUNT questionnaire response to the

question: “Have you ever smoked?” (with options for “Yes” or

“No”). For each patient, we utilized the most recent HUNT

participation data available prior to the disease event. The

corresponding variable in UKBB was “Ever smoked (Yes/No),”

which was constructed upon sampling. To assess statistical

differences in characteristics (age, diabetes, hypertension, BMI,

smoking, cholesterol, systolic, and diastolic blood pressure)

between groups with single vs. recurrent events, we employed

the Student’s t-test for continuous variables and Fishers’ exact

test for binary variables. Test statistics with Bonferroni-

adjusted p-values (p , 0:05=8 ¼ 6:25� 10�3) were considered

significant findings.
2.4 GWAS meta-analysis

To identify genetic factors associated with single or recurrent

events of AF and MI, we conducted three GWAS analyses for

each trait in both cohorts separately: (i) patients with single

events vs. healthy controls, (ii) patients with recurrent events vs.

healthy controls, and (iii) patients with recurrent events vs.

patients with single events. As a control, we also conducted a

GWAS analysis in each cohort with all cases of each disease

against healthy controls. Healthy controls were defined as

participants with no registered events of AF and MI. Variants

with minor allele count (MAC) <3 and an imputation score <0.3

were excluded from all GWAS results. Participants with non-

European recent ancestry were excluded from the analyses in

UKBB (note that all genotyped HUNT participants are of

European ancestry). Association analyses were performed with

SAIGE, using a generalized linear mixed model adjusted for

relatedness and unbalanced case–control ratios (20). Birth year,

gender, batch/chip, and the first four principal components were

added as covariates in the models. Here, birth year is chosen

instead of age at the time the event was recorded to facilitate
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the building of phenotypes based on a heterogenic set of

data sources collected at different time points using

multiple diagnostic codes. Genomic variants with minor allele

frequency (MAF) . 1% in one or both studies were included in

the meta-analysis.

From the eight GWAS analyses (three for AF, three for MI, and

one control for each disease) performed for both the HUNT

population and the UKBB population, we performed eight fixed-

effect inverse variance weighted (IVW) meta-analyses using

METAL (21). In METAL, each variant is assigned a new effect

size as the sum of each study’s effect size weighted by the

corresponding study variance. The p-values in the meta-analysis

are calculated based on the Z statistic given by the new effect

sizes and standard errors. Variants reaching genome-wide

significance (p-values , 5� 10�8) from the Z statistic were

considered significant findings. Annotations of significant single

nucleotide polymorphisms (SNPs), identification of nearest genes,

and a search for nearby SNPs associated with relevant traits were

performed with the FUMA platform and the GWAS catalog (22,

23). Variants were considered to be in the same genetic region if

they were less than 500 kb apart, and genetic regions denoted as

shared for both the single and the recurrent events meta-analysis

were either consisting of the same SNPs or SNPs within the

same genetic region. Observed scale genetic heritability of the

traits were found using the LD Score Regression software (24),

with precomputed LD Scores for Europeans from the 1000

Genomes reference panel (25) and summary statistics from the

meta-analysis.
2.5 Phenome-wide association studies

Phenome-wide association studies (PheWAS) were performed

on all SNPs from the meta-analyses reaching genome-wide

significance. From the comprehensive Pan UKBB resource (26),

we collected results from GWAS conducted on 1,326

phenocodes, and we identified the effect of each of our SNPs of

interest on each phenocode. All GWAS results from the Pan

UKBB are based on UKBB participants, and we selected results

for European ancestry exclusively. For each set of SNPs

(identified in common or specifically for either single

or recurrent AF/MI), phenotypes with a p-value

, 0:05=(1326� nset), where nset is the number of SNPs in the

set, were considered significant associations. For simplicity, only

the SNP with the lowest p-value for each phenotype was selected

from each set of SNPs.
2.6 Gene function and network analyses

The sets of nearest genes to the SNPs identified through the

GWAS analyses as common or unique to either recurrent or

single AF/MI events (in total six sets) were analyzed for tissue

specificity (differentially expressed gene sets in each tissue).

We employed both FUMA (22) and gene ontology enrichment

using Fisher’s exact over-representation test in PANTHER
Frontiers in Cardiovascular Medicine 04
(protein annotation through evolutionary relationship) (27).

Here, biological processes with a false discovery rate (FDR)

adjusted for multiple testing <0.05 were considered functionally

enriched for the gene set. To further investigate the processes

connected to these genes, we performed gene co-expression

network analysis (28–30), where the hypothesis is that highly

correlated genes have a regulatory relationship or similar

response in a condition (31). Using the identified gene sets as

target genes in an egocentric gene co-expression network

analysis, we generated a network from the shared

neighborhoods among the closest neighbor genes of each target

gene in the gene set, and we inspected the gene functions in

the network.

Creating these egocentric networks involves several steps. First,

using gene expression data from GTEx v.8 (32) (https://www.

gtexportal.org) gene co-expression networks for seven tissue sub-

types from the heart, muscle, skeletal, artery, and kidney

(GTEx_Analysis_v8_eQTL_expression_matrices.tar: Heart Atrial

Appendage, Heart Left Ventricle, Muscle Skeletal, Artery Aorta,

Artery Coronary, Artery Tibial, and Kidney Cortex) were created.

Since co-expression patterns may vary in different tissues (31), a

separate network was created for each tissue. Following the

WGCNA approach (33), the link weight (strength of co-

expression) between each pair of genes (i and j) were defined by

the weighted topological overlap (wTO) in Equation 1:

wTOij ¼
Aij þ

P
k=i,j AikAkj

min (
P

u Aiu,
P

u A ju)þ 1� Aij
, (1)

where Aij ¼ jcor(i, j)j6 is the absolute Pearson correlation of the

gene expressions raised to a power 6 to emphasize the strongest

correlations. The resulting gene co-expression network is then an

all-to-all network where pairs of genes with high wTO-link

weights represent strong connections between the genes and their

topological neighborhood. Only the 15% strongest links from

each tissue were included in the following analysis (still leaving

about 30 million links) to avoid the inclusion of genes based on

weak (and likely spurious) connections.

Next, for each of the seven tissues, egocentric networks for each

target gene were extracted from the co-expression networks. The

egocentric networks were filtered to include only the 25 genes

with the strongest wTO-link weights with each target gene. By

merging and further reducing the complexity of the networks,

the 25 strongest linked genes to each target gene across all tissues

were selected in the final network. Here, we weighted the link

strengths using wTOweighted
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPW
w¼1 wTO2

ij,w

q
, where W is the

number of tissues in which the linked gene is among the 25

strongest linked genes to the target gene and wTOij,w is the

corresponding wTO-link weight in tissue w.

The final six sets of egocentric networks for target genes

identified as common or as unique for the single or recurrent

AF/MI events were analyzed with the igraph R-package (34, 35).

Shared neighboring genes were defined as genes linked to two or

more of the target genes. The set of shared neighborhood genes
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for each network was plotted separately with Cytoscape (v. 3.8.1)

(36) and gene ontology enrichment of these gene sets were

obtained through the PANTHER over-representation test (27).
3 Results

3.1 Characteristics of trait groups

Among the genotyped participants with European ancestry

included in this study, there are 7,127 and 29,330 hospital

patients registered with AF in HUNT and UKBB, respectively.

Employing the filtering approach described in the Methods

section, we identified 1,425 HUNT and 9,561 UKBB patients

with single AF events and 2,267 HUNT and 7,267 UKBB

patients with recurrent AF events. Correspondingly, 5,805 HUNT

and 14,592 UKBB participants are registered with MI events. Of

these, 1,651 HUNT and 6,584 UKBB patients are identified with

single MI events and 1,615 HUNT and 1,615 UKBB patients are

identified with recurrent MI events.

Baseline and clinical characteristics of these patients are

presented in Table 1. In the HUNT study, a comparison between

the two AF groups reveals a discernible pattern. The group

experiencing a single AF episode tends to be older (adjusted

p-value 2� 10�10) and displays elevated levels of cholesterol and

systolic blood pressure (adjusted p-values 6:1� 10�6 and
TABLE 1 Characteristics of sample groups of single and recurrent events of A

AF HUNT

Single events Recurrent eve

n ¼ 1,435 n ¼ 2,267
Male (%) 58 62

Birth year 1933 (12) 1936 (12)

Age at first event 71 (12)� 68 (12)

Diabetes (%) 21 18

Hypertension (%) 59 57

BMI 28.2 (4.4) 28.3 (4.6)

Smoking (%) 62 64

Cholesterol 5.73 (1:33)� 5.72 (1.21)

Systolic BP 144 (24)� 141 (22)

Diastolic BP 79.4 (14.2) 79.0 (13.3)

MI HUNT

Single events Recurrent eve

n ¼ 1,651 n ¼ 1,615
Male (%) 70:7 67:2

Birth year 1935 (12) 1934 (13)

Age at first event 64 (11) 68 (12)�

Diabetes (%) 19 25�

Hypertension (%) 52 58�

BMI 27.7 (4.0) 28.0 (4.1)

Smoking (%) 76� 71

Cholesterol 5.67 (1.45) 5.92 (1:44)�

Systolic BP 140 (22) 144 (23)�

Diastolic BP 78.7 (12.9) 80.0 (13.4)

Continuous variables are presented as mean (SD), and dichotomous variables are repo

the single and recurrent group, where the asterisk denotes the larger value. Specifics
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5� 10�4, respectively). Similarly, an examination of the AF

groups within the UKBB reinforces this trend, with the single AF

event group exhibiting higher age (adjusted p-value , 10�16),

along with marginally higher levels of BMI and systolic blood

pressure compared to the recurrent AF group.

However, the reverse trends emerge when analyzing the MI

groups in the HUNT study. Here, patients experiencing recurrent

MI events are older (adjusted p-value , 10�16) and demonstrate

higher rates of diabetes and hypertension (adjusted p-values

8:8� 10�5 and 7:6� 10�3, respectively), alongside elevated levels

of cholesterol and systolic blood pressure (adjusted p-values

5:4� 10�6 and 1:4� 10�5, respectively). In addition, there is a

tendency toward higher BMI and diastolic blood pressure within

this group. These trends persist within the UKBB MI cohorts,

where the recurrent MI event group exhibits higher age, BMI,

and prevalence of diabetes and hypertension (adjusted p-values

6� 10�14, 3:9� 10�5, , 10�16, and , 10�16, respectively)

compared to the single MI event group. Moreover, there is a

tendency toward higher systolic blood pressure levels within the

UKBB single MI event group.

In summary, our observations reveal distinct patterns between

patients experiencing single AF events and those with recurrent AF

events. Notably, the single AF event group tends to be older at their

initial event and exhibits worse health conditions and lifestyle

factors compared to the recurrent AF group. Based on these

findings, we hypothesize that single AF events may be primarily
F and MI in the HUNT and UKBB population.

AF UKBB

nts Single events Recurrent events

n ¼ 9,561 n ¼ 7,267
65 66

1946 (6) 1947 (6)

65 (7)� 64 (8)

19 19

67 70�

29.0 (5.3) 28.9 (5.2)

66 66

5.6 (1.2) 5.6 (1.2)

142 (19) 141 (19)

82.6 (10.8) 82.5 (10.7)

MI UKBB

nts Single events Recurrent events

n ¼ 6,584 n ¼ 1,615
78 78

1947 (6) 1947 (6)

59 (8) 61 (9)�

21 35�

74 88�

28.8 (4.5) 29.3 (5:0)�

72 74

5.50 (1.27) 5.45 (1.28)

140 (20) 141 (20)

81.1 (11.0) 80.5 (11.0)

rted in percentages. Values with asterisks indicate a significant difference between

of the applied statistical tests are given in the Methods section.
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influenced by age and lifestyle factors, whereas recurrent AF events

may be driven by genetic factors. The characteristics related to MI

point in the opposite direction, since patients experiencing

recurrent MI events are older and generally exhibit worse health

conditions and lifestyle factors compared to those with only one

MI event (and survive it). For MI, we therefore consider two

alternative hypotheses: (i) recurrent MI events are associated with

the age at the first event and worsened health conditions and

single MI events are driven by genetic factors, or (ii) both single

and recurrent MI events share common genetic factors, but

recurring MI events are influenced by higher age and other

lifestyle factors, affecting the risk of subsequent MI occurrences.
3.2 Genetic differences

In the following sections, we explore our hypotheses (as defined

above) for AF and MI by investigating genetic differences between

the groups identified through the GWAS meta-analyses.
3.2.1 Genetic differences in AF
To test our hypothesis that patients experiencing recurrent AF

events are more genetically susceptible than patients experiencing

single AF events, we perform three GWAS meta-analyses

(see Methods). The GWAS meta-analysis comparing single to

recurrent AF events found no regions with significantly different

effects. Some SNPs were identified to be of genome-wide

significance in the HUNT population, but these were rare

variants (MAF � 0:2%), and we removed them through filtering

prior to the meta-analysis. Comparing the GWAS meta-analyses

of each group against healthy controls (Table 2 and Figure 1), we

find that 18 regions are specifically associated with recurrent AF

events: 2 are specifically associated with single AF events and 16

are identified in both GWAS investigations. Many regions

comprise multiple SNPs that exhibit significant effects in only

one of the study groups. Five regions identified in the recurrent

AF GWAS study consist of only one SNP, yet these are identified

with similarly strong effects in both the HUNT and the UKBB

studies, indicating a genuine association. Regional plots of the

single SNP hits uniquely associated with recurrent AF are shown

in Supplementary File 1, Figures S15–S19. The presented results

show that more than half of the identified regions are specifically

linked to single or recurrent AF, supporting the hypothesis that

patients who have experienced recurrent AF events are

genetically more susceptible than those who have only

experienced one event and survived it.

All regions had previously been associated with AF, and all

regions except one (chromosome 7, in the KCNH2 gene) were

identified in the full AF GWAS meta-analysis by comparing all

AF cases against healthy controls. This indicates that all the

regions identified as unique for single or recurrent AF (excluding

the KCNH2 gene region) have an effect when compared to

healthy controls, with the true effect being mainly or solely for

patients experiencing single or recurrent AF. The five SNPs in

the KCNH2 gene, however, are not detected in our full GWAS
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meta-analysis and therefore only show an effect for patients

experiencing recurrent AF.

To our knowledge, only seven genes have previously been

found to be associated with AF recurrence: SOX5, CAV1, EPHX2,

ITGA9, SLC8A1, TBX5, and PITX2 (1, 8, 10, 37). Our findings

show that regions proximate to the SOX5, CAV1, TBX5, and

PITX2 genes are identified in both the single and the recurrent

GWAS, yielding comparable effects. Thus, there is no evidence of

differences in the impact of these regions between the two

groups. Furthermore, no regions were identified near the EPHX2,

SCL8A1, and ITGA9 genes. Variants near the NAV2 and

SCN10A genes have previously been tested for their effect in

recurrent AF events without any significant findings (37, 38). In

this study, we discovered 26 and 16 SNPs located within and

nearby the NAV2 and SCN10A genes, respectively, that are

exclusively associated with recurrent AF, suggesting that these

SNPs have a distinct effect on recurrent AF patients compared to

single AF cases.

Several of the genes listed in Table 2 code for functions related

to AF. Two of the genes listed as “Common” (KCNN3 and HCN4)

and three genes identified uniquely for recurrent AF (SCN10A,

KCNH2, and KCNJ5) are related to electrophysiological activity,

coding for potassium and sodium channels. Other genes listed as

“Common” in Table 2 code for functions directly linked to heart

activity and AF (TTN, TBX5, SYNE2, and RPL3L) , or they are

indirectly linked to AF through comorbidities (ATXN1, CAV1,

SH3PXD2A, and ZFHX3). Two of the recurrent AF genes also

code for functions directly or indirectly linked to AF (CASQ2

and GOSR2), and some genes indicate a possible indirect link

related to comorbidities, e.g., hypertension or malignancy

(PPFIA4, USP34, WIPF1, SPATS2L, CAND2, and AOPEP). The

two genes uniquely identified for single AF events have been

shown important for myocardial diseases and cardiac

abnormalities, coding for functions found to be central in

malformation in heart (NKX2-5) and myosin (MYH7).

The genetic observed scale heritability was found to be 0.0139

(SE 0.0024) for recurrent AF and 0.0086 (SE 0.0018) for single

AF events.

3.2.2 Genetic differences in MI
Based on the characteristics of the two MI groups, we

formulated two hypotheses: (i) Recurrent MI events are

associated with the age at the first event and worsened health

conditions and single MI events are driven by genetic factors, or

(ii) Both single and recurrent MI events share common genetic

factors, but recurring MI events are influenced by higher age and

other lifestyle factors, affecting the risk of subsequent MI

occurrences. Testing for direct genetic differences between the

two MI groups, the GWAS meta-analysis (comparing single to

recurrent events) did not detect any regions with significant

effects. When testing for genetic effects in each group as

compared to MI-free controls, the GWAS meta-analyses shown

in Figure 2 and Table 3 identified four regions that are in

common for both groups, 24 regions that are specifically

identified for the single event group, and two regions that

are unique for the recurrent events group. Hence, some
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TABLE 2 AF variants found to be significant in the GWAS meta-analysis.

AFull AF study Known rsID Chr:pos_Ref/Alt Gene Function Effect StdErr p-value Dir Nsnps
Yes Common Yes rs6691463 1:154814538_C/G KCNN3 Intronic �0.16 0.015 3:5� 10�24 �� 166

Yes Common Yes rs72700114 1:170193825_G/C NTMT2 Intergenic 0.36 0.031 9:1� 10�32 þþ 239

Yes Common Yes rs1429094 2:179515774_A/G TTN Intergenic �0.14 0.02 1:8� 10�12 �� 64

Yes Common Yes rs6843082 4:111718067_G/A PITX2 Intergenic �0.5 0.021 2:4� 10�132 �� 553

Yes Common Yes rs678897 5:137441065_G/C NME5 Intergenic 0.13 0.017 5:7� 10�14 þþ 229

Yes Common Yes rs112899072 6:16417852_C/G ATXN1 Intronic 0.15 0.023 8:6� 10�11 þþ 10

Yes Common Yes rs117984853 6:149399100_G/T UST Downstream 0.16 0.025 4:9� 10�11 þþ 2

Yes Common Yes rs11773845 7:116191301_C/A CAV1 Intergenic 0.16 0.016 4� 10�24 þþ 218

Yes Common Yes rs17337621 8:124542519_G/C FBXO32 Intronic 0.19 0.032 1:7� 10�9 þþ 5

Yes Common Yes rs1389189 10:105486077_A/G SH3PXD2A Intronic �0.14 0.017 6:1� 10�17 �� 122

Yes Common Yes rs137913153 12:24776752_A/G SOX5 Intergenic 0.11 0.02 4:2� 10�8 þþ 8

Yes Common Yes rs883079 12:114793240_C/T TBX5 UTR3 0.15 0.017 5:8� 10�18 þþ 67

Yes Common Yes rs1152591 14:64680848_A/G SYNE2 Intronic 0.11 0.015 1:3� 10�12 þþ 67

Yes Common Yes rs7172038 15:73667255_T/G HCN4 Intergenic �0.18 0.021 1:6� 10�18 �� 44

Yes Common Yes rs140185678 16:2003016_G/A RPL3L Exonic 0.25 0.043 6:1� 10�9 þþ 1

Yes Common Yes rs4499262 16:73059159_C/A ZFHX3 Intronic 0.26 0.021 2:5� 10�35 þþ 108

Yes Recurrent Yes rs9428227 1:116309200_C/T CASQ2 Intronic 0.093 0.015 1:3� 10�9 þþ 24

Yes Recurrent Yes rs2270543 1:203030685_T/C PPFIA4 Intronic 0.11 0.015 2� 10�13 þþ 26

Yes Recurrent Yes rs12463885 2:61457996_A/C USP34 Intronic 0.086 0.016 3:6� 10�8 þþ 1

Yes Recurrent Yes rs56181519 2:175555714_C/T WIPF1 Intergenic �0.12 0.018 4:8� 10�11 �� 4

Yes Recurrent Yes rs7605146 2:201183888_G/A SPATS2L Intronic 0.094 0.016 1:8� 10�9 þþ 40

Yes Recurrent Yes rs4642101 3:12842223_T/G CAND2 Intronic �0.091 0.016 1:3� 10�8 �� 2

Yes Recurrent Yes rs6790396 3:38771925_C/G SCN10A Intronic �0.095 0.016 1:4� 10�9 �� 16

Yes Recurrent Yes rs73228569 3:111614052_T/C PHLDB2 Intronic 0.12 0.021 1:5� 10�8 þþ 34

Yes Recurrent Yes rs12646050 4:174634261_A/G RANP6 Intergenic 0.14 0.026 3:7� 10�8 þþ 1

Yes Recurrent Yes rs34969716 6:18210109_G/A KDM1B Intronic 0.095 0.017 3:1� 10�8 þþ 1

Yes Recurrent Yes rs2684249 6:122392511_T/C HSF2 Intergenic 0.09 0.016 6:4� 10�9 þþ 1

No Recurrent Yes rs758890 7:150655643_G/A KCNH2 Intronic �0.094 0.016 7� 10�9 �� 5

Yes Recurrent Yes rs10993463 9:97807233_C/T AOPEP Intronic 0.12 0.016 1:3� 10�14 þþ 88

Yes Recurrent Yes rs2568119 11:20004957_G/A NAV2 Intronic 0.11 0.018 2� 10�9 þþ 26

Yes Recurrent Yes rs3765618 11:128769876_C/G KCNJ5 UTR3 �0.18 0.027 3:2� 10�11 �� 12

Yes Recurrent Yes rs12944882 17:37983492_T/C IKZF3 Intronic 0.088 0.015 1:2� 10�8 þþ 2

Yes Recurrent Yes rs17608766 17:45013271_T/C GOSR2 UTR3 �0.12 0.022 2:1� 10�8 �� 2

Yes Recurrent Yes rs2834618 21:36119111_T/G CLIC6 Intergenic 0.15 0.026 1:2� 10�8 þþ 1

Yes Single Yes rs1223535129 5:172664353_CG/C NKX2-5 Intergenic 0.11 0.017 2:7� 10�11 ?þ 31

Yes Single Yes rs28631169 14:23888183_C/T MYH7 Intronic 0.1 0.018 2:1� 10�8 þþ 2

The lead variant (lowest p-value) for each independent region is listed. The “AFfull” column describes if the variant (or any of the significant variants in this region) is also

identified in the full AF GWAS meta-analysis. The “AF study” column shows in which of the studies the variant/region was found to be significant (“common” meaning

significant in both the single and the recurrent GWAS meta-analysis). The “Known” column reports if this region is previously known for AF association. The

subsequent columns are “rsID,” position, nearest gene, and the function of the lead SNP as well as effect size, standard error, and p-value from the meta-analysis.

“Dir” corresponds to the direction of the effect in the HUNT and UKBB GWAS meta-analysis (an entry of ? means not included in the meta-analysis—see

Supplementary File 4 for allele frequencies)—and “Nsnps” shows the number of significant SNPs in the region.
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genetic factors are common for both groups, but most identified

genetic effects are unique to patients experiencing only one event

of MI and surviving it. These results are in support of our

first hypothesis.

Some distinct regions, including the SNPs in the NBEAL1 and

ATXN2 genes for single MI events and SNPs in the MIA3 gene for

recurrent events, exhibit substantial effects for multiple SNPs in the

region, with comparable effects in both the HUNT and UKBB

populations. Several regions represent suggestive findings

comprising only single SNPs and are only identified in the

HUNT population (regional plots of the single SNP hits uniquely

associated with single or recurrent MI are shown in

Supplementary File 1, Figures S20–S39). However, as shown in

Supplementary File 4, these variants are not HUNT-specific since

they are reported with relatively high frequencies in the general
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European population. Hence, although they are rare in the UKBB

population and thereby not included in the meta-analysis,

including a different European study population could validate or

dispute the effect identified here. Also, many of these regions are

well-known for MI, further suggesting that these findings might

be valid.

Comparing the GWAS meta-analysis of all MI cases to MI-free

controls, we find that all four regions that were identified as

common for single and recurrent MI (regions in or close to the

genes HPCAL1, LPA, CDKN2A, and CXADR) were also found in

the full MI GWAS meta-analysis. The two regions that were

specifically associated with recurrent MI events (regions close to

the MIA3 and NOVA1 genes) were also identified in the full MI

GWAS, but nine of the regions specifically associated with single

MI were not detected in the full MI GWAS (regions in or close
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FIGURE 1

GWAS meta-analysis results for AF. Top: Comparing recurrent AF patients to AF-free controls. Bottom: Comparing single AF patients to AF-free
controls. Blue spikes represent regions of SNPs found to be statistically significant in both GWAS studies (common), while magenta spikes
represent statistically significant regions of SNPs specifically associated with the given AF group.

FIGURE 2

GWAS meta-analysis results for MI. Top: Comparing recurrent MI patients to MI-free controls. Bottom: Comparing single MI patients to MI-free
controls. Blue spikes represent regions of SNPs found to be statistically significant in both GWAS studies (common), while magenta spikes
represent statistically significant regions of SNPs that are specifically associated with the given MI group.

Hall et al. 10.3389/fcvm.2024.1372107
to the genes OVAAL, TAF1B, GLI2, BBS9, MCPH1, GLIS3,

HECTD4, INSR, and SYNDIG1). Hence, certain regions identified

in the full MI GWAS are exclusively linked to either single or
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recurrent MI, and some regions are only observed when patients

with single MI events are filtered out, emphasizing the need for

sub-dividing the MI groups.
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TABLE 3 MI variants that are significant in the GWAS meta-analysis.

MIfull MI study Known rsID Lead Gene Function Effect StdErr p-value Dir Nsnps
Yes Common No* rs7600627 2:10543580_T/G HPCAL1 Intronic 0.41 0.049 6:5� 10�17 þ? 1

Yes Common Yes rs55730499 6:161005610_C/T LPA Intronic 0.3 0.031 1:4� 10�21 þþ 59

Yes Common Yes rs1333049 9:22125503_G/C CDKN2A Intergenic 0.18 0.016 3:8� 10�27 þþ 184

Yes Common No rs2846882 21:18930412_T/A CXADR Intronic �0.29 0.044 9:6� 10�11 �? 1

No Single No rs72720974 1:180559567_A/G OVAAL Intergenic 0.23 0.042 3� 10�8 þ? 1

No Single No* rs1620983 2:10028920_T/G TAF1B Intronic 0.27 0.043 5:3� 10�10 þ� 1

Yes Single No* rs2422293 2:65033227_A/G SERTAD2 Intergenic 0.26 0.047 4:4� 10�8 þ? 1

No Single No* rs34337514 2:121458109_A/T GLI2 Intergenic 0.22 0.038 4:7� 10�9 þ� 1

Yes Single Yes rs147932234 2:203951846_T/C NBEAL1 Intronic �0.15 0.025 4:8� 10�9 �� 254

Yes Single No rs2868125 4:81955408_T/G BMP3 Intronic 0.27 0.041 3:2� 10�11 þ? 1

Yes Single No rs576614613 6:7442904_T/C RIOK1 Intergenic �0.26 0.043 1:1� 10�9 �? 5

Yes Single No rs34945893 7:9691418_A/T AC096553.5 Intergenic 0.26 0.041 2:9� 10�10 þ? 1

No Single No* rs1544558 7:33508624_T/G BBS9 Intronic 0.26 0.042 8:8� 10�10 þ? 1

Yes Single Yes rs3918226 7:150690176_C/T NOS3 Intronic 0.17 0.03 3:2� 10�8 þþ 1

No Single No rs7016007 8:5781499_G/T MCPH1 Intergenic �0.28 0.05 2:4� 10�8 �? 1

Yes Single No rs56097134 8:37067371_G/A KCNU1 Intergenic �0.24 0.037 5� 10�11 �� 1

Yes Single No* rs1472790078 8:41141915_A/G SFRP1 Intronic 0.28 0.042 1:7� 10�11 þ? 1

No Single No rs10814885 9:4209824_C/G GLIS3 Intronic 0.24 0.044 2:9� 10�8 þ? 1

Yes Single No rs111991434 9:89155924_A/G TUT7 Intergenic 0.28 0.043 1:2� 10�10 þ? 1

Yes Single No* rs58771640 11:19767929_T/A NAV2 Intronic �0.34 0.043 1:7� 10�15 �? 1

Yes Single No* rs4625573 12:24378427_T/C SOX5 Intronic 0.27 0.048 2� 10�8 þ? 1

Yes Single Yes rs1876263690 12:111907431_A/AC ATXN2 Intronic 0.098 0.016 2:4� 10�9 þþ 10

No Single Yes rs77215829 12:112618346_A/C HECTD4 Intronic 0.14 0.024 7:8� 10�9 þþ 2

No Single No* rs2352955 19:7152404_A/G INSR Intronic 0.23 0.035 1:2� 10�10 þþ 1

Yes Single Yes rs55766194 19:45013423_A/G TOMM40 Intronic 0.29 0.048 2:2� 10�9 þ? 9

Yes Single No rs6076475 20:360933_A/C TRIB3 Upstream 0.41 0.052 6:7� 10�15 þ? 1

No Single No rs1569677 20:24404965_A/G SYNDIG1 Intergenic 0.22 0.04 3� 10�8 þ? 1

Yes Single Yes rs28451064 21:35593827_G/A MRPS6 Intergenic 0.14 0.024 2:5� 10�8 þþ 1

Yes Recurrent Yes rs46i18978 1:222779187_C/G MIA3 Intergenic �0.15 0.028 3:6� 10�8 �� 5

Yes Recurrent No rs59875208 14:26557764_C/A NOVA1 Intergenic �0.23 0.042 2:2� 10�8 �� 1

The lead variant (lowest p-value) for each independent region is listed. The “MIfull” column describes if the given variant (or any of the significant variants in this region) is

also identified in the full MI GWAS meta-analysis. The “MI study” column shows in which of our studies the variant/region was found to be significant (an entry of “common”

means that it was present in both the single and the recurrent GWAS meta-analysis). The “Known” column shows if this region is previously related to MI (“Yes”), a relevant

CVD trait (“No*”), or neither (“No”). The next columns are “rsID,” “nearest gene,” “the function of the lead SNP,” “effect size,” “standard error,” and “p-value” from the meta-

analysis. “Dir” corresponds to the direction of the effect in the HUNT and UKBB GWAS meta-analysis (a value “?” indicates that it was not included in the meta-analysis—see

Supplementary File 4 for allele frequencies)—and “Nsnps” shows the number of significant SNPs in the region.
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We notice that 24 regions are specifically associated with a

single MI. Among these, 10 regions, proximal to or within the

genes OVAAL, BMP3, RIOK1, AC096553.5, MCPH1, KCNU1,

GLIS3, TUT7, TRIB3, and SYNDIG1, represent novel associations

with MI and have not been previously linked to Cardiovascular

disease (CVD)-related traits. These regions are predominantly

characterized by a single SNP, with the exception of five SNPs in

proximity to the RIOK1 gene. These SNPs are only identified

within the HUNT population, barring the SNP near the KCNU1

gene. Interestingly, some of these regions encode for functions

similar to those of genes previously associated with MI. Three of

these genes, namely, OVAAL, RIOK1, and TUT7, are commonly

associated with malignancy, akin to NBEAL1, where we identified

a known MI region comprising 254 SNPs uniquely associated

with single MI. Other genes encode proteins involved in calcium

handling (BMP3 and SYNDIG1) or are associated with diabetes

mellitus (GLIS3 and TRIB3), suggesting a potential link to

accelerated atherosclerosis development. Similarly, both ATXN2

and HECTD4 are associated with diabetes mellitus, and we

identified known MI regions uniquely associated with single MI
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in these genes. Two regions exclusively linked to recurrent MI

events were identified, both exhibiting negative effects in the

HUNT and the UKBB population. The region near the MIA3

gene has been previously associated with MI, while the single

SNP near the NOVA1 gene, which may also be related to

malignancy, represents a novel finding. Collectively, these

findings underscore the potential relevance of these genes to MI.

Further investigations are warranted to ascertain if these effects

are replicable in other European and non-European populations

and to determine the specific links of these SNPs/genes to MI,

particularly in relation to single or recurrent MI events.

The observed genetic scale heritability was found to be 0.0051

(SE 0.0011) for single MI and 0.0039 (SE 0.0011) for recurrent MI.
3.3 Identification of additional phenotypes
affected by SNPs through PheWAS

To delve deeper into the genetic distinctions observed between

single and recurrent AF and MI, we conducted a PheWAS analysis.
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This enabled us to pinpoint other phenotypes associated with the

same set of SNPs designated as either common or unique for

single and recurrent AF and MI.

Our PheWAS investigation of the SNPs identified as common

for both single and recurrent AF revealed a total of 1,903

SNPs linked with 236 phenocodes (shown in Figure 3 and

Supplementary File 2). Not surprisingly, the strongest associations

were found for Atrial fibrillation and flutter and Cardiac

dysrhythmia (p-value 10�400 and 10�220). Furthermore, we

identified robust associations with phenocodes related to

Appendiceal conditions and Coagulation defects. Notably, the
FIGURE 3

Phenocodes associated with each set of SNPs found for both single and rec
1,326 phenocodes sorted by phenocode category, and the y-axis shows the
in the set. The dotted line shows the threshold for significant associates, wh
SNPs found in common for both single and recurrent AF. (B) A set of 245 SNP
found uniquely for single AF events. (D) A set of 299 SNPs found uniquely fo
events. (F) A set of six SNPs found uniquely for recurrent MI events.

Frontiers in Cardiovascular Medicine 10
circulatory system category emerged as the predominant category,

encompassing 54 phenocodes. This includes, but is not limited

to, conditions such as Phlebitis and thrombophlebitis, Sinoatrial

node dysfunction (Bradycardia), Heart failure, and Hypertension.

Intriguingly, the two identified regions specifically associated

with single AF consist of 33 SNPs that exhibit significant

association with 44 phenocodes (see Supplementary File 2). Not

surprisingly, the strongest associations for these SNPs pertain to

the phenocodes Atrial fibrillation and flutter and Cardiac

dysrhythmias, the remaining 42 phenocodes span a diverse array

of phenocode categories. These include not only Migraine and
urrent AF/MI or uniquely for one of them. The x-axis shows each of the
lowest p-value for the association between the phenocode and the SNPs
ich vary according to the number of SNPs in each set. (A) A set of 1,903
s found in common for both single and recurrent MI. (C) A set of 33 SNPs
r single MI events. (E) A set of 286 SNPs found uniquely for recurrent AF
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Large cell lymphoma but also conditions such as Arrhythmia

(cardiac) NOS, Paroxysmal supraventricular tachycardia, and

Cerebral atherosclerosis.

In contrast, the 18 regions specifically associated with recurrent

AF events consisting of 286 SNPs show a significant association

with 91 phenocodes (see Supplementary File 2), and a majority

of the strong associations pertain to phenocodes of the

circulatory system category. Again, the phenocode with the most

potent associations are Atrial fibrillation and flutter and Cardiac

dysrhythmias. In addition, these SNPs also display significant

associations with Asthma and 27 phenocodes from the

circulatory system, including conditions such as Hypertension,

Atrioventricular block, Cardiomyopathy, Heart failure, Ischemic

heart disease, Cardiac arrest, and Palpitations. Collectively, these

results underscore genetic susceptibility disparities between

patients experiencing single vs. recurrent AF events. In particular,

SNPs specifically tied to recurrent AF are linked to a broad range

of phenocodes related to the heart and circulatory system, in

contrast to SNPs exclusively linked to single AF events.

Regarding MI, we identified four regions associated with both

single and recurrent MI, comprising 245 SNPs that exhibit

significant associations to 144 phenocodes (see Supplementary

File 2). The most prominent associations are observed with

Ischemic heart disease and Hyperlipidemia disorders. In addition,

numerous diseases within the circulatory system category, such

as Non-rheumatic aortic valve disorders, Peripheral vascular

disease, Stricture of artery, Hypertension, and Heart valve

disorders, are also strongly associated.

The 24 regions specifically identified for single MI events

consist of 299 SNPs that are associated with 128 phenocodes (see

Supplementary File 2). These include Ischemic heart disease,

Hypertension, and diseases of Hyperlipidemia. In addition, there

are strong associations with neurodegenerative disorders, such as

Dementia, Alzheimer’s, and Delirium. These SNPs are

furthermore linked with 33 phenocodes from the circulatory

system category, highlighting conditions such as Cerebral

ischemia, Cardiac conduction disorders, Heart failure, Aortic valve

disease, and Pulmonary heart disease.

Notably, the two regions consisting of six SNPs specifically

identified for recurrent MI were associated with a mere 16

phenocodes (see Supplementary File 2). While these included

Ischemic heart disease, Heart failure, Cardiac conduction disorders,

and diseases of Hyperlipidemia, they lacked the other 27

circulatory system disorders identified for the single MI SNPs.

Once again, these findings emphasize the genetic differences

between patients experiencing single and recurrent MI. SNPs

specifically associated with single MI events appear to be

associated with a broader and more diverse range of cardiovascular

disorders compared to those solely linked to recurrent MI.
3.4 Gene sets and co-expression network
neighborhood

In our final analysis, we leverage multiple sets of gene

expression data from the GTEx consortium (32) measured in
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tissue sub-types taken from the heart, muscle, skeletal, artery,

and kidney to generate gene co-expression networks (see

Methods for details). Here, our expectation is that highly

correlated genes have a regulatory relationship or similar

response in a condition (31). Thus, this approach should uncover

genes that display an expression profile that most closely links to

the set of target genes found through our GWAS analyses, and

we investigate their functions.

3.4.1 AF-associated genes in co-expression
networks

Differential gene expression analysis of the 18 genes identified

in recurrent AF (listed as Recurrent in Table 2) reveals a significant

upregulation of these genes in atrial appendage tissues from the

heart. Furthermore, elevated expression levels are discerned in

left ventricular heart, artery tibial, and skeletal muscle tissues (see

Supplementary File 1, Figure S9). Gene ontology analysis

indicates that this set of genes is significantly enriched for cell–

cell signaling involved in cardiac conduction (fold enrichment

(FE) . 100, FDR ¼ 1:17� 10�2), cardiac muscle cell action

potential (FE ¼ 70:03, FDR ¼ 3:15� 10�2), and regulation of

heart rate (FE ¼ 43:99, FDR ¼ 1:62� 10�2).

Following the co-expression analysis approach detailed in the

Methods section, we find that 16 of the 18 recurrent AF genes

show strong co-expression with other genes in heart, artery,

kidney, and skeletal muscle tissues. Selecting the top 25 genes

with the strongest connection to each of the 16 target genes,

Figure 4A shows that all of the 16 target genes are connected

through 82 shared neighboring genes (see Supplementary File 3),

i.e., the 82 shared genes are among the top 25 strongest

connections for two or more of the target genes. These 82

neighboring genes are significantly enriched for a variety of

biological processes, including acetyl-CoA biosynthetic process

from pyruvate (FE . 100, FDR ¼ 4:41� 10�3), tricarboxylic

acid cycle (FE ¼ 54:70, FDR ¼ 1:38� 10�6), NLS-bearing

protein import into nucleus (FE ¼ 50:99, FDR ¼ 1:93� 10�3),

inner mitochondrial membrane organization (FE ¼ 32:73,

FDR ¼ 9:49� 10�4), respiratory electron transport chain

(FE ¼ 10:72, FDR ¼ 4:32� 10�2), regulation of proteasomal

protein catabolic process (FE ¼ 7:49, FDR ¼ 4:94� 10�2),

proteasome-mediated ubiquitin-dependent protein catabolic

process (FE ¼ 5:58, FDR ¼ 3:79� 10�2), and regulation of

cellular catabolic process (FE ¼ 4:01, FDR ¼ 9:85� 10�3).

Focusing on the two genes specific to single AF events (listed as

Single in Table 2), our analysis reveals that these genes show

significant upregulation in left ventricle tissues of the heart and

also high expression levels for atrial appendage tissues of the

heart (see Supplementary File 1, Figure S10). Gene ontology

analysis confirms that these genes are closely linked to adult heart

development (FE . 100, FDR ¼ 7:77� 10�3), ventricular cardiac

muscle tissue morphogenesis (FE . 100, FDR ¼ 4:17� 10�2),

myofibril assembly (FE . 100, FDR ¼ 2:98� 10�2), cardiac

muscle contraction (FE . 100, FDR ¼ 2:47� 10�2), and

regulation of striated muscle contraction (FE . 100, FDR ¼
2:87� 10�2). Thus, although both target genes exhibit the

specified enriched functions, an egocentric network analysis reveals
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FIGURE 4

Networks showing the strongest shared neighborhood of co-expressed genes for the GWAS (target) genes associated with (A) recurrent AF uniquely
and (B) both single and recurrent AF. Pink diamond nodes represent the target genes and blue circular nodes represent the neighboring genes. The
sizes of the blue nodes are scaled according to their number of nearest neighbors in the network.
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that they do not share mutual genes with strong co-expression across

the heart, artery, kidney, and skeletal muscle tissues. Therefore, while

they may have functional overlap, the co-expressing gene partners

diverge for each target gene.

In our comparative analysis of gene sets uniquely associated

with either single or recurrent AF, we also evaluated genes that

were consistent across both AF categories. Among the 16 genes

identified for both AF groups (labeled as Common in Table 2),

there was a significant upregulation in tissues of the heart’s left

ventricle, atrial appendage, and skeletal muscles (see

Supplementary File 1, Figure S11). These genes did not show any

enrichment in specific gene ontology categories. Upon

conducting an egocentric network analysis, we found that 14 out

of these 16 genes displayed strong co-expression patterns with

genes differentially expressed in the heart, arteries, kidneys, and

skeletal muscles. Moreover, 13 of these genes were

interconnected via 61 shared neighbor genes (see Figure 4B and

Supplementary File 3). The 61 genes found in common for the

13 target genes show significant enrichment for fumarate

metabolic process (FE . 100, FDR ¼ 1:83� 10�2), regulation

of atrial cardiac muscle cell action potential (FE . 100,

FDR ¼ 2:51� 10�2), regulation of mitochondrial RNA catabolic
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process (FE . 100, FDR ¼ 3:36� 10�2), mitochondrial acetyl-

CoA biosynthetic process from pyruvate (FE . 100, FDR ¼
3:32� 10�2), succinyl-CoA catabolic process (FE . 100,

FDR ¼ 4:10� 10�2), tricarboxylic acid cycle (FE ¼ 73:80,

FDR ¼ 5:34� 10�8), branched-chain amino acid catabolic

process (FE ¼ 46:69, FDR ¼ 1:11� 10�2), inner mitochondrial

membrane organization (FE ¼ 35:33, FDR ¼ 2:16� 10�3),

aerobic electron transport chain (FE ¼ 15:20, FDR ¼ 2:98� 10�2),

mitochondrial ATP synthesis coupled electron transport

(FE ¼ 14:37, FDR ¼ 3:50� 10�2), and alpha-amino acid catabolic

process (FE ¼ 14:21, FDR ¼ 3:53� 10�2).

Thus, the gene sets identified as common and unique for

single and recurrent AF events are upregulated in atrial

appendage tissues of the heart, left ventricular tissues of the

heart, and skeletal muscle tissues, where the gene set identified

for recurrent AF and single AF events show significant

upregulation in atrial appendage and left ventricular tissues of

the heart, respectively, while the gene set identified for both

single and recurrent AF shows significant upregulation of all

three tissues. While both gene sets specifically identified for

single and recurrent AF events show enrichment for functions

related to heart and cardiac muscle, the recurrent AF gene set
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shows interesting enrichment of functions related to regulation of

heart rate and cardiac muscle cell action potential. Collectively,

these findings underscore the distinct genetic underpinnings

between patients experiencing single vs. recurrent AF events,

with the recurrent AF genes revealing more intricate processes.

3.4.2 Network MI
The 24 nearest genes to the regions specifically identified for

single MI events (listed as Single in Table 3) show no significant

enrichment for any gene ontology terms. Differential gene

expression analysis shows no significant up- or downregulation

of these genes in any tissue, but significant expression levels in

the tibial nerve and high expression levels in the tibial artery and

aorta artery tissues (see Supplementary File 1, Figure S12).

When inspecting gene co-expression in heart, artery, kidney,

and skeletal muscle tissues, we find that 21 of these genes show

high co-expression with other genes in these tissues. Again,

creating egocentric networks for each of these 21 target genes, we

find that all 21 target genes cluster in a giant component, where

110 genes are connected to two or more of the target genes. The

network depicted in Figure 5A illustrates genes that are

interconnected with multiple single MI target genes. Notably,

there is a dense cluster in the upper left portion of the figure,

dominated by GLI2, GLIS3, TRIB3, and SFRP1, all of which are

interconnected and share a majority of their neighborhood genes.

The known associations of both GLI2 and SFRP1 with CVD-

related traits, coupled with the detection of TRIB3 and SFRP1 in

the comprehensive MI GWAS, suggest potentially shared

functional roles of these four genes. Furthermore, they also

exhibit significant interconnections with BBS9, HECTD4, ATXN2,

and SYNDIG1. It is worth noting that HECTD4 and ATXN2

have recognized associations with MI.

Gene ontology analysis of the 110 genes shared between two or

more target genes (see Supplementary File 3) show significant

enrichment for positive regulation of several functional

categories, more specifically establishment of protein localization

to telomere (FE ¼ 54:18, FDR ¼ 1:95� 10�2), positive

regulation of protein localization to the Cajal body (FE ¼ 49:26,

FDR ¼ 2:28� 10�2), NLS-bearing protein import into nucleus

(FE ¼ 38:02, FDR ¼ 3:85� 10�3), positive regulation of

telomerase RNA localization to the Cajal body (FE ¼ 36:12,

FDR ¼ 4:17� 10�2), cristae formation (FE ¼ 36:12, 4:00� 10�2),

tricarboxylic acid cycle (FE ¼ 29:13, FDR ¼ 1:59� 10�3),

regulation of proteasomal protein catabolic process (FE ¼ 8:38,

FDR ¼ 1:63� 10�3), regulation of ubiquitin-dependent protein

catabolic process (FE ¼ 7:35, FDR ¼ 2:27� 10�2), proteasome-

mediated ubiquitin-dependent protein catabolic process (FE ¼ 4:68,

FDR ¼ 4:76� 10�2), purine-containing compound metabolic

process (FE ¼ 4:21, FDR ¼ 4:69� 10�2), nucleotide metabolic

process (FE ¼ 3:84, FDR ¼ 4:69� 10�2), and cellular component

biogenesis (FE ¼ 2:06, FDR ¼ 3:57� 10�2).

Upon analyzing the two genes uniquely associated with

recurrent MI (listed as Recurrent in Table 3), we observe neither

significant enrichment in gene ontology terms nor any distinctive

expression patterns across tissue types (see Supplementary File 1,

Figure 13). In constructing egocentric networks for these genes,
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we identify seven overlapping genes (see Supplementary File 3)

among the top 25 strongest correlations for each gene, as

depicted in Figure 5B. While four of these seven neighboring

genes (TOMM70, FASTKD2, MMADHC, and OPA1) are related

to mitochondrial function and energy production, gene ontology

analysis yielded no significant enrichment.

Investigating the genes that are common for both MI groups

(listed as Common in Table 3), we find no significant differential

co-expression in any of the tissues (see Supplementary File 1,

Figure S14). No gene ontology terms were found to be

significantly enriched for these four genes. The egocentric

networks (Figure 5C) revealed that 3 of them are linked through

18 shared neighborhood genes (see Supplementary File 3). The

18 genes connecting the 3 target genes show significant

enrichment for mitochondrial acetyl-CoA biosynthetic process

from pyruvate (FE . 100, FDR ¼ 5:92� 10�3), tricarboxylic

acid cycle (FE . 100, FDR ¼ 5:37� 10�7), negative regulation

of release of cytochrome c from mitochondria (FE . 100,

FDR ¼ 4:88� 10�2), cell redox homeostasis (FE ¼ 81:70,

FDR ¼ 3:38� 10�3), aerobic electron transport chain (FE ¼ 39:90,

FDR ¼ 2:07� 10�2), mitochondrial ATP synthesis coupled electron

transport (FE ¼ 37:71, FDR ¼ 2:38� 10�2), reactive oxygen species

metabolic process (FE ¼ 32:68, FDR ¼ 3:25� 10�2), and

mitochondrion organization (FE ¼ 12:85, FDR ¼ 1:15� 10�2).

In summary, MI gene sets do not exhibit notable tissue

specificity or functional enrichment. Yet, the gene sets linked to

both common and single MI incidents share multiple genes

within their co-expression network neighborhoods. These shared

genes exhibit functional enrichment for several pertinent

processes. At the same time, the shared gene neighborhood

specifically related to recurrent MI does not present any

functional enrichment. However, some of the genes are related to

mitochondrial function and energy production, similar to several

of the enriched functions for the shared neighboring genes for

common MI genes. Notably, the neighboring genes of the single

MI genes show significant enrichment for several functions not

identified for the recurrent of common neighboring gene sets.

Only one of the biological processes identified in the

neighborhood of single MI genes is also seen in the neighborhood

of common genes. This suggests unique functions associated with

genes specific to single MI incidents, shedding light on potential

reasons why certain patients experience only one MI event.
4 Discussion

This study demonstrates distinct clinical characteristics and

genetic predispositions between patients who experience a single

AF/MI event and those with recurrent events. To ensure that the

single AF and single MI patient groups represent relapse-free

patients, we have applied a data filtering procedure to ensure that

the ones who only have recorded single events were alive for at

least 5 years for AF and 7 years for MI after the episode and

before the study either ended or the patient died.

Single AF incidents appear more influenced by lifestyle factors

and age, with only two unique genetic regions identified. In
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FIGURE 5

Networks showing the strongest shared neighborhood of co-expressed genes for the GWAS (target) genes associated with (A) single MI uniquely,
(B) recurrent MI uniquely and (C) both single and recurrent MI. Pink diamond nodes represent the target genes and blue circular nodes represent
the neighboring genes. The sizes of the blue nodes are scaled according to their number of nearest neighbors in the network.
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contrast, patients with recurrent AF are typically younger at their

first event and exhibit a stronger genetic basis, as evidenced by 18

unique genetic regions linked to recurrent AF. Among these, two

regions are near the NAV2 and SCN10A genes, previously

hypothesized, but unconfirmed (37, 38) (N ¼ 42,585 East Asian

population, N ¼ 660 German population), to affect recurrent AF.
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The region with the lowest p-values and also the largest amount

of significant SNPs was found near the PITX2 gene for both the

single and the recurrent AF groups. Though PITX2 is the most

known gene associated with recurrent AF (1, 7, 10) (N ¼ 295

Turkish population, N ¼ 195 Caucasian population, N ¼ 991

German and American population), our results do not indicate
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such an effect. This observation extends to six other genes (SOX5,

CAV1, EPHX2, ITGA9, SLC8A1, and TBX5) (8, 10, 37) (N ¼ 660

German population, N ¼ 295 Turkish population, N ¼ 42,585

East Asian population, N ¼ 486 Caucasian population), where

variants near the SOX5, CAV1, and TBX5 genes are identified in

both the single and recurrent AF groups, and no variants near the

EPHX2, ITGA9, and SLC8A1 genes are identified in any of the

groups. PheWAS analysis of these unique single and recurrent AF

SNPs further highlight distinct susceptibilities: SNPs associated

with single AF correlate with 44 phenocodes across various

categories, whereas recurrent AF SNPs are linked to 91

phenocodes, predominantly in the circulatory system category.

Network analysis of gene sets revealed that 16 of the 18 genes

associated with recurrent AF are connected through 82 shared,

highly co-expressed neighboring genes. These recurrent AF genes,

along with their neighboring genes, are involved in complex

processes related to heart rate regulation and cardiac muscle cell

action potential. In contrast, the two genes associated with single

AF events are linked to heart and cardiac muscle processes but do

not share highly co-expressed genes.

We also find distinct clinical and genetic differences between

patients with single and recurrent MI. Unlike AF, recurrent MI is

more associated with older age at the first MI event, lifestyle

factors, and age-related issues. This is despite the fact that the

single MI group is adjusted for early death due to MI and/or

related comorbidities, and thus, this should not affect the results.

The genetic predisposition seems stronger in single MI cases,

with a total of 24 uniquely associated regions. In contrast,

recurrent MI is only associated with two regions that did not

share the association with single MI cases. Of the 24 genetic

regions uniquely identified for single MI, 14 are previously

known for MI or other CVD-related traits. The remaining 10 are

novel for MI and have previously not been reported for other

CVD-related traits. While most of these novel regions consist of

single SNPs primarily identified in the HUNT population, their

nearest genes code for functions similar to known MI regions.

Looking into the allele frequencies in each population

(Supplementary File 4), we see that these variants are rather

common in HUNT and in the general European population

[based on reports from gnomAD (39)], while they are rare

variants in the UKBB population and thereby not included in the

meta-analysis. Further studies are needed to investigate if these

variants show similar effects in other European and non-

European populations.

PheWAS analysis reinforces the genetic distinction between

single and recurrent MI groups. The single MI group’s SNPs are

linked to 128 phenotypes, predominantly in the circulatory

system category, with additional associations in the endocrine/

metabolic category and notable links to neurodegenerative

disorders. In contrast, the SNPs related to recurrent MI correlate

with 16 phenocodes, involving both circulatory and endocrine/

metabolic categories, but the associations are not as pronounced

as those in the single MI group. Our network analysis reveals

distinct gene interactions for each group. Of the 24 genes

uniquely associated with single MI, 21 share connections with

110 genes in the co-expression network. However, the two genes
Frontiers in Cardiovascular Medicine 15
associated with recurrent MI have seven highly co-expressed

genes. This indicates more extensive genetic interconnections in

single MI cases. Interestingly, the shared neighboring genes for

single MI, and those common to both single and recurrent MI,

show functional enrichment in several biological processes. In

contrast, the shared neighboring genes for recurrent MI do not

show significant functional enrichment. This disparity suggests

distinct biological pathways involved in single vs. recurrent MI

events. Moreover, only one function is common between the

shared genes for both single and recurrent MI, suggesting unique

biological mechanisms specific to single MI events.

The results suggest a greater genetic influence in AF compared

to MI, but several factors could affect this perception. Clinically, it

is expected that more genes would increase the risk of recurrent

AF, a pattern observed in this study. In contrast, the findings

for MI are the opposite, potentially influenced by their higher

age: MI becomes less common in younger individuals, and in

older populations, comorbidities often overshadow genetic risk

factors. There could also be physiological reasons behind these

observations. For instance, MI in younger individuals might

more frequently result from genetic factors related to platelet

aggregation or atherosclerosis, conditions that are generally

more responsive to treatment. In older individuals, MI might be

more associated with broader age-related issues, reducing the

relative impact of genetics. The reporting of these conditions

could also influence the results, with AF potentially being

under-reported compared to MI, which itself is possibly over-

reported. This discrepancy could explain why phenocodes

related to neurodegenerative disorders and cerebral ischemia

emerge as significant only in single MI cases in the PheWAS

results. These findings might be influenced by diagnostic

practices where MI is often recorded as a cause of death, even

when other diseases are the actual cause, or in cases where

individuals die before a recurrent event occurs. The latter has

been adjusted for by excluding individuals with single events

with less than 7 years between the event and the censoring date,

being either death or the end of the study. Still, even with this

adjustment, some single MI event cases might be censored out

before a second event, possibly influencing the case groups and

thereby the results.

The observed differences in clinical characteristics for both

diseases might be even more pronounced if the HUNT and

UKBB studies had used similar questionnaire formats. In the

HUNT study, participants involved in both HUNT2 and HUNT3

provided cholesterol and blood pressure measurements taken 11

years apart. We opted to use the measurements recorded closest to

the first AF or MI event, as we believe these offer the most

relevant information. However, for the UKBB participants, most

were measured only once, eliminating the option to choose

measurements closest to the event. This discrepancy in data

collection methodology could explain why significant differences

in cholesterol and blood pressure measurements are observed

between single and recurrent event groups in the HUNT

population but not in the UKBB group. The lack of longitudinal

data in the UKBB may obscure potential differences that are more

apparent in the HUNT study due to its repeated measurements.
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In any GWAS study, larger sample sizes, diverse ancestry

representation, and result replication are crucial. The HUNT

study, comprised solely of individuals of European ancestry, led

us to select only European ancestry participants from the UKBB

for consistency. However, for global applicability, conducting

similar analyses across all ancestries is essential. Regarding

sample sizes, while the combined participant pool of HUNT and

UKBB exceeds 500,000, the specific filtering and subgrouping in

our study result in some case/control groups having fewer than

2,000 individuals. This reduced size may limit our ability to

achieve robust significant findings. The small sample sizes might

explain the prevalence of significant singleton SNP hits (one SNP

per region) found only in the HUNT study, with the same SNPs

with too rare allele frequencies in the UKBB population.

Increasing sample sizes or including an additional population

would likely enhance the reliability of these findings, particularly

since these variants are reported as common in the general

European population. While increasing the sample sizes could

verify/dispute or even identify additional regions, some genetic

differences observed between recurrent and single cases might

diminish. Although many spikes in the Manhattan plots

(Figures 1 and 2) indicate clear differences between single and

recurrent cases, certain regions almost reach significance for the

opposite group, such as the hit on chromosome 8 for recurrent

AF. This suggests that some observed genetic distinctions might

be less pronounced with a more substantial and diverse sample.

While our meta-analysis did not yield any GWAS significant

results when directly comparing recurrent to single AF or MI

cases, the data still indicate genetic differences between these

groups. Notably, some genetic regions were identified in both

single and recurrent groups (termed “common”), while a

substantial number were unique to each group. This could

suggest that the common regions may play a role in the general

susceptibility to AF and MI, whereas the unique regions could

confer specific genetic risks for the disease’s form (as a single or

recurrent events). Further studies are needed to test the

hypotheses generated from this study: Investigate the effect of the

novel SNPs and genes identified and their involvement in either

single or recurrent AF/MI in particular. While many of the

identified genes and their related function might not have a

direct confirmed effect on AF/MI, we do see similar functions in

the novel genes as in the known AF/MI genes, thus showing the

potential for identification and generating an understanding of

new genetic functions of the diseases.

There has been considerable research aimed at uncovering

genetic causes for AF and MI. Our findings underscore the

importance of genetic studies focused on disease subgroups, as

conducted here. Both AF and MI are widespread diseases with

varied impacts on individuals’ lives. The progression and outcomes

of these diseases are not uniform across all patients. By examining

subgroups within these diseases, we could gain new insights into

their mechanisms, potentially leading to more effective prevention

and treatment strategies tailored to different patient profiles.

A limitation of using the LD Score Regression software to

calculate the observed scale heritability is that it is not well suited

for mixed models. The GWAS analysis was performed using
Frontiers in Cardiovascular Medicine 16
SAIGE, where we assume a logistic mixed model to account for

imbalanced case–control ratios and relatedness. Hence, the

precision of the heritability calculated here is limited due to this fact.
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HUNT population, the UKBB population and as reported in gnomAD (39)
(https://gnomad.broadinstitute.org/), respectively. The ‘HUNT/UKBB’
columns shows if the SNP is identified in HUNT or UKBB, and the
‘imputation info’ columns shows the imputation info given in the
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Excel file containing the data from Tables 2, 3.
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