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Research landscape of genetics in
dilated cardiomyopathy: insight
from a bibliometric analysis
Tiantian Chao1, Yaru Ge2, Jinghui Sun1* and Chenglong Wang1*
1National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy
of Chinese Medical Sciences, Beijing, China, 2Community Medical Center, Beijing Shijitan Hospital,
Capital Medical University, Beijing, China
Background: Dilated cardiomyopathy (DCM) is a heterogeneous myocardial
disorder with diverse genetic or acquired origins. Notable advances have been
achieved in discovering and understanding the genetics of DCM. This study
aimed to depict the distribution of the main research forces, hotspots, and
frontiers in the genetics of DCM, thus shaping future research directions.
Methods: Based on the documents published in the Web of Science Core
Collection database from 2013 to 2022, co-authorship of authors, institutions,
and countries/regions, co-citation of references, and co-occurrence of
keywords were conducted respectively to present the distribution of the leading
research forces, research hotspots, and emerging trends in the genetics of DCM.
Results: 4,141 documents were included, and the annual publications have
steadily increased. Seidman, Christine E, Meder, Benjamin, Sinagra, Gianfranco
were the most productive authors, German Centre for Cardiovascular Research
was the most productive institution, and the USA, China, and Germany were
the most prolific countries. The co-occurrence of keywords has generated
8 clusters, including DCM, lamin a/c, heart failure, sudden cardiac death,
hypertrophic cardiomyopathy, cardiac hypertrophy, arrhythmogenic
cardiomyopathy, and next-generation sequencing. Frequent keywords with
average publication time after 2019 mainly included arrhythmogenic
cardiomyopathy, whole-exome sequencing, RBM 20, phenotype, risk
stratification, precision medicine, genotype, and machine learning.
Conclusion: The research landscape of genetics in DCM is continuously
evolving. Deciphering the genetic profiles by next-generation sequencing and
illustrating pathogenic mechanisms of gene variants, establishing innovative
treatments for heart failure and improved risk stratification for SCD,
uncovering the genetic overlaps between DCM and other inherited
cardiomyopathies, as well as identifying genotype-phenotype correlations are
the main research hotspots and frontiers in this field.
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1 Introduction

Dilated cardiomyopathy (DCM) is characterized by enlarged left or biventricular

diameters and impaired contractile performances in the absence of abnormal loading

conditions or ischemic heart disease (1, 2). The broad spectrum of clinical presentations

in DCM ranges from none to overt heart failure (HF), severe arrhythmia,

thromboembolism, and sudden cardiac death (SCD) (2, 3). The estimated prevalence of

DCM per 10,000 population in the UK was 4.3 cases, twice as common among men
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than women (4). Despite optimal medical and device therapy, the

5-year mortality rate in DCM remains as high as 15.5% (5).

Two-thirds of affected patients die due to pump failure, followed

by SCD in one-third of cases (6). DCM is an aetiologically

heterogeneous myocardial disorder associated with genetic

determinants interfering with environmental factors (7). Most

common pathologies underlie reactive changes such as

inflammation (viral myocarditis or autoimmune disease),

nutritive-toxic influences (alcohol, drugs, chemotaxis), and

metabolic disorders (1, 3). Substantial advances have recently

been obtained in discovering and understanding the genetics of

DCM, and the evidence base of pathogenic genes has been

intensified either. Large-scale genomic sequencing has identified

more than 100 genes associated with approximately 40%–50% of

DCM patients, and these gene variants disrupt the function of

multiple proteins involving cytoskeletal, sarcomere, or nuclear

envelope, thus producing a final DCM phenotype (8). 12 genes

(BAG3, DES, FLNC, LMNA, MYH7, PLN, RBM20, SCN5A,

TNNC1, TNNT2, TTN) were evaluated as having definitive or

strong evidence for DCM (9). Specific gene mutations may be

particularly arrhythmogenic and associated with increased risk

for SCD. For example, mutations in LMNA genes are associated

with higher risks of SCD attributed to conduction disturbances

(10). In addition, TTN, RBM20, BAG3, and LMNA significantly

increased the genetic predisposition of HF (11). In a phenotypic

clustering study of DCM using principal components analysis

(12), 4 clinical distinct phenogroups were detected in DCM:

(1) mild systolic dysfunction, (2) auto-immune, (3) genetic and

arrhythmias and (4) severe systolic dysfunction. RNA-sequencing

further revealed a distinct underlying molecular profile per

group: pro-inflammatory, pro-fibrotic, and metabolic gene

expression for clusters 2, 3, and 4 separately. Expanding

understanding of the genetic architecture and the complex

genotype-phenotype correlations of DCM has great implications

for early diagnosis, prognostic stratification, and targeted therapy.

Until now, documents that quantitatively illustrate the

knowledge mapping of genetics in DCM have not emerged yet.

Bibliometric analysis is a practical and professional tool to

summarize and visualize large quantities of scientific data, thus

presenting the intellectual structure and academic trends of a

research topic (13, 14). Employing CiteSpace and VOSviewer

software, we mapped the global research landscape of genetics in

DCM based on the documents from 2013 to 2022, aiming to

depict the distribution of research hotspots and frontiers in this

field to shape future research directions and provide references

for policy development.
2 Materials and methods

2.1 Data source and retrieval strategy

The data source of this bibliometric analysis was the Science

Citation Index Expanded (SCI-E) in the Web of Science (WoS)

Core Collection database. Retrieval strategy: Topic Search =

(gene* OR genetic* OR genome OR genomic*) AND Topic
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Search = (dilated cardiomyopathy). Only articles or reviews

published in English from 1 January 2013 to 31 December 2022

were selected. Exclusion criteria: letter, news, proceeding paper,

editorial material, meeting abstract, book chapter, retracted

publication, publications with expression of concern, correction,

and early access. The literature search was completed on 23 July

2023 to reduce the information bias caused by database updates.

Tiantian Chao and Yaru Ge independently conducted the

retrieval, and a third reviewer was consulted for inconsistencies.

The retrieved documents were exported in plain text format as

“full records and cited references” data, which included title,

publication year, author, institution, country, number of

citations, journals, keywords, references, and other information.

CiteSpace 6.1.R2 software was used to remove duplicates.
2.2 Data analyses

Citespace 6.2.R2 and VOSviewer software were used to

perform the bibliometric analysis through co-authorship, co-

citation, and co-occurrence analyses. While co-authorship

analyses were to measure collaborations of research teams, co-

citation analyses to measure the influences of items, and

co-word analyses to find connections among concepts that co-

occur in documents (15). Normalization of keywords was

conducted by merging synonyms, correcting spelling

differences, and replacing abbreviated terms with full terms.

The top 50 most cited or occurred items from each time slice

were set as the node selection criteria in Citespace. In the

network mapped by Citespace, nodes with betweenness

centrality ≥0.1, characterized by purple halos in the circle, are

often at the convergence point of different clustering paths. In

other words, it has the role of “bridge” and is often called a

turning point (16).

Co-authorship analyses of authors, institutions, and countries/

regions were conducted to distribute the main research forces in

this field. Highly co-cited references were identified to present

the knowledge bases in this area. While co-occurrence analyses

of keywords were conducted to display the research hotspots and

emerging trends in the genetics of DCM.
3 Results

3.1 The annual number of publications

4,141 documents were retrieved and enrolled in this

study, including 3,322 articles and 819 reviews (Figure 1).

As (Figure 2A) showed, the annual number of publications has

increased steadily, with 360 documents in 2013 and 486 papers

in 2022, while two relatively rapid growth trends existed in 2015

and 2020. The annual number of citations has also demonstrated

a fast-growing trend. This indicates that genetics has always been

one of the most active research hotspots in DCM, and in the

years to come, researchers’ interest in it seems unlikely to

fade either.
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FIGURE 1

Flow chart of bibliometric analysis.
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As (Figure 2B) demonstrated, cardiology-general, molecular &

cell biology-genetics, cell biology, cardiac arrhythmia, and

musculoskeletal disorders were the main citation topics in the

research field of genetics in DCM.
3.2 Authors and co-cited authors

There were 31 authors who all published more than ten

documents. As was shown in (Figure 3A), Seidman, Christine E

(USA, 40 papers), Meder, Benjamin (Germany, 37), and Sinagra,

Gianfranco (Germany, 36) were the top 3 most productive authors
Frontiers in Cardiovascular Medicine 03
in this field. They also had high betweenness centrality, while

Arbustini, Eloisa in Italy had the highest betweenness centrality

(0.18), indicating that they were key contributors in this field,

functioning as bridges to strength contacts among other authors.

Author co-citation analysis means two or more authors are

simultaneously cited in a document. The high citation

frequencies reflect the significant influence of scholars on the

research field. There were 42 authors with co-citation frequencies

more than 100 times. As (Figure 3B) demonstrated, the top 5

most co-cited authors were Hershberger, Ray E (690 citations),

Maron, Barry J (590), Mcnally, Elizabeth M (434), Herman,

Daniel S. (408), and Elliott, Perry (388).
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FIGURE 2

(A) The annual number of publications and citations. (B) The distribution of macroscopic citation topics in the genetics of dilated cardiomyopathy.

FIGURE 3

(A) The author collaboration networks. (B) The top 10 authors with the highest publications and citations.
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3.3 Institutions

Institutions that have published at least ten documents were

included in the network. German Centre for Cardiovascular

Research (DZHK) was the most productive institution with 139

papers, followed by Stanford University (94), Harvard Medical

School (93), University College London (UCL, 79), and

University of Colorado (78). DZHK and Harvard Medical School

cooperated most frequently with other institutions, and their

total cooperation strengths were also the highest (Figure 4A).

Although UCL, Imperial College London, and Stanford

University also established broad collaborations with many other
Frontiers in Cardiovascular Medicine 04
institutions, the cooperation between them was relatively short-

term and unstable. (Figure 4B) showed that Brigham and

Women’s Hospital and Imperial College London had the highest

average citations, which suggested the huge academic influences

of their research achievement.
3.4 Countries

The USA (1,632), China (713), Germany (499), the UK (453),

and Italy (405) were the top 5 most prolific countries in this field

(Figures 5A,B). As (Figure 5C) shows, only the USA and China
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FIGURE 4

(A) Network of institution collaborations. (B) The top 10 most productive institutions. DZHK, German centre for cardiovascular research.

FIGURE 5

(A) World map of country scientific production. (B) The top 10 most productive countries. (C) The stacked area chart of annual publications in
countries. (D) National collaboration map.
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have maintained a growth trend in publications since 2020, while

other countries’ scientific production all decreased to different

degrees. The USA was prominently positioned in the

international collaboration network, and it had partnerships with

29 countries worldwide, with China, Germany, Italy, and the UK

being the closest (Figure 5D). China has established

collaborations with 23 countries, while Sino-American

cooperation was the most critical component of China’s

territorial cooperation.
3.5 Co-cited references

The cluster analysis of co-cited references and its timeline

diagram can show this research field’s knowledge bases and

evolution process. The clustering labels are extracted from

keywords of citing papers by the Log-Likeliood Ratio algorithm.

Among the top 10 most cited references, five reviews presented

the landscape of genetic mutations in DCM (3, 17–20), 2 articles
FIGURE 6

Cluster analysis of co-cited references.
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explored the pathogenic mechanisms of TTN truncating variants

(21, 22), three guidelines were related interpretation of sequence

variants (23), updated definition of DCM (24), and treatment of

HF (25). Figure 6 demonstrated that cluster analysis of co-cited

references has generated 12 large clusters: #0 genetic counseling,

#1 arrhythmogenic cardiomyopathy, #2 LMNA, #3 nuclear

envelope, #4 idiopathic dilated cardiomyopathy, #5 desmosomes,

#6 genetic testing, #7 induced pluripotent stem cells, #8 titin,

#9 transcription factor, #10 alternative splicing, #11 sarcomere.

Partial clusters are interrelated and can be further grouped.

Lamin A/C is a nuclear envelope protein encoded by the LMNA

gene through variable splicing. LMNA mutations classically cause

both DCM and progressive conduction disease (26). Titin, coding

by the TTN gene, is the largest sarcomeric protein within the

myocardium, and TTN truncating variants (TTNtv) are present

in 20%–25% of familial DCM (24). Mutations in desmosomal

protein genes most commonly cause arrhythmogenic

cardiomyopathy (ACM) (27). While desmosomal variants also

underlie the genetic basis of DCM. Of note, genetic testing can
frontiersin.org
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be helpful in combination with genetic counseling for patients with

inherited cardiomyopathy, which can help confirm the diagnosis

and facilitate familial cascade screening (28). Somatic cells

isolated from patients with inherited cardiomyopathy can be

reprogrammed into induced pluripotent stem cells (iPSCs),

subsequently differentiated into cardiovascular cell types. IPSCs-

derived cardiomyocyte-based disease model was exploited to

study the underlying pathogenic mechanisms of DCM (29).

Alternative splicing is crucial for gene expression and proteome

diversity, which enables genes to generate a diverse array of

mature mRNA transcripts that can be translated into functionally

different proteins (30).
3.6 Co-occurrences of keywords

Keywords are summarized expressions of the core contents of

documents. The co-occurrence of keywords can reflect the research

hotspots and thematic evolution of the research field. Detailed

keywords normalization process was shown in the Supplementary

Material. The size of nodes is parallel to the occurrence frequency

of keywords, and the lines represent the co-occurrence relationship

between keywords. The top 10 most frequent Keywords were

DCM, HF, SCD, hypertrophic cardiomyopathy (HCM), lamin a/c,

cardiovascular magnetic resonance (CMR), genetic testing, next-

generation sequencing (NGS), cardiovascular disease, and

arrhythmogenic right ventricular cardiomyopathy (Figures 7A,B).

While DCM, HF, HCM, CMR, cardiovascular disease, and cardiac

remodeling also had high betweenness centralities (Figure 7A).

Cluster analysis of keywords generated eight large clusters
FIGURE 7

(A) The co-occurrence network of keywords. (B) High frequent keyword
ventricular cardiomyopathy; CMR, cardiovascular magnetic resonance;
defibrillator.
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(Figure 8), including #0 dilated cardiomyopathy, #1 lamin a/c,

#2 heart failure, #3sudden cardiac death, #4hypertrophic

cardiomyopathy, #5 cardiac hypertrophy, #6 arrhythmogenic

cardiomyopathy, #7 next-generation sequencing. keywords within

one cluster is on the same horizontal line, and the publication time

is at the top of the image. The timeline view presents a subject’s

rise, boom, and decline.

As (Figure 9) showed, keywords with average publication time

after 2019 and relatively high occurrence frequencies included

ACM, whole-exome sequencing, RNA sequencing, RBM 20,

phenotype, risk stratification, precision medicine, genotype,

machine learning, and autophagy. Undoubtedly, these directions

are the emerging trends in the research field of genetics in DCM.
4 Discussion

4.1 General information

A steadily growth trend of annual publications and citations

from 2013 to 2022 suggested the researcher’s persistent

enthusiasm and unremitting efforts in this field. Christine

E. Seidman was the most productive researcher in this field,

serving in the Cardiovascular Genetics Center at Brigham and

Women’s Hospital and Harvard Medical School. Her main

research direction concerns cardiovascular disease-causing gene

mutations and genetic variations that increase disease risk.

DZHK, Stanford University, and Harvard Medical School held

leading positions in scientific output. While the whole

institutional collaboration network presented a globally dispersed
s. ACM, arrhythmogenic cardiomyopathy; ARVC, arrhythmogenic right
HCM, hypertrophic cardiomyopathy; ICD, implantable cardioverter
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FIGURE 8

The timeline view of keywords.
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and locally focused scene, thus international multi-center

cooperations should be strengthed in the future. Regarding

national contributions, the USA, China, and Germany were far

ahead. The USA was also the national collaboration center.

Although China ranked second in national publications, the

relatively low collaboration intensity implied that Chinese

researchers should deepen cooperation with institutions abroad.
4.2 Research hotspots and emerging trends

4.2.1 Genetic testing and next-generation
sequencing

Genetic testing is recommended to determine whether a

pathogenic variant can be discovered to promote patient

management and cascade screening (31). NGS offers

unprecedented possibilities for discovering novel gene variants

and expanding genetic testing panels (32). By employing

massively parallel DNA sequencing technologies, NGS can

sequence several dozen genes simultaneously, cost-effectively, and

accurately (33). NGS has been applied to sequence the whole

human genome (coding and non-coding regions of DNA) and

the exome (coding regions of the genome) (8), significantly

promoting our understanding of the monogenic causes of DCM.

HRS/EHRA expert consensus statement recommended that

DCM patients with significant cardiac conduction disorder and/

or a family history of premature unexpected SCD should

undergo comprehensive or targeted (LMNA and SCN5A) genetic

testing (31). Genotyping generally begins with the proband or

the most severely affected family member with the youngest

onset. Diagnostic genetic testing is to identify the underlying

pathogenic variant in an individual with definite or suspected
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cardiomyopathy (34). Predictive genetic testing in asymptomatic

relatives aims to determine which members have inherited the

family’s causal variant and are at risk for disease development

(33). While prognostic testing in a patient with obvious

cardiomyopathy helps stratify a patient’s prognosis by better

stratifying patients at high or low risk of cardiac death (28). The

American College of Medical Genetics standards has classified

genetic variants into five categories: pathogenic, likely pathogenic,

uncertain significance, likely benign, and benign (23).

4.2.2 Genetic basis of DCM
DCM genetic risk primarily follows a classic autosomal

dominant pattern of inheritance (35). Mutations in genes

encoding sarcomere, cytoskeleton, nuclear envelope, desmosome,

mitochondria, and ion channels have been implicated in DCM

(18). Sarcomeres are the basic unit of contraction in cardiac

muscle and are vital for force-generating. Mutations within genes

encoding sarcomeric proteins, including titin (TTN), myosin

heavy chain alpha and beta (MYH6, MYH7), tropomyosin 1

(TPM1), myosin-binding protein C3 (MYBPC3), troponin-C,

troponin-I, and troponin-T (TNNC1, TNNI3, and TNNT2),

cardiac actinin 1 (ACTN1) are directly linked to disordered force

generation, thus leading to myocardial dysfunction and DCM

(36). Mutations involving cytoskeletal proteins, like filamin C

(FLNC), dystrophin (DMD), and vinculin (VCL), are susceptible

to DCM phenotype by causing defects of force transmission (18).

Desmosomes link the sarcolemma to cytoskeletal intermediate

filaments. Mutations in desmosomal proteins, desmocolin 2

(DSC2), desmoglein 2 (DSG2), desmoplakin (DSP), and

plakophilin 2 (PKP2), can lead to disruption of intercellular

junctions and cardiomyocyte detachment. Desmosomal gene

variants are commonly associated with ACM but can also cause
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FIGURE 9

The thematic evolution of keywords.
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DCM (37). Mutations in nuclear envelope intermediate lamin A/C

filament protein, LMNA, are also identified as the second prevalent

genetic cause of DCM. Besides the genetic mutations mentioned

above, BAG3, RBM20, SCN5A, and PLN are common DCM-

causing genes (1). An international panel of experts on DCM

genetics evaluated published evidence on 51 genes relevant to

DCM, and they summarized that 12 genes (BAG3, DES, FLNC,

LMNA, MYH7, PLN, RBM20, SCN5A, TNNC1, TNNT2, TTN)

had definitive or strong evidence, and 7 genes (ACTC1, ACTN2,

JPH2, NEXN, TNNI3, TPM1, VCL) had moderate evidence (9).

4.2.3 Pathogenic mechanisms of TTN and LMNA in
DCM

Full-length titin is the largest protein in the human proteome.

It extends half a sarcomere, with the N-terminus anchoring in the

Z-disc and the C-terminus in the M-line. Titin comprises 364

exons that undergo extensive alternative splicing to produce

many isoforms (N2BA, N2B, and short novex isoforms) (38, 39).

TTNtv is now considered the most frequent monogenetic cause

of DCM, underlying 15%–25% of cases of nonischemic DCM
Frontiers in Cardiovascular Medicine 09
(38). In recent years, parameters that determine TTNtv

pathogenicity and the molecular mechanisms of TTNtv causing

DCM have been extensively explored.

Roberts et al. found that isoform, exon usage, and variant

position were significantly associated with the pathogenicity of

TTNtv. Frameshift, nonsense, and canonical splice site TTNtv

are rich in DCM patients, Variants that truncate both principal

isoforms (N2BA and N2B) of TTN and/or close to the C

terminus, particularly can cause DCM with severe phenotypes

(22). There are mainly two mechanisms involving the

pathogenicity of TTNtv in DCM. Firstly, transcripts containing a

protein-truncating variant undergo nonsense-mediated mRNA

decay, leading to a reduced protein dose (haploinsufficiency).

Secondly, the protein produced is loss of function or deleterious

(poison-peptide) (38). In 2021, McAfee et al. first discovered that

truncated titin proteins were present and relatively abundant in

hearts from TTNtv DCM patients (40), and they also provide

evidence of decreased quantities of full-length titin protein in

TTNtv DCM hearts, which advocate both haploinsufficiency and

poison peptide mechanisms. Schafer et al. discovered that distal
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I-band and all A-band TTNtv have higher risks than variants in

other titin domains (41). Robert Romano et al. further

demonstrated the position-dependent pathogenetic effect of

TTNtv (42). An A-band TTNtv impaired sarcomere function

more severely than an I-band TTNtv. Both A-band and I-band

TTNtvs contributed to TTN haploinsufficiency, while only the

A-band TTNtv generated abundant truncation titin proteins that

damaged the structure and function of myofibrils.

Lamin A/C are nuclear envelope proteins encoded by the

LMNA gene (26), the second most frequently implicated gene in

DCM. Apart from maintaining nuclear structural stability,

Lamins regulate gene transcription, chromatin organization,

DNA replication, cytoskeletal/nucleus coupling, and signal

transduction (43). LMNA mutations can cause diverse

phenotypes, including DCM, Emery-Dreifuss muscular

dystrophy, limb-girdle muscular dystrophy, lipodystrophy,

progeria syndrome, and restrictive dermopathy (44). Hasselberg

et al. found a prevalence of 6.2% for LMNA mutation in familial

DCM, and young asymptomatic LMNA genotype-positive family

members had high cardiac penetrance, 32% had atrioventricular

block, 23% atrial fibrillation, and 39% non-sustained ventricular

tachycardia (VT) (45). Whole-exome sequencing data suggested

that the rare loss-of-function and missense LMNA variant was

significantly related to atrial fibrillation, ventricular arrhythmias

(VA), DCM, and HF (46). The transgenetic mice model partially

revealed the molecular pathogenesis of LMNA mutations.

Cardiomyocyte-specific expression of LMNA led to activation of

the E2F/DNA damage response/TP53 pathway and induction of

myocardial fibrosis, apoptosis, cardiac dysfunction, and

premature death (47).

4.2.4 Genotype-phenotype correlations
Gene variants perturb the biological function of multiple

critical myocardial proteins and thus give rise to a final DCM

phenotype (18). Generally, DCM patients with positive genetic

testing results showed unfavorable prognoses than genotype-

negative individuals (48). DCM patients with mutations in

LMNA, PLN, RBM20, FLNC, DES, or SCN5A are associated

with typical cardiac rhythm disorders ranging from

atrioventricular blocks to supraventricular and malignant

ventricular arrhythmias (MVA) (7). In comparison, desmosomal

and LMNA variants had the highest rate of life-threatening

arrhythmias regardless of the LVEF (49). This may lower the

threshold for prophylactic ICD therapy and encourage enhanced

rhythm surveillance. TTNtv patients developed with DCM at a

higher age than LMNA subjects, less often developed severe left

ventricular systolic dysfunction, had optimal medical responses,

higher rates of left ventricular reverse remodeling (LVRR), and

better composite outcomes than LMNA (50, 51). However, some

studies highlighted that TTNtv could be an independent risk

factor for arrhythmic events in DCM patients (52, 53). MYH7-

related DCM is featured by early onset, high penetrance, and low

LVRR. In addition, it has a lower incidence of end-stage HF and

MVA than LMNA-related DCM and a similar risk to DCM

caused by TTNtv (54). In recent years, data mining methods,

such as machine learning, unsupervised clustering, and principal
Frontiers in Cardiovascular Medicine 10
component analysis, have been applied to reclassify distinct

DCM subgroups from clinical and imaging data (12). These

subtypes can provide valuable risk stratification and prognosis

estimation information beyond traditional markers.

4.2.5 Prevention and treatment of heart failure and
sudden cardiac death

HF is a final typical phenotype in DCM, representing a

significant impairment in left ventricular (LV) systolic function.

The natural history of HF in DCM includes three distinct

pathways, (1) a structural and functional recovery of heart; (2)

remission of symptoms and improvement/stabilization of LV

contractile function; (3) progression to end-stage HF and heart

transplantation/death (55). Guideline-directed medical therapy

for HF is the therapeutic cornerstone in DCM, which possess

definite evidence of benefits on survival (56). For end-stage

refractory HF, heart transplantation is the only established

surgical treatment, and implantation of a left ventricular assist

device is the main mechanical circulatory support method (57),

resulting in long periods of clinical stability in DCM. Cardiac

resynchronization therapy (CRT) is recommended for HF

patients with left ventricular ejection fraction (LVEF) ≤35%, QRS
duration ≥150 ms, and left bundle branch block QRS

morphology (25, 58). Despite the unremitting efforts persistently

applied to improve the treatment of HF in cardiomyopathy, a

broad understanding of the genetic causes of HF will promise

new prospects for preventive or treatment options for HF

management.

Traditionally, risk stratification for DCM heavily depends on

the LVEF assessment. However, LVEF yields limited predictive

value in the background of optimal treatment respondence.

Nowadays, findings showed that arrhythmias may be the earliest

manifestation in some subtypes of genetic cardiomyopathy,

specifically in LMNA- and SCN5A-mediated cardiomyopathies

(17). At present, only LMNA pathogenic variants are included in

current guidelines where an implantable cardioverter defibrillator

(ICD) is recommended for primary prevention of SCD in

patients with LMNA mutation-causing DCM and clinical risk

factors (Class IIb recommendation) (59). The fibrous tissue

constitutes a substrate for VA that induces slow and

heterogeneous conduction, favors reentrant circuits, and produces

vulnerability to life-threatening ventricular tachyarrhythmias (60).

The presence and extent of mid-wall fibrosis identified by late

gadolinium enhancement (LGE)-CMR in DCM patients are

significantly associated with increased risks of SCD or aborted

SCD, independent of LVEF (5). Thus, for primary prevention of

SCD in DCM, the risk stratification should consider LVEF, LGE,

family history, presence of VT on monitoring, and genetic

characterization (60). Because of an increased risk for SCD,

arrhythmia surveillance is necessary to more properly employ

device management, including pacemakers and ICD.

4.2.6 Differentiating DCM from other inherited
cardiomyopathies

Many genetic and phenotypic overlaps exist between DCM and

other cardiomyopathies, such as arrhythmogenic, non-compaction,
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or HCM (specifically, end-stage HCM). ACM is often characterized

as an inherited disease of the cardiac desmosome, featured by VA,

and an increased risk of SCD (61). ACM, traditionally considered

to involve the right ventricle, has also been identified to cause

biventricular or left-sided illness that can present as dilated

ventricle with arrhythmia (62). Atherogenic variants of ACM,

both in desmosomal genes, such as PKP2, DSP, and DSG2, and

in non-desmosomal genes (e.g., LMNA, SCN5A, FLNC, DES,

TTN), have overlapped with DCM (62, 63). HCM is featured by

LV hypertrophy, often with the predominant involvement of the

interventricular septum. Termed a disease of the sarcomere,

mutations in 9 genes encoding sarcomeric proteins have now

been convincingly shown to cause HCM (64). Gene variants in

MYH7 and MYBPC3 are the most common, each accounting for

80% of HCM patients; other genes (TNNI3, TNNT2, TPM1,

ACTC1, MYL2, MYL3, and TNNC1) each account for 1%–5% of

cases (65). Notably, most of these pathogenic variants can also

cause DCM. Left ventricular non-compaction (LVNC) is

characterized by LV dysfunction in excessive prominent

trabeculations and deep intertrabecular recesses (66). Whole

exome sequencing indicates that TTN, LMNA, and MYBPC3 are

the most prevalent disease genes in LVNC (67).

Different mutations within the same contractile protein-

encoding gene can lead to opposite functional changes in LV

traits (e.g., different variants in MYH7, with distinct molecular

effects, cause HCM and DCM) (44). Large overlaps in significant

loci opposite effects have been observed for HCM and DCM in

genome-wide association studies (68, 69). DCM risk alleles

decrease LVEF, while HCM risk alleles increase LVEF. The

splicing patterns in distinct regions of TTN are significantly

different in LVNC compared with DCM patients with RBM20

variants, thus causing changes in TTN isoforms, which explains

why some patients develop DCM while others present with an

LVNC phenotype (70). Research on the heterogeneous

pathogenetic effects of gene mutations is an emerging trend in

DCM. Meanwhile, the prognosis consequences of specific gene

variants in different cardiomyopathies must also be explored.
4.3 Prospects

Although the atlas of genetic mutations of DCM has made

tremendous achievements in recent years, currently known gene

variants only can account for less than half of the genetic causes

of DCM. Furthermore, their molecular mechanisms still need to

be understood. Thus more genome-wide genotyping studies in

much larger cohorts of rigorously phenotyped probands and

relatives are acquired to broaden our perception of the genomic

basis of DCM. Some individuals do not present complete

phenotypes, even with pathogenic variants, meaning they have

reduced penetrance. Understanding the mechanisms for variable

penetrance should also be a priority of future work. The clinical

phenotype depends not only on the malignancy of gene variants

but also on the influence of age, environmental insults,

epigenetics, toxic factors, and a diversity of acquired diseases. Up

to 20% of myocarditis patients may develop chronic
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inflammatory DCM (71). Beyond infections of viruses,

myocarditis can be caused by a direct toxic or immune-mediated

reaction to drugs, such as immune checkpoint inhibitors (ICIs)

(72). There is an increased prevalence of rare variants (BAG3,

LMNA, MYH7, TCAP, TNNT2, and TTN), particularly TTNtv,

in adult and pediatric cancer patients with cancer therapy-

induced cardiomyopathy (73). Therefore, the interaction

mechanisms between gene variants and environmental triggers

must be further studied.
4.4 Strength and limitations

To our knowledge, this is the first bibliometric analysis to

depict the distribution of the main research forces, hotspots, and

emerging trends in the genetics of DCM. This study has direct

implications for clinical practice. Researchers can better

understand research trends and identify areas of interest in this

subject, thus conducting further research in this field.

However, this paper inevitably has the following limitations.

Firstly, due to the limitations of operating software, only

documents in the WoS database were included. Thus, the data

source could have been more varied. Secondly, the uneven quality

of the data collected in the studies may impair the credibility of

knowledge mapping. Thirdly, some recently published essential

documents do not receive enough citations, which may lead to

omitting important information. Notwithstanding these caveats,

this study mapped a research landscape of genetics in DCM.
5 Conclusion

The research landscape of genetics in DCM is continuously

evolving. Deciphering the genetic expression profiles of DCM,

illustrating the pathogenic mechanisms of gene mutations,

establishing innovative treatments for HF and improved risk

stratification regimes for SCD, uncovering the genetic overlaps

between DCM and other inherited cardiomyopathies, as well as

expanding genotype-phenotype knowledge are the main research

hotspots and frontiers in the field of genetics of DCM.
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