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Identifying molecular subgroups
of patients with preeclampsia
through bioinformatics
Huijie Zhang1, Jianglei Ma2 and Xueli Gao1*
1Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai,
China, 2Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, China
Preeclampsia (PE) is a pregnancy-related disorder associated with serious
complications. Its molecular mechanisms remain undefined; hence, we aimed
to identify molecular subgroups of patients with PE using bioinformatics to aid
treatment strategies. R software was used to analyze gene expression data of
130 patients with PE and 138 healthy individuals from the Gene Expression
Omnibus database. Patients with PE were divided into two molecular
subgroups using the unsupervised clustering learning method. Clinical feature
analysis of subgroups using weighted gene co-expression network analysis
showed that the patients in subgroup I were primarily characterized by early
onset of PE, severe symptoms at disease onset, and induced labor as the main
delivery method. Patients in subgroup II primarily exhibited late PE onset,
relatively mild symptoms, and natural delivery as the main delivery method.
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway
enrichment analyses revealed that the significant enrichment of calcium ion
channels in subgroup II indicated the potential efficacy of calcium antagonists
and magnesium sulfate therapy. In conclusion, the establishment of PE
molecular subgroups can aid in diagnosing and treating PE.
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1 Introduction

Preeclampsia (PE) is a pregnancy-related disorder characterized by elevated blood

pressure that could be accompanied by proteinuria after 20 weeks of pregnancy (1). PE

can cause serious complications, such as cerebral hemorrhage, pulmonary edema, acute

kidney injury, liver dysfunction, hemolysis, seizures, and placental abruption (2).

Furthermore, PE can result in premature delivery, fetal growth restriction, and an

increased risk of fetal morbidity and mortality (1). Globally, PE occurs in 3%–5% of all

pregnant women and is a crucial factor in maternal mortality (3). In the United States,

6.6% of pregnancy-related deaths are associated with gestational hypertension (1).

Globally, approximately 760,000 maternal and 500,000 infant deaths are associated with

PE annually, and the mortality rate of patients is approximately 10 times higher in low-

income countries than in high-income countries (4). However, the pathogenesis of PE

remains unclear.
Abbreviations

BP, biological process; CC, cellular component; DEG, differentially expressed genes; ERK, extracellular
signal-regulated kinase; GAP, GTPase-activating protein; GEO, gene expression omnibus; GO, gene
ontology; GSEA, gene set enrichment analysis; KEGG, Kyoto encyclopedia of genes and genomes; MF,
molecular function; PCA, principal component analysis; PlGF, placental growth factor; ROS, reactive
oxygen species; WGCNA, weighted gene co-expression network analysis.
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Owing to the interaction between genetic, environmental, and

immune factors, trophoblast invasion and spiral arteriole

remodeling in the early stages of placental development can lead to

uterine placental blood flow disorders (5). Under placental hypoxia,

an imbalance in the expression of soluble factors can cause

oxidative stress and inflammatory reactions, leading to systemic

endothelial dysfunction and multisystem organ ischemia (1). As the

delivery of the fetus is currently the only definitive treatment for

PE, it poses a serious threat of increasing the risk of mortality for

both pregnant women and newborns. The development of

precision medicine has increased interest in identifying biomarkers

for the diagnosis and treatment of PE. Over the past few decades,

the importance of factors related to oxidative stress, inflammation,

angiogenesis, and antiangiogenesis has improved the current

understanding of the molecular pathogenesis of PE. Placental

growth factor (PlGF) and soluble fibroid tyrosine kinase 1 (sFlt-1)

are pro- and anti-angiogenic factors, respectively. In patients with

PE, PlGF expression decreases and sFlt-1 expression increases (5).

When a patient is <37 weeks pregnant and the sFlt-1:PlGF ratio is

≤38, the possibility of PE occurring within the next 4 weeks can be

ruled out, with a predictive value of 99.3%. When the ratio is >38,

the predictive accuracy of PE within 4 weeks is 36.7%, with a

prediction sensitivity of 66.2% (6). In a recent study, genetic

characteristics analysis using whole-exome sequencing in patients

with severe PE identified subsets of protein interaction networks in

these patients, suggesting that LAMB2, PTK2, RAC1, QSOX1, FN1,

and VCAM1 may be related to the pathogenesis of PE (7).

Although introducing these biomarkers into clinical practice has

yielded promising results, there are still significant unmet clinical

needs; this may be because PE, including multiple subtypes, can

lead to maternal and infant mortality and morbidity through

various pathophysiological pathways. Approaches for correctly

identifying and testing the subtype correlations are lacking (8).

Bioinformatics analysis is an important tool for analyzing and

evaluating datasets in modern biomedical research. It can be used

to predict protein structure, sequence alignment, protein–protein

interaction (PPI), and other characteristics, and it is particularly

useful for revealing the biochemical and functional roles of proteins

(9). This study aimed to use unsupervised computational learning,

weighted gene co-expression network analysis (WGCNA), Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analyses to explore the entry points of the transcriptome

dataset of patients with PE in the Gene Expression Omnibus

(GEO) database, as well as to conduct bioinformatics analysis on

these datasets to construct a molecular subgroup of these patients,

providing new insights into the molecular mechanisms of PE.

Effective identification of PE subtypes will contribute to the early

prevention and diagnosis of PE and guide targeted treatment.
2 Methods

2.1 Downloading and processing of datasets

We searched for “preeclampsia” in the GEO (https://www.ncbi.

nlm.nih.gov/geo/) of the National Center for Biotechnology
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Information. We selected microarray datasets containing

patients with PE and healthy controls (GSE4707, GSE10588,

GSE12767, GSE25906, GSE31679, GSE48424, GSE66273,

GSE91077, GSE102897, GSE147776, GSE149812, GSE165324,

and GSE166846) and corresponding platform files (GPL1708,

GPL2986, GPL570, GPL1602, GPL6947, GPL6480, GPL4133,

GPL13497, GPL22120, GPL20844, GPL212844, GPL22120, and

GPL22120) to download. Gene names on the dataset were

annotated using Perl version 5.30.0 (https://www.perl.org/), and

the “limma” and “sva” packages of R software (V 4.2.2) were

used for principal component analysis (PCA) clustering batch

correction to eliminate batch effects in samples (10). Specifically,

the linear modeling method using the “limma” package was used

to perform intragroup correction on each microarray dataset.

Then, the “sva” package was used to integrate all samples in the

datasets. As the data used in this study were sourced from the

GEO public database, the contributors to the database obtained

ethical approval and informed consent from each patient.

Therefore, our study did not require further ethical or any other

approval. The flowchart in Figure 1 shows the design for this study.
2.2 Constructing molecular subgroups
of patients

Gene expression was analyzed after batch correction using

the “limma” package of R software, and consensus clustering

was conducted on genes and visual output heatmaps using

the “ConsensusClusterPlus” package (11). Specifically, an

unsupervised clustering learning method was used to cluster

genes with the same genetic characteristics as those expressed in

patients with PE. The outputs were visualized by grouping the

number of clusters (defined as a parameter κ and set to 2–10),

and the internal clustering of each group was evaluated. The

higher the evaluation, the better the similarity in gene expression

within the group. The subgroup with the highest consistent

evaluation score was selected as the study subtype.
2.3 Identification of clinical features of
patient subgroups

Based on the continuity of clinical features, the clinical

characteristics of patients with PE were divided into discrete

variables, including symptom severity (severe PE was defined as

one or more of the following conditions: blood pressure above

160/110 mmHg, proteinuria above 5,000 mg/24 h, comorbidities

with multiple system diseases, maternal seizures, stroke or

fetal intrauterine growth restriction below the third percentile),

delivery method, and sex of newborns; and continuous variables,

including patient age and gestational week (early onset:

gestational age <34 weeks; late onset: gestational age ≥34 weeks).

The proportion of discrete variables in patients was analyzed

using the “rstatix”, “ggplot2”, “ggpubr”, and “reshappe2”

packages of the R software (12), and the mean and standard

deviation values of continuous variables were examined using the
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FIGURE 1

Flowchart of the research design.
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“ggplot2” and “ggpubr” packages. Differences between groups were

compared using a one-way analysis of variance.
2.4 Screening of subgroup-unique genes
and construction of PPI networks

We used the “limma” package to screen differentially expressed

genes (DEGs) between subgroups and control groups and within

each subgroup. The intersecting genes of the two genes were the

uniquely expressed genes of the subgroup. Unique genes in the

subgroups were significantly differentially expressed only in

specific subpopulations. The screening criteria were a mean filter

of >0.2 and a corrected p-value of <0.05. To better analyze the

characteristics of DEGs between subpopulations, we only selected

the uniquely upregulated DEGs of each subpopulation. The top

10 unique DEGs from each subgroup were selected and imported

into the STRING online tool (https://string-db.org/). A

confidence level of 0.4 was selected, and a PPI network diagram

was created to understand the relationship between protein

linkages within each subgroup.
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2.5 Gene set enrichment analysis (GSEA)
of patient subgroups

To determine the unique DEGs among different subgroups and

to evaluate whether the consistency of DEGs between subgroups

and normal samples, the comparison files of the subgroups and

control groups were converted into gene sets and gene list files

using the Perl software. The files converted from each subgroup

were inputted into GSEA version 5.32 (13), the running

parameters were set to 5,000, and the remaining parameters were

obtained from the software by default.
2.6 WGCNA of patient subgroups

We used the “WGCNA” package of R software to construct

and visualize the WGCNA for subgroup-unique genes (14). First,

we used the “limma” package to filter the corrected abnormal

samples. A co-expression network was then constructed using

the standard scale-free network analysis function, and the soft

threshold power value β was calculated using the power function
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“pickSoftThreshold” to enhance the aggregation of gene expression

(15). We drew a tree-like gene module diagram for co-expressed

gene clustering. Pearson’s correlation analysis was used to

analyze the relationship among the delivery mode, symptom

severity, sex of newborns, maternal age, and gestational week

with the genetic modules to determine the relationship between

clinical traits and genetic modules. The expression of gene

modules obtained from the WGCNA in subgroups I and II was

produced using the “heatmap” package of R software and was

presented in the form of a heatmap (14). Finally, a visualized

expression heatmap of gene modules in subgroups, which could

indirectly reveal the enrichment of subgroups and clinical traits,

was drawn using the “limma” and “pheatmap” packages of the

R software.
2.7 GO and KEGG pathway analyses of gene
modules

We analyzed the GO [biological process (BP), molecular

function (MF), and cellular component (CC)] of the

gene module using the “org.Hs.eg.db”, “clusterProfiler”, and

“enrichplot” packages of R software (16). The KEGG pathway

enrichment analysis was performed using the DAVID v6.8 online

tool (https://david.ncifcrf.gov/) (17). The significantly expressed

genes from each gene module were entered into the DAVID

website to obtain significantly enriched KEGG pathways.
2.8 Statistical analyses

This study used R software version 4.2.2. Intergroup

comparisons were conducted using a one-way analysis of

variance. Continuous variables were analyzed using the SPSS 26.0

statistical software (IBM Corp., Armonk, NY, USA), and discrete

variables were analyzed using the chi-squared test. The results

are expressed as mean ± standard deviation. A p-value of <0.05

was considered statistically significant.
3 Results

3.1 Data processing and grouping

After organizing all datasets, samples from 130 patients with

PE and 138 healthy individuals were obtained. PCA-based

visualization images showed that before the batch effects were

eliminated, each dataset was located in a different region; there

was no intersection between datasets (Figure 2A). After

eliminating the batch effects, the PCA results showed that all

samples were clustered into a single region, which could be

regarded as a unified dataset (Figure 2B). After consensus

clustering of genes in patients with PE, based on the set κ, nine

clusters were obtained. The visualized clustering results showed

that when the cluster was two, the consistency evaluation of each

subgroup was at a high level (Figure 2C). The cluster correlation
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heatmap of subgroups showed high enrichment within each

subgroup and low enrichment between subgroups (Figure 2D).
3.2 Clinical characteristics of patient
subgroups

The clinical characteristics of 130 patients with PE (112 in

subgroup I and 18 in subgroup II) were analyzed using the

downloaded datasets (Supplementary Table S1). The mean and

standard deviation values of age (years) and gestational week

were 31.14 ± 5.13 and 33.30 ± 3.44, respectively, in subgroup I

and 31.57 ± 5.77 and 35.44 ± 2.28, respectively, in subgroup II.

Intergroup analysis showed no significant difference in age

between subgroups I and II (Figure 3A), and the gestational week

of subgroup I was significantly lower than that of subgroup II

(p < 0.05; Figure 3B). The symptoms in subgroup I were more

severe than those in subgroup II (p < 0.05; Figures 3C,D).

Although more patients in subgroup I underwent induced labor

based on clinical decision and those in subgroup II experienced

spontaneous labor, no significant difference was found in the

delivery methods (Figures 3E-F). In addition, no significant

difference was observed in the sex of newborns between these

two subgroups (Figures 3G-H).
3.3 Unique genes and PPI networks of
patient subgroups

According to the screening criteria of a mean filter of >0.2 and

corrected p-value of <0.05, 3,536 upregulated DEGs and 3,413

downregulated DEGs were identified between subgroup I and the

control group (Supplementary Table S2); 3,162 upregulated

DEGs and 3,787 downregulated DEGs were identified between

subgroup II and the control group (Supplementary Table S3);

and 3,168 upregulated DEGs and 3,781 downregulated DEGs

were identified between subgroups I and II (Supplementary

Table S4). After screening for upregulated DEGs and

intersections, 1,099 and 1,043 unique DEGs were identified in

subgroups I and II, respectively (Supplementary Table S5). The

intersection results indicated no common unique DEGs among

the subgroups (Figure 4A). The PPI network results showed 20

nodes, 9 protein pairs, and close interactions of DEGs within

each subgroup (Figure 4B). Table 1 lists the number of nodes in

the top 10 DEGs for each subgroup.
3.4 GSEA of patient subgroups

On the GSEA image, the black vertical lines represent the

unique DEGs among subgroups, whereas the gray vertical lines

represent the DEGs between subgroups and health control

samples. Both sets of data were enriched on the left side of the

image. Moreover, the p-value and error detection rate value were

<0.05, indicating that the two sets of DEGs exhibited the same

enrichment trend (Figure 5). GSEA results indicated that the
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FIGURE 2

Processing and grouping of transcriptome datasets. (A) Pre-processing principal component analysis (PCA) visualization results, with different colors
representing different datasets. (B) PCA visualization results after batch effect processing, in which the samples are centered and aggregated into a
large set. (C) The consistency evaluation visualization results of clustering show that when clustering is set to 2, the subgroup scores are all
higher. (D) When clustering is set to 2, the heatmap matrix shows that the darker the blue color inside the subgroup, the higher the similarity of
gene expression.
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unique DEGs among different subgroups, DEGs between

subgroups, and health normal samples were consistent.
3.5 WGCNA in patients with PE

WGCNA was performed on 6,949 genes in the processed

samples. After excluding abnormal samples, the optimal soft

threshold power value was selected as 6 (Figure 6A). According

to the gene consensus expression tree, three colored gene

modules were generated: blue (1,462 genes), brown (242 genes),

and gray (438 genes; Figure 6B). The heatmap of gene modules

and clinical traits showed a significant negative correlation

(p = 0.03) between spontaneous labor and blue modules and a

significant positive correlation (p < 0.001) with brown modules.

Severe symptoms showed a significant positive correlation with

the blue module (p = 0.02) and a significant negative correlation

with the gray module (p < 0.001). Gestational week was

significantly negatively correlated with the blue module (p = 0.03)

and positively correlated with the brown (p = 0.02) and gray

(p = 0.001) modules (Figure 6C). The enrichment heatmap of the

gene modules and subgroups showed that the blue modules in

subgroup I were highly expressed, whereas brown and gray
Frontiers in Cardiovascular Medicine 05
modules were poorly expressed. Moreover, blue modules revealed

low expression in subgroup II, whereas brown and gray modules

showed high expression (Figure 7).
3.6 GO and KEGG

By analyzing the GO and KEGG enrichment pathways of gene

modules, we observed that for BP, intrinsic apoptotic signaling

pathways, vessel organization, regulation of mitotic cell cycle

phase transition, and positive regulation of protein modification

by small protein aggregation or removal were significantly

enriched in the blue module (p < 0.05); synapse organization,

skin development, regulation of membrane potential, inorganic

anion transport, and chloride transport were significantly

enriched in the gray module (p < 0.05; Figure 8A). For CC,

focal adhesions, cell-substrate junctions, pharmacological

vesicles, organelle subcompartments, and nuclear species were

significantly enriched in the blue module (p < 0.05); the

calcium channel, voltage-gated calcium channel, transporter,

transmembrane transporter, and ion channel complexes were

significantly enriched in the gray module (p < 0.05; Figure 8B).

For MF, ubiquitin-like protein transfer, ubiquitin–protein
frontiersin.org
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FIGURE 3

Clinical characteristics of the subgroups. (A) Patient age; (B) gestational week; (C) proportion of severe cases; (D) proportion of mild cases; (E)
proportion of natural childbirth; (F) proportion of induced labor; (G) male infant ratio; (H) female infant ratio. *p < 0.05.

Zhang et al. 10.3389/fcvm.2024.1367578
transfer, and GTPase activities were significantly enriched in the

blue module (p < 0.05); oxidoreductase activity with NAD(P)H as

a donor and quinone or a similar compound as an acceptor,

NADH dehydrogenase activity, and structural constitution of the

ribosome were significantly enriched in the brown module (p <

0.05); and gated channel, ion channel, channel, passive

transmembrane transporter, and high voltage-gated calcium

channel activities were significantly enriched in the gray module

(p < 0.05) (Figure 8C). In the KEGG enrichment pathway, signal

pathways, such as those involved in small cell lung cancer,

autophagy, legionellosis, shigellosis, glycosylphosphatidylinositol

anchor biosynthesis, and the HIV-1 viral life cycle, and the p53

signaling pathway, were significantly enriched in the blue module

(p < 0.05); ribosome components, metabolic pathways, oxidative

physiology, reactive oxygen specifications, peroxisomes, and

purine metabolism were significantly enriched in the brown

module (p < 0.05); and the MAPK signaling pathway, maturity-

onset diabetes of the young, calcium signaling pathway,

GABAergic synapse, neuroactive ligand-receptor interaction,

B-cell receptor signaling pathway, retrograde endocannabinoid
Frontiers in Cardiovascular Medicine 06
signaling, phototransduction, taste transduction, and oxytocin

signaling pathway were significantly enriched in the gray module

(p < 0.05; Supplementary Table S6).
3.7 Characteristics of aggregated patient
subgroups

To obtain the characteristics of each subgroup more intuitively,

Table 2 summarizes the clinical characteristics, unique DEGs, and

possible effective treatment methods and shows different clinical

and molecular characteristics among the subgroups, indicating

that patients with PE can be divided into two subgroups.
4 Discussion

Over the past few decades, extensive research has been

conducted on PE. However, the subtypes of patients and

therapeutic biomarkers for PE remain unclear. Identifying the
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TABLE 1 PPI network nodes of the top 10 DEGs in the subgroups.

Subgroup Gene Nodes
Ⅰ IQGAP1 7

USP38 0

ACTR3 6

RB1CC1 0

NMD3 3

PPP1R15B 0

VPS4B 0

RANBP6 0

CLTC 7

CTSO 0

Ⅱ C12orf10 0

CHCHD5 0

ERAL1 0

MRPL28 2

MRPL2 5

ERCC1 0

S100A16 0

TCEB2 1

NDUFB7 6

NDUFA11 6

FIGURE 4

Venn diagram and PPI network of subgroup-unique differentially expressed genes (DEGs). (A) The blue and red areas represent all unique DEGs of
subgroups I and II, and the middle region represents intersecting DEGs between subgroups. (B) The blue area represents the DEGs of subgroup I,
the red area represents the DEGs of subgroup II, and different colored balls and lines represent the relationships between genes.
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molecular subpopulations of patients with PE is crucial for disease

prevention and treatment. To the best of our knowledge, this study

is the first to use bioinformatics methods to divide patients with PE

into two molecular subgroups and to analyze the subgroups’

clinical characteristics, unique DEGs, as well as GO and KEGG

enrichment pathways for identifying the feasibility of grouping.

The clinical feature analysis of subgroup I showed that patients

in this subgroup had a short gestational week and severe symptoms

at the time of onset, which is related to abnormalities in the reactive

oxygen species (ROS)-autophagy axis during pregnancy (18). ROS
Frontiers in Cardiovascular Medicine 07
are products of aerobic energy metabolism and have critical

antioxidant activities. Excessive ROS levels can lead to oxidative

stress during early pregnancy. Autophagy induces trophoblasts to

enter a hypoxic placental environment. Abnormal regulation of

the ROS-autophagy axis leads to abnormal autophagy activity,

thereby causing PE and intrauterine growth restriction. At the

end of pregnancy, the ROS-autophagy interaction changes and is

involved in the delivery process. In addition, WGCNA results

showed that severe symptoms and lower gestational weeks were

significantly positively correlated with the blue module, which

was significantly overexpressed in subgroup I; this again indicates

that patients in subgroup I had more severe symptoms. DEGs

associated with lower gestational weeks and worsening symptoms

helped the establishment of subgroup I. A previous study showed

no significant correlation between the risk of PE and sex of

newborns after analyzing the correlation between them (19).

Furthermore, another study on the impact of fetal sex in high-

risk premature pregnant women with PE showed no significant

relationship between the sex of premature infants and the risk of

PE (20). After comparing the sexes of newborns in the

subgroups, no significant difference was found between these

groups, indicating that the sex of newborns was not an

independent factor in distinguishing the subgroups of patients

with PE.

GTPase-activating protein 1 containing an IQ motif (IQGAP1)

is a member of the IQGAP protein family and is evolutionarily

conserved in eukaryotes. It was first recognized in human

osteosarcoma tissues (21). Owing to its similarity in sequence to

GTPase-activating protein (GAP), it is considered a type of GAP

that inhibits the inherent GTPase activity of binding partners

and stabilizes the active form of the G protein (22). GAP also

participates in various biological activities, such as cell–cell
frontiersin.org
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FIGURE 5

Gene Set enrichment analysis of (A) subgroup I and (B) subgroup II. The green line represents the score of the enrichment pathway. Each black line
represents a differentially expressed gene, and the gray area represents the signal-to-noise ratio between the subgroup and control.

FIGURE 6

WGCNA of the dataset. (A) Different soft threshold power values in a standard scale-free network, with the red line indicating the optimal power value.
The left figure shows the power value and scale-free fitting index. (B) Color gene module obtained by the dynamic tree graph method. (C) Heatmap of
the correlation between color modules and clinical features is visualized using the “WGCNA” package of the R software (version 4.2.2).

Zhang et al. 10.3389/fcvm.2024.1367578
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FIGURE 7

Enrichment heatmap of gene modules and subgroups representing different subgroups on the horizontal axis and different colored gene modules on
the vertical axis. Red represents high expression, and blue represents low expression; the darker the color, the more significant it is.
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adhesion, cytoskeleton dynamics, and cell invasion (23). Our study

showed that IQGAP1 was significantly upregulated in subgroup I

and had multiple protein pair nodes, indicating its critical role in

PE occurrence and development. Placental hypoxia is one of the

characteristics of PE. Studies have shown that IQGAP1 is

upregulated in macrophages and endothelial cells of hypoxic

tissue and can mediate neovascularization by regulating

inflammatory cell infiltration and ROS production in hypoxic

tissue (24). In hypoxic placental tissues and perivascular

areas, the recruitment of endothelial cells or macrophages is

impaired, which is related to reduced expression of vascular

endothelial growth factor derived from macrophages, affecting

angiogenesis and tissue repair in ischemic tissues. IQGAP1-

dependent macrophage recruitment plays a crucial role in

neovascularization, facilitating post-ischemic and hypoxia blood

flow reconstruction and tissue repair. It is also considered a

valuable therapeutic target for ischemic vascular diseases (24). In

addition, as a scaffold protein for extracellular signal-regulated

kinase (ERK), IQGAP1 regulates growth factor-stimulated ERK

activity by binding to ERK2, mediates the binding of survival

signals to cardiac mast cells, and promotes left ventricular
Frontiers in Cardiovascular Medicine 09
remodeling after pressure overload (22). These findings suggest

that IQGAP1 is a potential biomarker for PE.

In subgroup I, some molecules associated with fetal growth

restriction exhibited significant differential upregulation.

Phosphorylation of the protein phosphatase 1 regulatory subunit

15B (PPP1R15B) is a conserved cellular response to stress that

inhibits overall gene translation and overexpression. This

phosphorylation is crucial for embryonic development (25). Cells

cannot transition from the G1 phase to the S phase following

PPP1R15B silencing, leading to decreased proliferation and

apoptosis (26). A homozygous mutation in the conserved region

of the PPP1R15B gene (c.1972G>A; p. Arg658Cys) in twin

brothers results in microcephaly, short stature, spinal cord

dysplasia, and intellectual disabilities (27). Abdulkarim et al. (28)

reported that after the R658C mutation in the PPP1R15B gene in

two children, a conserved amino acid in the binding region of

protein phosphatase-1 was affected, reducing PPP1R15B

dephosphorylation and leading to β-cell apoptosis, small head

disease, short stature, intellectual disability, and diabetes.

Vacuolar protein sorting 4B (VPS4B) is a member of the ATPase

protein family and a crucial component of the sorting complex
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FIGURE 8

Go analysis. (A) Biological process; (B): cellular component; (C) molecular function. The horizontal axis represents different color gene modules,
whereas the vertical axis represents terminology. The triangle expression is significantly enriched (p < 0.05), whereas the circle expression is not
significant (p > 0.05); the larger the shape, the more significant the difference.
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TABLE 2 Summary of characteristics of the subgroups.

Category Characteristics

Subgroup I
Clinical features Younger gestational age, severe symptoms,

induced labor, higher risk of fetal growth
restriction or malformation

Unique DEGs IQGAP1, USP38, ACTR3, RB1CC1, NMD3,
PPP1R15B, VPS4B, RANBP6, CLTC, CTSO

Effective therapeutic method Combined treatment

Subgroup II
Clinical features Older gestational age, mild symptoms,

spontaneous labor

Unique gene C12orf10, CHCHD5, ERAL1, MRPL28, MRPL2,
ERCC1, S100A16, TCEB2, NDUFB7, NDUFA11

Effective therapeutic method Calcium ion blocker, magnesium therapy
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that regulates membrane protein internalization and lysosomal

degradation (29). VPS4B is closely related to dentin dysplasia

pathogenesis (30, 31). VPS4B can participate in cell proliferation

and act as a regulator of Wnt-β-catenin signaling in human

gingival fibroblasts. The upstream transducer of the catenin

signaling pathway promotes cementum formation. Mutations in

the β-catenin gene cause a significant decrease in RNA

transcription and protein function, leading to the loss of target

cell function (30). In mice, homozygous deletion of VPS4B led to

embryonic death during early pregnancy (29); this may be

because VPS4B knockout, which interferes with RNA

transcription in embryos, results in changes in the transcription

levels of genes related to apoptosis, cell proliferation, and

endocytosis; this affects mouse prenatal death. Clathrin heavy

chain (CLTC), a component of clathrin, is a vesicular protein

involved in intracellular transport and endocytosis. It is related to

human neurological/developmental diseases, with mutations

mainly causing phenotypes such as microcephaly, developmental

delay, and intellectual impairment (32, 33). Based on these

research results, we speculate that patients in subgroup 1

are more susceptible to fetal growth restriction or

developmental abnormalities.

Mitochondria are double-membrane organelles in eukaryotic

cells and the main sites of ATP production. They are involved in

various cellular processes, including protein and fatty acid

synthesis, calcium ion balance regulation, redox reactions, and

cell apoptosis (34). Mitochondria are highly sensitive to hypoxic

environments and undergo a series of reactions when exposed to

adaptation or stress (35). The mother supplies oxygen and

nutrition to the fetus via the placenta, which plays a crucial role

in pregnancy. The maintenance of placental function depends

highly on mitochondria-generated energy. PE originates

from placental dysfunction (36). Therefore, mitochondrial

abnormalities are the primary cause of placental dysfunction.

Mitochondrial damage caused by bioactive factors released by the

placenta can lead to endothelial dysfunction and increased

maternal blood pressure (37). In subgroup Ⅱ, NADH:

ubiquinone oxidoreductase subunit A11 (NDUFA11) is one of

the subunits of mitochondrial respiratory chain complex I, which

is crucial for maintaining the balance of mitochondrial energy
Frontiers in Cardiovascular Medicine 11
metabolism and is involved in regulating mitochondrial

respiratory function, cell apoptosis, and oxidative stress response

(38). NDUFA11 deficiency is associated with various diseases,

including NDUFA11-deficient mitochondrial disease and

atherosclerotic disease (39). Another subunit of the

mitochondrial respiratory chain complex I, NDUFB7, was

significantly upregulated in subgroup II. Correia et al. (40)

reported a patient with a dual-allele mutation (c.113-10C>G) in

the NDUFB7 intron, which resulted in a significant decrease in

NDUFB7 protein function and reduced complex I activity,

leading to fetal intrauterine growth restriction, anemia,

postpartum hypertrophic cardiomyopathy, and severe lactate

acidosis. In addition, another unique gene in subgroup II,

Escherichia coli Ras protein-like 1 (ERAL1), is also associated

with mitochondrial ribosomal components (41). ERAL1

deficiency increases mitochondrial superoxide production,

reduces mitochondrial membrane potential, inhibits cell growth,

and induces apoptosis. These findings suggest that placental

dysfunction is possibly the main target organ of damage in

subgroup II patients.

In subgroup II, the GO and KEGG enrichment pathways

significantly enriched calcium ion channel activity. Calcium

channel blockers dilate small arteries and inhibit coronary

vasospasms. The 2021 International Guidelines for the Treatment

of Pregnancy-induced Hypertension have identified oral

nifedipine (a calcium blocker) as a first-line treatment for PE

(42). Magnesium therapy is most widely used to prevent seizures;

the underlying mechanisms include blocking calcium ion

channels, relaxing blood vessels, and altering neurotransmitter

activity, which can significantly reduce maternal blood pressure

(1). Therefore, calcium antagonists and magnesium therapy may

be more effective for subgroup II patients.

The strengths of our research lie in the analysis of the

microarray dataset of PE patients through multiple reliable

bioinformatics methods, elucidating possible subtypes of

PE patients from a molecular perspective and introducing the

characteristics of various subtypes. However, this study has some

limitations. First, this study mainly analyzed microarray datasets

in public databases; the unique genes of each subgroup need to

be validated through cytology, zoology, and even human tissue

specimens. Second, the sample size included in this study was

limited, and the downloaded patient information lacked clinical

features such as blood pressure, urinary protein status, platelet

count, and liver and kidney functions; thus, further evaluation of

these clinical features in subgroups was impossible. Therefore,

before these results are used in clinical practice, they need to be

validated in a larger cohort to confirm the robustness of the

results. In addition, the construction of molecular subgroups

requires a combination of proteomics and metabolomics analysis

to improve the accuracy of grouping.
5 Conclusion

In this study, we used transcriptome data to classify PE

patients into two subgroups, analyze the differences between
frontiersin.org
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subgroups, and identify the unique DEGs for each subgroup. Our

findings provide insights into the diagnosis and personalized

treatment of PE.
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