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Explainable coronary
artery disease prediction model
based on AutoGluon from
AutoML framework
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Kunming City & Kunming University of Science and Technology, Kunming, China, 2Department of
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Objective: This study focuses on the innovative application of Automated
Machine Learning (AutoML) technology in cardiovascular medicine to
construct an explainable Coronary Artery Disease (CAD) prediction model to
support the clinical diagnosis of CAD.
Methods: This study utilizes a combined data set of five public data sets related
to CAD. An ensemble model is constructed using the AutoML open-source
framework AutoGluon to evaluate the feasibility of AutoML in constructing a
disease prediction model in cardiovascular medicine. The performance of the
ensemble model is compared against individual baseline models. Finally, the
disease prediction ensemble model is explained using SHapley Additive
exPlanations (SHAP).
Results: The experimental results show that the AutoGluon-based ensemble
model performs better than the individual baseline models in predicting
CAD. It achieved an accuracy of 0.9167 and an AUC of 0.9562 in 4-fold
cross-bagging. SHAP measures the importance of each feature to the prediction
of the model and explains the prediction results of the model.
Conclusion: This study demonstrates the feasibility and efficacy of AutoML
technology in cardiovascular medicine and highlights its potential in disease
prediction. AutoML reduces the barriers to model building and significantly
improves prediction accuracy. Additionally, the integration of SHAP enhances
model transparency and explainability, which is critical to ensuring model
credibility and widespread adoption in cardiovascular medicine.
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1 Introduction

In recent years, incidences and death tolls of cardiovascular disease (CVD) have been

increasing, making them one of the leading causes of mortality and morbidity worldwide.

The American Heart Association (AHA), in their 2023 CVD statistics report, highlighted

that in the initial year of the COVID-19 pandemic in 2020, the U.S. witnessed a dramatic

increase in CVD-related deaths (1). Fatalities surged from 876,613 in 2019 to 928,741 in

2020, surpassing 910,000 in 2003. The “Report on Cardiovascular Health and Diseases

in China 2021: An Updated Summary” indicates that approximately 330 million people
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in China are affected by CVD. In 2019, CVD fatalities accounted

for 46.74% and 44.26% of total deaths in rural and urban areas,

respectively (2). One in every five deaths was attributed to CVD.

Coronary Artery Disease (CAD) is a cardiovascular disease

caused by the hardening and narrowing of the arteries in the

coronary arteries, leading to insufficient blood supply to the

heart. It is one of the most common and fatal diseases globally.

Therefore, accurate screening of potential patients holds

paramount theoretical and practical significance.

Machine learning is a technique of artificial intelligence

characterized by algorithms that enable machines to learn and

improve autonomously. Combining machine learning and

medical data can yield unexpected results, assisting physicians in

diagnostic decision-making (3, 4). Multiple studies have explored

and implemented machine learning methods for predicting the

risk of CAD. Within these studies, researchers have assessed

different machine learning algorithms using specific data sets and

identified models with optimal performance on test sets.

K-nearest neighbor, random forest, logistic regression, and neural

networks have obtained the highest classification performance in

various studies (5–8). Several studies have concentrated on

enhancing machine learning approaches by utilizing optimization

strategies to improve prediction accuracy on test sets. For

instance, machine learning algorithms that leverage particle

swarm and ant colony optimization have been employed to

predict and classify heart disease (9). By combining the multi-

objective particle swarm optimization and random forest, a new

approach is proposed to predict heart disease (10). The advanced

particle swarm optimization merged lion algorithm is used to

improve heart disease prediction, and the performance is better

than other traditional models (11). Bayesian optimization

approaches have been implemented to fine-tune the hyperparameter

settings of XGBoost in producing heart disease prediction models

(12). Furthermore, other analyses have examined multi-model

ensemble techniques (13–16). Findings suggest that model

integration can significantly enhance predictive performance,

particularly in accurately identifying CAD, showing excellent results.

In the context of disease prediction, machine learning

algorithms can analyze vast amounts of patient data, uncovering

and extracting vital features related to disease, thus predicting the

likelihood of a patient developing disease. However, employing

machine learning methods necessitates manual model selection

and hyperparameter tuning, requiring a profound understanding

and expertise of the algorithms. Automated Machine Learning

(AutoML) is a technique that automates machine learning model

development using machine learning algorithms (17). It seeks to

reduce the need for human intervention in the model

development process, thereby accelerating model development

and deployment (18). AutoML has extensive applications in

diagnostics and forecasting in medicine. A model developed

using AutoML to predict the survival rate of COVID-19 patients

has demonstrated that AutoML is an efficient method for

generating clinical decision support tools based on machine

learning (19). An AutoML model based on the XGBoost

algorithm, designed to predict the 30-day mortality rate of

non-cholestatic cirrhosis patients, outperforms existing scoring
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systems (20). Furthermore, an AutoML model based on the

GBM algorithm for the early identification of critically ill acute

pancreatitis patients hospitalized due to acute pancreatitis has

shown significant clinical utility (21). Additionally, AutoML-

based models have exhibited excellent performance in predicting

the recurrence of common bile duct stones after endoscopic

retrograde cholangiopancreatography treatment (22). AutoML

has also shown remarkable performance in predicting the 90-day

mortality rate of gastric cancer patients who have undergone

gastrectomy with a large sample size (23).

Artificial Intelligence has tremendous potential in the medical

field, but its lack of transparency has limited its adoption in clinical

practice. Explainable AI holds the potential to overcome this issue

(24). In medical diagnostic research, the explainability of the model

is crucial. Providing a clear, transparent, and logically coherent

rationale is essential when a model generates predictions or

recommendations. This ensures physicians can trust the model’s

outputs and make informed clinical decisions (25).

Machine learning offers multidimensional possibilities in

medical data analysis and mining. With the continuous updating

and advancement of machine learning technology, the

requirement for practitioners’ professional knowledge is also

increasing. AutoML significantly reduces the threshold and

burden of modelers through automatic modeling and parameter

optimization. To investigate the disease prediction effect of

AutoML technology in cardiovascular medicine, our study

utilized publicly available clinical data on heart disease and used

AutoGluon, an AutoML framework based on multi-model fusion

technology, to construct prediction models. In addition, the

explainability of the model was crucial for clinical prediction.

Most of the CAD prediction models built in previous studies

were not analyzed for explainability, making it difficult to explain

the decision-making process of the models. To improve the

explainability of our model, this study utilizes SHapley Additive

exPlanations (SHAP) for analysis, which provides an in-depth

understanding of the contribution of each input feature to the

model. Our study aims to explore the potential of utilizing

AutoML techniques to construct explainable CAD prediction models.
2 Materials and methods

2.1 Data preparation

This study utilizes a combined data set on heart disease (26).

The data set amalgamates information from five distinct data

sets: Cleveland (303 observations), Hungary (294 observations),

Switzerland (123 observations), VA Long Beach (200

observations), and Statlog (270 observations). The original data

can be accessed through the University of California, Irvine

Machine Learning Repository (Cleveland, Hungary, Switzerland,

VA Long Beach: https://archive.ics.uci.edu/dataset/45/heart+

disease, Statlog: https://archive.ics.uci.edu/dataset/145/statlog+

heart). The data are obtained from public repositories and do

not contain identifiable private information. This data set is

licensed under the Creative Commons Attribution 4.0
frontiersin.org
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International License (CC BY 4.0). We confirm that this study

adheres to the principles of the Helsinki Declaration. The

combined data set comprises 11 features for predicting CAD,

yielding 918 observations after removing duplicates. Among these

are 508 instances of CAD and 410 instances without CAD.

Categorical variables within the data set undergo ordinal encoding.

The processed variables are shown in Table 1. In the data set, a

CAD status value of 0 signifies non-CAD patients (arterial

diameter narrowing less than 50%), while 1 indicates CAD

patients (arterial diameter narrowing greater than 50%). This

diagnostic outcome is derived from invasive angiographic

examinations of coronary arteries. The original data set contains

missing values for cholesterol. We address these missing values by

using mean imputation. The baseline comparison table between

patients with CAD and patients without CAD is shown in

Table 2. It is worth noting that inherent limitations may exist due

to using a data set sourced from an open-access website and its

limited scope. These limitations include significant disparities and

a lack of propensity matching, as well as the absence of BMI,

diabetes, and other variables. Additionally, there is a differentiation

between prevalent and incidental cases and a deficiency of

appropriate data regarding potential confounding factors.
2.2 AutoGluon: AutoML framework

AutoGluon is an AutoML framework developed by Amazon

Web Services (AWS) (27). Its core idea is to simplify the selection,

training, and deployment of machine learning models so that a

wide range of developers can easily apply powerful machine

learning techniques without needing to understand low-level

details. First, AutoGluon offers automated feature generation,
TABLE 1 Description of variables in the data set.

Variable Variable description Type
Age Age [years] Quantitative

Sex Sex [1: male, 0: female ] Qualitative

Chest pain
type

Chest pain type [0: typical angina, 1: atypical
angina, 2: Non-anginal pain, 3: Asymptomatic]

Qualitative

Resting BP Resting blood pressure [mmHg] Quantitative

Cholesterol Serum cholesterol [mg/dl] Quantitative

Fasting blood
sugar

Fasting blood sugar [1: Fasting blood sugar >
120 mg/dl, 0:
Fasting blood sugar ≤ 120 mg/dl]

Qualitative

Resting ECG Resting electrocardiogram results [0: Normal, 1:
Having ST-T wave abnormality (T wave inversions
and/or ST elevation or depression of >0.05 mV), 2:
Showing probable or definite left ventricular
hypertrophy by Estes’ criteria]

Qualitative

Max HR Maximum heart rate achieved [between 60 and
202, bpm]

Quantitative

Exercise
angina

Exercise-induced angina [1: yes, 0: no] Qualitative

Old peak ST depression induced by exercise relative to rest
[mm]

Quantitative

ST slope The slope of the peak exercise ST segment [0: up-
sloping, 1: Flat, 2: down-sloping]

Qualitative

CAD status Output class [1: CAD, 0: non-CAD] Qualitative
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selection, and transformation, which aids in enhancing model

performance while reducing the complexity of data preparation.

Second, AutoGluon integrates and stacks multiple models

automatically, enhancing predictive performance. In terms of

efficiency, the algorithms in AutoGluon are optimized for limited

computational resources, enabling it to produce the best models

within a constrained time and computational budget. One of the

critical reasons for the high performance of AutoGluon is its

model integration and stacking capabilities. Integration and

stacking techniques combine predictions from multiple models to

improve overall predictive performance.

2.2.1 Bagging in AutoGluon
Bagging is a classic ensemble technique designed to reduce the

variance of models. Bagging in AutoGluon is a fundamental

ensemble method that is particularly significant for small data sets,

effectively preventing model overfitting. The idea of bagging is to

train independent weak learners and combine the results of each

base learner to obtain one strong learner. As shown in Figure 1A,

multiple data subsets of bagging are generated by repeating

random sampling and replacing the original data. Bootstrapping

refers to repeatedly randomly sampling with replacement from the

n data points, sampling a total of n times. After n samplings, a

new data set containing n samples is obtained. This data set is

called a bootstrap sample. An independent model is trained on

each Sample set. Choose an appropriate combination strategy to

ensemble the weak learners’ predictions.

2.2.2 Stacking in AutoGluon
Stacking is an advanced ensemble technique wherein the

output of one model is used as input features for another model.

AutoGluon employs multi-level stacking, allowing each level’s

models to leverage the predictions of preceding models. This

approach improves the model’s generalization ability. The meta-

learner integrates the predictions from different perspectives of

different base learners, which can achieve better prediction

performance than a single model. As shown in Figure 1B,

stacking divides the original training data into a training set and

a reserved set. Train multiple base learners on the training set.

Base learners predict the hold-out set, and these predictions are

spliced into new features. Optionally weight the base learner

predictions. Train a meta-learner on the predicted features and

real labels of the hold-out set as new samples.
2.3 Baseline models

The baseline models used in this study are decision tree,

LightGBM, CatBoost, XGBoost, random forest, KNN, neural

networks, and FastAI.

Decision tree is a classification algorithm based on a tree-like

structure, which classifies data by partitioning the feature space

into independent regions. Decision tree is a classification

algorithm based on tree structure, which is easy to understand

and explain, insensitive to outliers, but easy to overfit. LightGBM

is a gradient lifting framework, which is famous for its efficient
frontiersin.org
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TABLE 2 Baseline comparison table between patients with CAD and non-patients.

Variable Overall (n = 918) CAD (n = 508) Non-CAD (n = 410) p-value

Qualitative data: n (%)

Sex
Male 725 (79.0%) 458 (90.2%) 267 (65.1%) < 0.001

Female 193 (21.0%) 50 (9.8%) 143 (34.9%)

Chest pain type
ATA (Atypical angina) 173 (18.8%) 24 (4.7%) 149 (36.3%) < 0.001

NAP (Non-anginal pain) 203 (22.1%) 72 (14.2%) 131 (32.0%)

ASY (Asymptomatic) 496 (54.0%) 392 (77.2%) 104 (25.4%)

TA (Typical angina) 46 (5.0%) 20 (3.9%) 26 (6.3%)

Fasting blood sugar
≤120 mg/dl 704 (76.7%) 338 (66.5%) 366 (89.3%) < 0.001

>120 mg/dl 214 (23.3%) 170 (33.5%) 44 (10.7%)

Resting ECG (resting electrocardiogram results)
Normal 552 (60.1%) 285 (56.1%) 267 (65.1%) < 0.001

ST (having ST-T wave abnormality) 178 (19.4%) 117 (23.0%) 61 (14.9%)

LVH (left ventricular hypertrophy) 188 (20.5%) 106 (20.9%) 82 (20.0%)

Exercise angina
Yes 371 (40.4%) 316 (62.2%) 55 (13.4%) < 0.001

No 547 (59.6%) 192 (37.8%) 355 (86.6%)

ST slope (the slope of the peak exercise ST segment)
Up-sloping 395 (43.0%) 78 (15.4%) 317 (77.3%) < 0.001

Flat 460 (50.1%) 381 (75.0%) 79 (19.3%)

Down-sloping 63 (6.9%) 49 (9.6%) 14 (3.4%)

Quantitative data: mean (SD)
Age (years) 53.51 (9.43) 55.90 (8.73) 50.55 (9.44) < 0.001

Resting BP
(resting blood pressure, mmHg)

132.40 (18.51) 134.19 (19.83) 130.18 (16.50) < 0.001

Cholesterol
(serum cholesterol, mg/dl)

245.57 (53.38) 251.06 (52.27) 238.77 (54.02) < 0.001

Max HR
(maximum heart rate achieved, bpm)

136.80 (25.46) 127.66 (23.39) 148.15 (23.29) < 0.001

Old peak
(ST depression induced by exercise relative to rest, mm)

0.89 (1.07) 1.27 (1.15) 0.41 (0.70) < 0.001

FIGURE 1

Bagging and stacking process schematic. (A) Training process using bagging. (B) Training process using stacking.

Wang et al. 10.3389/fcvm.2024.1360548
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training speed and accuracy, but it may be over-fitted to small-scale

data sets and needs more tuning parameters (28). CatBoost is

specially designed for processing classification features, which can

automatically process the coding of classification features, but the

training speed is slow, and the requirements for superparameter

tuning are high (29). XGBoost uses pre-sorting technology and

regularization to improve the performance and stability of the

model, but it needs more tuning parameters for large-scale data

sets (30). Random forest is an ensemble learning algorithm that

performs classification or regression by aggregating the votes of

multiple decision trees. K-nearest neighbors (KNN) is an

instance-based learning algorithm that performs classification or

regression by finding the nearest K neighbors in the training

data. KNN does not need a training process, but the

computational complexity of large-scale data sets is high. Neural

networks are models composed of multiple layers of neurons

optimized using the backpropagation algorithm. FastAI is a deep

learning library based on PyTorch, which provides an easy-to-use

API and is suitable for quickly building and training deep

learning models. However, it may not support some advanced

functions and needs additional customization and adjustment (31).
2.4 SHAP: model explanation

SHAP is a method for explaining model predictions based on

the Shapley value concept in game theory (32). The calculation of

Shapley values utilized the formula provided in Supplementary

Material Section 1. It assesses various combinations of feature

values to quantify the influence of each feature on the model’s

predictions, providing a numerical value that represents the

degree of contribution of each feature to the predicted value of
FIGURE 2

The experimental process.
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a specific sample. A positive number indicates a positive impact

on the result, while a negative number indicates a negative

impact. SHAP can explain linear models, tree models, neural

networks, and so on. It provides an intuitive graphical display

way to help users better understand the prediction process of

the model and reveal the influence degree of each feature in the

model on the results.

SHAP offers a systematic framework for estimating feature

importance and ensures the consistency and fairness of the

results. This study utilizes SHAP to explain the CAD

prediction model.
2.5 Experimental process

This study proposes an AutoGluon-based model for

predicting CAD and analyzes its explainability using SHAP.

Experiments are conducted to determine the optimal

AutoGluon model by tuning two key parameters, stack-level

and bag-fold. Stack-level determines the depth of the layers for

stacking learning, while bag-fold specifies the number of folds

used in bagging. The experimental flow proposed in this study

is shown in Figure 2.

The data set is divided into a 7-3 ratio, with 70% as the

training set and 30% as the test set. Firstly, we build an

ensemble model of CAD prediction based on AutoGluon.

AutoGluon uses bagging and stacking to integrate baseline

models. Then, we test the training results of each ensemble

model to determine the best parameters. The key code snippets

are provided in Supplementary Material Section 2. Outside of

Autogluon, we train using the eight individual machine

learning models. The performances of these models are
frontiersin.org
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compared with the AutoGluon. Finally, feature analysis is carried

out based on SHAP.
3 Results and analysis

3.1 Descriptive statistical analysis

3.1.1 Qualitative data analysis
Figure 3 depicts that variables exhibiting pronounced

distributional differences between CAD and non-CAD patients

included ST slope, chest pain type, and exercise angina among

all categorical data. In contrast, resting ECG displayed a similar

distributional pattern between CAD and non-CAD patients. In

non-CAD patients, there is a higher proportion of males than

females. This gender disparity further increases in CAD

patients. Of individuals diagnosed with CAD, 75.0% exhibit a

“flat” ST slope, 77.2% have a chest pain type of

“Asymptomatic,” and 62.2% of CAD patients experience “yes”

for exercise angina. In contrast, the predominant ST slope

among those without CAD is “up-sloping,” accounting for
FIGURE 3

Distribution of qualitative data. Resting ECG: Resting electrocardiogram resu
peak exercise ST segment. ATA: Atypical angina. NAP: Non-anginal pain. ASY
wave inversions and/or ST elevation or depression of >0.05 mV). LVH: Show
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77.3%. Additionally, 86.6% of non-CAD patients showed “no”

for exercise angina.

3.1.2 Quantitative data analysis
The Pearson correlation coefficient is employed to elucidate the

interrelationships between variables, and the correlation coefficient

heat map among the variables is presented in Figure 4. Maximum

heart rate achieved (max HR) and ST depression induced by

exercise relative to rest (old peak) exhibit the strongest

correlations with CAD status among all quantitative variables.

CAD status demonstrates an inverse correlation with max HR,

yielding a correlation coefficient of −0.4, while exhibiting a

positive correlation with old peak, with a correlation coefficient

0.4. The correlation coefficient between CAD status and age is

0.28, while the correlation coefficient between CAD status and

cholesterol is 0.11. Moreover, the correlation coefficient between

resting blood pressure (resting BP) and CAD status is also 0.11.

Higher overall max HR values are among non-CAD patients

compared to those with CAD. Max HR values for non-CAD

patients are primarily distributed between 140 and 160, whereas

CAD patients exhibit max HR distributions predominantly
lts. Exercise angina: Exercise-induced angina. ST slope: The slope of the
: Asymptomatic. TA: Typical angina. ST: Having ST-T wave abnormality (T
ing probable or definite left ventricular hypertrophy by Estes’ criteria.
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FIGURE 4

Heat map of the correlations of quantitative data. Resting BP: Resting
blood pressure. Max HR: Maximum heart rate achieved.

FIGURE 5

Box plot of max HR distribution. Max HR: Maximum heart rate
achieved.

Wang et al. 10.3389/fcvm.2024.1360548
between 110 and 140 (Figure 5). Additionally, distributions of old

peak values are inspected. Old peak values for non-CAD patients

display a concentrated range, primarily distributed between 0 and

1, while CAD patients exhibit a more comprehensive old peak

range, chiefly distributed from 0 to 2 (Figure 6). The

distributions of max HR and old peak exhibit pronounced

differences between patients with and without CAD, implying

that these features may be of substantial importance for

developing a predictive model for CAD.
FIGURE 6

Box plot of old peak distribution. Old peak: ST depression induced
by exercise relative to rest.
3.2 Model performance

3.2.1 AutoGluon model
After detailed model training and comparison, the experiment

analyzes the performance of the AutoGluon model to evaluate its

effectiveness in predicting CAD.

As shown in Table 3, the experiment examines nine different

parameter combinations of the AutoGluon model. Notably, when

the bag-fold is set to 4 among these combinations, implying the

utilization of 4-fold cross-bagging, the model exhibits the highest

accuracy, reaching 0.9167. More specifically, when the parameters

are set to stack-level of 1 and bag-fold of 4, the model

outperforms other parameter combinations regarding key

performance indicators, such as accuracy, recall, F1-score, and

AUC. The precision metric is only slightly inferior to the model

parameter settings of stack-level of 3 and bag-fold of 5, indicating

that the AutoGluon model under this parameter combination

demonstrates outstanding performance in CAD prediction.

Overall, all nine different parameter combinations of the

AutoGluon model achieve relatively high scores across the five

evaluation metrics. This attests to the robust performance of the

AutoGluon model and confirms its high reliability in automating

the assessment of CAD prediction.
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3.2.2 Comparison of model prediction
Figure 7 lists the prediction accuracy of each base model for

CAD prediction. Based on the data set used in this study, the
frontiersin.org
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TABLE 3 Performance of autoGluon models with nine parameter combinations.

Stack-level Bag-fold Accuracy Precision Recall F1-score AUC
1 3 0.8877 0.9325 0.8837 0.9074 0.9487

1 4 0.9167 0.9461 0.9186 0.9322 0.9562

1 5 0.8986 0.9444 0.8895 0.9162 0.9526

2 3 0.8986 0.9337 0.9012 0.9172 0.9475

2 4 0.9167 0.9461 0.9186 0.9322 0.9424

2 5 0.8877 0.9433 0.8721 0.9063 0.9388

3 3 0.8986 0.9337 0.9012 0.9172 0.9475

3 4 0.9167 0.9461 0.9186 0.9322 0.9424

3 5 0.8949 0.9497 0.8779 0.9124 0.9388

Accuracy: Proportion of correctly classified samples to the total samples;

Precision: Of the predicted positives, the proportion that is actually positive;

Recall: Of the actual positives, the proportion that is predicted positive;

F1-score: the scores considering both precision and recall;

AUC, area under the curve.

FIGURE 7

Accuracy of autoGluon and baseline models.

Wang et al. 10.3389/fcvm.2024.1360548
prediction accuracy of these eight baseline models exceeds 0.85.

Among these models, LightGBM and CatBoost stand out with

exemplary performance, achieving a prediction accuracy of up to

0.8768. However, despite the relatively high prediction accuracy

shown by these baseline models, their accuracy rates are lower

than that achieved using the multi-model ensemble method

in AutoGluon, indicating that AutoGluon’s multi-model

ensemble approach outperforms the individual baseline models

in CAD prediction.
3.3 Feature analysis

In complex predictive models, a deep investigation into feature

importance is pivotal to understanding the behavior of the model.

In this study, SHAP is utilized to explain the ensemble model built

by AutoGluon with parameters bag-fold of 4 and stack-level of 1.

Feature importance provides an effective method to understand

and interpret the decisions made by a model. By quantifying the
Frontiers in Cardiovascular Medicine 08
contribution of each feature to the model’s prediction outcome,

we can gain insights into the relative importance of the different

inputs and their roles in the decision-making process. In

qualitative data, ST slope, chest pain type, and exercise angina

have a significant impact on the model’s predictions (Figure 8A).

For the quantitative data, old peak has the most significant

influence on model prediction. It consistent with their

correlations with CAD risk shown in the heat map.

While a straightforward ranking of feature importance offers

insights into model decision-making, it still needs to elucidate

the model’s intricate decision patterns fully. SHAP visualization

provides an additional layer of explainability. Based on feature

importance, it arranges the features around a centerline. Based

on each feature’s SHAP value, samples are marked at their

respective coordinate positions. Features on the left of the

centerline have a negative SHAP value, indicating a pull towards

a negative prediction. In contrast, those on the right side have a

positive value, leading the model’s prediction towards a positive

outcome. Moreover, each sample point is color-coded: red

indicates higher feature values, while blue suggests lower values.

This visualization lets us perceive how varying feature values

influence the model’s prediction direction.

Figure 8B reveals the following features. Firstly, when the ST

slope is “flat,” the model tends to predict the sample as a CAD

patient. According to the distribution in Figure 2, 75.0% of CAD

patients have an ST slope value of 1 (flat), while 77.3% of non-

CAD patients have an ST slope value of 0 (up-sloping). It can be

observed that the algorithm’s predictions may be related to the

differences in the distribution of ST slope values in the

population. Similarly, different values of chest pain type and

exercise angina also affect the model’s predictions. Finally, as

shown in Figure 8B, the model tends to predict male samples as

CAD patients more than female samples.

The SHAP values showcase the contribution of each feature

towards the final prediction, facilitating a lucid understanding

and explanation of an individual patient’s model prediction.

Figures 8C,D illustrate two typical examples elucidating the

model’s individualized predictions: one sample of a patient

diagnosed with CAD and another of a patient without CAD. The

arrows indicate the influence of each factor on the prediction.
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FIGURE 8

Feature importance analysis based on SHAP. (A) Ranking of feature importance: Ranked by the average SHAP values of 11 features. (B) Positive and
negative impacts of features on model predictions: Features to the left of the central line negatively influence the predictions, while those to the
right positively influence the predictions. (C) Individualized prediction interpretations for samples with CAD: The base value represents the baseline
prediction made without any feature contributions. Arrows depict the impact of each feature on the prediction, with blue arrows indicating a
decrease in risk and red arrows indicating an increase in risk. (D) Individualized prediction interpretations for samples without CAD.
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The arrow’s color determines whether the factor decreases (blue) or

increases (red) the mortality risk. The cumulative influence of all

factors provides the final SHAP value, correlating with the

prediction score. For the model constructed in this study, the

base value is 0.5803. For the first sample, the model output value

is relatively high, at 9.06, indicating that the model considers the

possibility of CAD in this sample relatively high. The model

tends to diagnose this sample as CAD based on the values of old

peak, ST slope, exercise angina, max HR, resting BP and so on.

In contrast, for the second sample, the model output value is

lower, at −4.27, suggesting that based on the values of ST slope,

old peak, exercise angina, cholesterol, resting BP and so on, the

model believes the probability of CAD in this sample is small.
4 Discussion

This study validates the effectiveness of AutoGluon in coronary

artery disease prediction on the public data set, especially its

method of integrating multiple models surpassing singular

foundational models. There are inherent limitations associated

with the data set used in our study, including significant

differences and a lack of propensity matching, which could
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potentially hinder the effectiveness of our models. Moreover,

there is a lack of distinction between prevalent and incident

cases, as well as a deficiency in appropriate data on potential

confounders, further contributing to the limitations of this data set.

In existing research, single machine learning methods are

commonly utilized or further optimized, such as KNN, random

forest, or Bayesian-optimized XGBoost (5, 6, 12). Ayatollahi et al.

compared the predictive effects of artificial neural networks and

SVM on coronary artery disease (33). The results indicated that

the SVM exhibited higher accuracy and superior performance

compared to the artificial neural networks model. Abdar et al.

introduced a novel optimization technique, N2Genetic optimizer,

for enhancing SVM. Research findings demonstrated that the

proposed method for optimizing machine learning-based

approaches could be successfully applied to raw data, leading to

the development of predictive models for clinical and research

purposes (34). Agrawal et al. developed a framework utilizing

elastic net regularized Cox regression to select 51 coronary artery

disease risk prediction factor subsets from 13,782 features. The

model demonstrated better predictive performance in the test

cohort compared to algorithms used clinically (35). Wang et al.

constructed a predictive model using random forest and

evaluated the model using ROC curves. This model integrated 15
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indicators to assess coronary artery disease risk and exhibited

robust predictive capability (36). The cloud-random forest model,

which combines cloud model and random forest, is used to

evaluate coronary artery disease risk. Results indicated a

classification accuracy of 85% on their experimental data set,

outperforming other methods in coronary artery disease risk

assessment in terms of classification performance and

effectiveness (37). Some studies employed ensemble learning to

build models, selecting multiple machine learning algorithms as

base learners, optimizing each base learner, and choosing

appropriate strategies to combine predictions. Shorewala et al.

utilized ensemble techniques to enhance coronary artery disease

prediction accuracy. The bagging model demonstrated an average

accuracy improvement of 1.96% compared to traditional models,

while the boosting model achieved the highest AUC score (38).

Trigka et al. experimentally evaluated various machine learning

models after employing SMOTE. The results demonstrated that

the stacked ensemble model post-SMOTE outperformed other

models, achieving an accuracy of 90.9% (39). Kolukisa et al.

proposed an ensemble feature selection method tested on

publicly available data sets. Experimental results showed that the

model based on ensemble feature selection achieved the best

classification performance (40). Velusamy et al. introduced a

novel heterogeneous ensemble method for effective diagnosis,

combining three base classifiers, namely KNN, random forest,

and SVM. Ensemble voting techniques based on average voting,

majority voting, and weighted-average voting were utilized to

combine the results of base classifiers. The results demonstrated

the robustness of ensemble algorithms in both coronary artery

disease patients and healthy subjects (41).

Different machine learning models may exhibit varying

performance on specific data sets. Building machine learning

models requires researchers to manually select algorithms, tune

hyperparameters, perform feature selection, and preprocess data,

among other steps. This study leverages AutoML technology to

automate the construction of coronary artery disease prediction

models. Results demonstrate that AutoGluon-based models

consistently outperform those built using individual machine

learning methods on CAD prediction tasks.

In the medical field, the application of AutoML is attracting

increasing attention and showing tremendous potential in various

aspects. The main advantage of AutoML lies in its ability to

simplify the construction and optimization process of machine

learning models, thereby accelerating the speed of medical data

analysis and model development, reducing technical barriers, and

improving model performance. AutoML can be applied to disease

diagnosis and personalized prediction. For example, it can be used

to enhance the detection of sinus diseases and predict acute kidney

injury in acute pancreatitis (42, 43). The application of AutoML in

the medical field holds vast prospects and is expected to have a

profound impact on medical research and clinical practice.

While AutoML demonstrates excellent performance in

cardiovascular disease prediction, model explainability is equally

essential in the medical domain. Doctors, when making

decisions, not only rely on the predictive outcomes of the model

but also need to understand why the model predicts as it does to
Frontiers in Cardiovascular Medicine 10
integrate it with other clinical information. The role of SHAP is

to explain the model’s prediction results. It achieves this by

providing a contribution value for each feature to explain the

prediction of each sample, thereby enhancing the explainability

of the model. In this study, SHAP was used to identify which

features played an important role in predicting the model’s

results, aiding in understanding the model’s decision-making

process. According to the feature importance ranking plot, the

features used by our model to predict coronary artery disease are

ranked as follows: ST slope, chest pain type, old peak, exercise

angina, cholesterol, max HR, sex, resting BP, age, fasting blood

sugar, and resting ECG. According to the SHAP values,

individuals with a flat or down-sloping ST slope have a higher

risk of CAD, while those with an up-sloping ST slope have a

lower risk. The SHAP value of fasting blood sugar indicates that

individuals with high blood sugar levels are more likely to have

CAD. This information can offer doctors additional clues in

clinical practice, aiding in more precise diagnosis and treatment.

Regarding the limitations of this study, it is important to note that

the data set utilized originates fromopen-sourcewebsites and is limited

in scope. While AutoGluon demonstrates superior performance

compared to other foundational models, it is essential to understand

that this does not necessarily mean it is the optimal choice for all

medical tasks. Furthermore, in terms of feature importance, although

SHAP offers a method, further research is needed to explore its

generalizability across different data sets and models.

In light of the limitations mentioned above, future research

should consider the use of larger and more diverse data sets or

explore the application of techniques such as few-shot learning,

transfer learning, and active learning to address the challenge

posed by the small size of the data set, thereby enhancing the

model’s generalization capability (44–46). Additionally, it is

crucial to explore and compare other AutoML frameworks and

algorithms, such as H2O AutoML and TPOT, and conduct in-

depth comparisons with AutoGluon to determine optimal

strategies for specific applications (47, 48). The explainability of

machine learning models remains a pivotal issue, necessitating

more in-depth validation across different medical domains to

ensure its consistency with clinical practice (49–68).

The application of AutoML in cardiovascular medicine not only

streamlines the model construction process but also paves the way

for using artificial intelligence technologies in areas such as

coronary artery hemodynamics and heart treatment. This ongoing

exploration and application of AutoML in these domains promotes

innovation, contributing to the refinement and personalization of

heart treatment strategies. This enables the implementation of more

effective and target intervention measures, promoting the ongoing

advancement of precision medicine in the field.
5 Conclusion

This study proposes an explainable coronary artery disease

prediction model based on the AutoML framework AutoGluon,

applied in cardiovascular medicine. The model achieves optimal

performance through comparative validation when adopting 4-
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fold cross-bagging, with an accuracy of 0.9167. Furthermore, single

foundational models, such as LightGBM and CatBoost, do not

surpass the predictive accuracy of the multi-model ensemble

approach realized through AutoGluon. Lastly, to further

comprehend the model’s decision-making process, we interpret

the ensemble model constructed by AutoGluon using SHAP.

This study confirms the effectiveness of AutoML in disease

prediction in cardiovascular medicine.
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