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Introduction: More than 76,000 women die yearly from preeclampsia and
hypertensive disorders of pregnancy. Early diagnosis and management of
preeclampsia can improve outcomes for both mother and baby. In this study,
we developed artificial intelligence models to detect and predict preeclampsia
from electrocardiograms (ECGs) in point-of-care settings.
Methods: Ten-second 12-lead ECG data was obtained from two large health
care settings: University of Tennessee Health Science Center (UTHSC) and
Atrium Health Wake Forest Baptist (AHWFB). UTHSC data was split into 80%
training and 20% holdout data. The model used a modified ResNet
convolutional neural network, taking one-dimensional raw ECG signals
comprising 12 channels as an input, to predict risk of preeclampsia. Sub-
analyses were performed to assess the predictive accuracy for preeclampsia
prediction within 30, 60, or 90 days before diagnosis.
Results: The UTHSC cohort included 904 ECGs from 759 females (78.8% African
American) with a mean ± sd age of 27.3 ± 5.0 years. The AHWFB cohort included
817 ECGs from 141 females (45.4 African American) with a mean ± sd age of 27.4
± 5.9 years. The cross-validated ECG-AI model yielded an AUC (95% CI) of 0.85
(0.77-0.93) on UTHSC holdout data, and an AUC (95% CI) of 0.81 (0.77-0.84) on
AHWFB data. The sub-analysis of different time windows before preeclampsia
prediction resulted in AUCs (95% CI) of 0.92 (0.84-1.00), 0.89 (0.81-0.98) and
0.90 (0.81-0.98) when tested on ECGs 30 days, 60 days and 90 days,
respectively, before diagnosis. When assessed on early onset preeclampsia
(preeclampsia diagnosed at <34 weeks of pregnancy), the model’s AUC (95%
CI) was 0.98 (0.89-1.00).
Discussion: We conclude that preeclampsia can be identified with high accuracy
via application of AI models to ECG data.
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1 Introduction

Preeclampsia and hypertensive disorders of pregnancy are among the leading causes of

maternal and infant morbidity and mortality in the world (1–5). More than 76,000 women

die each year from preeclampsia and hypertensive disorders of pregnancy (1).

Preeclampsia affects 3%–5% of pregnancies in the US. In addition about 16% of
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2024.1360238&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fcvm.2024.1360238
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1360238/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1360238/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1360238/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2024.1360238
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Butler et al. 10.3389/fcvm.2024.1360238
maternal deaths occurring in low- and middle-income countries

are related to preeclampsia and eclampsia and are mostly

attributed to limited medical care (6). Furthermore, late or

delayed diagnosis or management of preeclampsia is associated

with worse outcomes for the mother and infant (2, 7).

Preeclampsia is characterized by elevated blood pressure during

pregnancy, generally starting after 20 weeks of gestation (8). In

these cases, elevated blood pressure has a direct effect on

cardiovascular, renal and liver dysfunction (8, 9).

The relationship between hypertension and preeclampsia is

complex and multi-directional: chronic hypertension is a risk

factor for preeclampsia, and preeclampsia is associated with

increased long-term future cardiovascular morbidity (including

hypertension) and mortality in the mother (8, 9). Gene

variants associated with cardiomyopathy are also associated

with preeclampsia, and prolonged QT interval, altered p-wave

duration, and LV strain are more common among

females with preeclampsia compared to healthy pregnancies

(10, 11). Infants with births complicated by preeclampsia are

more likely to be premature, have intrauterine growth

restriction and have an increased risk of death, resulting in up

to 900,000 infant deaths per year (9, 12, 13). Identifying

pregnant females at elevated risk for preeclampsia using low-

cost tools may facilitate closer monitoring and timely

interventions to reduce preeclampsia-related adverse events in

both babies and mothers.

Low-cost screening tools and interventions are particularly

important for assessment of maternal health during pregnancy

globally, with even more benefits when made available in low

and middle income countries (LMIC), with the overall aim of

reducing maternal and fetal complications from preeclampsia

and its cardiac-related comorbidities (1). Multiple clinical

guidelines for diagnosis of preeclampsia exist (e.g., Preeclampsia

community guidelines, PRECOG; National Institute for Clinical

Excellence, NICE), but such guidelines are more tailored towards

developed countries and often rely on clinical assessments (1).

The World Health Organization (WHO) has highlighted the

importance of mobile-based technologies and their advancement

as important steps in detection and monitoring of preeclampsia

to stratify care and deliver easily-accessible tools for decision

making, especially in community areas with expensive, limited or

inaccessible healthcare services (2).

Electrocardiograms (ECG) are simple, yet powerful data

modalities that are relatively easy and inexpensive to obtain.

Artificial intelligence (AI) applied to the raw digital data from

12 lead ECGs has shown ability to detect and predict risk for,

cardiovascular conditions including atrial fibrillation, heart

failure, and cardiomyopathy (10, 11, 14–16). Given the evidence

for early and often severe cardiac involvement in females with

preeclampsia, we hypothesized that the application of AI to

digital ECG data could aid in the early identification of

females with preeclampsia. In addition, such AI methods have

the potential for global implementation due to the possibility

of incorporation within smart portable devices. To our

knowledge, this is the first study to use raw digital ECG data to

detect preeclampsia.
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2 Materials and methods

2.1 Study design and data sources

This retrospective matched cohort study was based on multi-

center medical records. Patient inclusion criteria included

limiting subjects to females 18 years or older at time of

delivery, having had at least one ECG during pregnancy and

diagnosed with preeclampsia (for cases). Females with ICD-9

and ICD-10 codes for preeclampsia (642.4×, 642.5×, 642.7×

and O14.×) were selected as cases. Controls were matched on

age at delivery ± 2 years, self-reported ancestry, and

gestational age (± 2 weeks).

Digital ECG data and demographic information, including

age, race, for both cases and controls between 2014 and 2020

were obtained from the electronic health records of the

University of Tennessee Health Science Center/Medical Center

in Memphis, Tennessee (UTHSC). This data was used for

model building. Additionally, ECG and demographic data

from Atrium Health Wake Forest Baptist (AHWFB) of cases

and controls from 2001 to 2023 was obtained for external

validation. Raw digital time-voltage 12-lead ECG data

recorded at ten seconds were originally obtained during the

routine provision of patient care during prenatal care visits or

hospitalization of pregnant patients. Data for all patients and

variables was complete, with no missing values.

This study was approved by the Institutional Review Boards

(IRB) of the respective institutions and followed the Transparent

Reporting of a Multivariable Prediction Model for Individual

Prognosis or Diagnosis (TRIPOD) reporting guideline.
2.2 Deep learning model for preeclampsia

Data from UTHSC were split 80%–20% into training and hold-

out datasets. The training data was used to build a preeclampsia

detection model with five-fold cross-validation. This final model

was then tested on the 20% hold-out data. A modified ResNet

CNN, reported in Akbilgic et al. was used to predict the

incidence of preeclampsia (17–19). The CNN algorithm uses

one-dimensional (1D) ECG signal with 12 channels (each ECG

lead being one channel) as an input. Dropout and regularization

values were tuned to reduce risk of overfitting the ECG-AI

model. For training, the batch size (the number of data points

evaluated at a time to update the model hyperparameters) was

set to 64 and training occurred over 100 epochs (the number of

complete passes through the full training dataset). All model

development and associated analyses were performed using the

Python programming language.

In addition to internal validation on the 20% UTHSC hold-out

data, the ECG-AI model was also externally validated on ECGs

obtained from AHWFB. Evaluation of ECG-AI on both the

hold-out and external validation data was done using the area

under the receiver operating characteristics (ROC AUC),

accuracy, sensitivity, specificity, and precision.
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2.3 Subgroup analyses

Sub-analyses were performed to include: (i) women with

preeclampsia who delivered at less than 37 weeks gestational age;

and (ii) women with preeclampsia diagnosed at less than 34

weeks of pregnancy. DeLong’s test was used to compare

significant differences between AUCs of each subgroup.
2.4 Model validation on data from AHWFB

The ECG-AI was developed on data from UTHSC and

validated using data obtained from the EHR at AHWFB. The

same inclusion and exclusion criteria were applied. The five-fold

cross-validated models from ECG-AI were deployed on the

validation data and the outcomes were averaged as a final

prediction. Evaluation metrics for the best operating models were

assessed. The DeLong’s test was used to test for any statistically

significant difference in AUCs between the predictions from

UTHSC data and the AHWFB external validation dataset.
3 Results

3.1 EKGs during pregnancy

The majority of ECGs were obtained prior to the diagnosis of

preeclampsia, with only 12% of the ECGs taken at the time of

diagnosis ±7days. The median time between ECG to diagnosis

was 33 days. Because obtaining ECGs during prenatal care is not

a consistent practice during routine obstetric care, we collected

information on the reason for the ECG for the UTHSC cohort

and compared the reasons among cases and controls

(Supplementary Table S1). The main reasons for obtaining ECGs

were chest pain and shortness of breath for both cases and
TABLE 1 Cohort characteristics of the UTHSC and AHWFB patient groups.

UTHSC

Total
NFemales = 759
NECGs = 904

Cases
NFemales = 198
NECGs = 249

Age mean ± sd 27.3 ± 5.0 28.2 ± 5.8

Race, N (%)
African–American
White
Other/multiple

598 (78.8)
148 (19.5)
13 (1.7)

130 (65.7)
58 (29.2)
10 (5.1)

GA/weeks at PE diagnosis, mean ± sd – 34.8 ± 3.5

GA/weeks at Delivery, mean ± sd 36.8 ± 4.1 36.0 ± 2.4

Co-morbidities and Complications
Heart failure (yes)
Hypertension (yes)
Diabetes (yes)
Gestational diabetes (yes)
Multiple gestation (yes)
Multiparity (yes)
Stillbirth (yes)
Cesarean delivery (yes)

5 (0.7)
87 (11.5)
58 (7.6)
43 (5.7)
29 (3.8)
5 (0.7)
18 (2.4)
223 (29.4)

1 (0.0)
42 (21.2)
21 (10.6)
23 (11.6)
15 (7.6)
0 (0.0)
6 (3.0)
88 (44.4)
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controls—symptoms that occur frequently during pregnancy but

are non-specific. Overall, controls had higher instances of

syncope and dizziness compared to cases. It is important to note

that the ECG model presented below was able to distinguish

between females with and without preeclampsia, even though all

women (cases and controls) had roughly equal occurrence and

distribution of these non-specific symptoms.
3.2 Patient characteristics

The patient characteristics from UTHSC and AHWFB are

shown in Table 1. The EHR at UTHSC included 54,534 pregnant

women with 6,296 women having at least one ECG during

pregnancy (a total of 9,895 ECGs). A total of 825 women from

UTHSC were further identified, which then reduced to 759 after

exclusion of women age <18 and/or ECGs of poor quality. From

these, we identified 198 women with preeclampsia (cases) and

561 controls (See flowchart in Figure 1). The average age of cases

and controls was 28.2 ± 5.8 and 27.0 ± 4.6 years, respectively. The

make-up of the case group was 65.7% African-American and

29.2% white, while in the control group, 83.4% were African-

American and 16.0% were white. For cases, the average

gestational age at preeclampsia diagnosis and delivery was 34.8 ±

3.5 weeks and 36.0 ± 2.4 weeks, respectively. The mean

gestational age at delivery was 37.4 ± 4.0 weeks for control women.

The EHR at AHWFB included 218,864 pregnant women with

53,681 pregnant women having at least one ECG taken during

pregnancy.. Following the same selection protocol used to

generate the cohort from UTHSC (including delivery

information) resulted in a comparatively smaller sub-cohort from

AHWFB. A total of 141 women (42 cases (with 235 ECGs) and

99 controls (with 495 ECGs total) from AHWFB were further

selected to be included in the validation cohort The average age

for cases and controls was 30.7 ± 6.3 years and 27.4 ± 4.4 years
AHWFB

Controls
NFemales = 561
NECGs = 655

Total
NFemales = 141
NECGs = 817

Cases
NFemales = 42
NECGs = 235

Controls
NFemales = 99
NECGs = 495

27.0 ± 4.6 27.4 ± 5.9 30.7 ± 6.3 27.4 ± 4.4

468 (83.4)
90 (16.0)
3 (0.5)

64 (45.4)
57 (40.4)
20 (14.2)

16 (38.1)
18 42.9)
8 (19.0)

48 (48.5)
39 (39.4)
12 (12.1)

– – NA –

37.4 ± 4.0 NA NA NA

4 (0.7)
45 (8.0)
37 (6.6)
20 (3.6)
14 (2.5)
5 (0.9)
12 (2.1)
135 (24.1)

NA NA NA
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FIGURE 1

Flow chart summarizing number of patients and ECGs identified and included for model development.
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respectively. The case group was 38.1% African American and

42.9% white, while among controls, 48.5% were African

American and 39.4% were white. Gestational information for

AHWFB was unavailable.
3.3 Step 1: model evaluation, UTHSC

When applied to the 20% UTHSC holdout set, the cross-

validation mean AUC (95% CI) was 0.85 (0.77–0.93) with an

accuracy of 82%, precision of 63%, sensitivity of 78% and

specificity of 84% (Table 2).
TABLE 3 Results on the 20% UTHSC holdout data for different time
periods from diagnosis of preeclampsia or from delivery.

Sub-analysis on UTHSC 20% holdout AUC DeLong
test

(p-value)
3.4 Step 2: model evaluation, AHWFB
external validation

The ECG-AI models developed on the UTHSC data were next

evaluated on data from AHWFB. Validation of the ECG-AI models

on AHWFB data resulted in an AUC (95% CI) of 0.81 (0.77–0.84)

with accuracy of 78%, precision of 65%, sensitivity of 83% and

specificity of 66%. Table 2 summarizes the evaluation metrics

from the UTHSC holdout and AHWFB validation data sets.
TABLE 2 Summary of evaluation metrics for the ECG-AI model tested on
UTHSC 20% holdout data and on AHWFB validation data.

Evaluation metric 20% UTHSC holdout AHWFB
AUC 0.85 (0.77–0.93) 0.81 (0.77–0.84)

Accuracy 82% 78%

Sensitivity 78% 66%

Specificity 84% 83%

Precision 63% 65%
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3.5 Subgroup analyses

Additional analyses on the UTHSC holdout data (Table 3) were

performed for model performance when limited to ECGs obtained

within 30, 60, or 90 days before diagnosis, as well as when limited

to ECGs obtained at least 30 days before diagnosis (i.e., excluding

any ECG obtained within the month before diagnosis). Model

evaluation resulted in AUCs (95% CI) of 0.92 (0.84–1.00) at 30

days, 0.89 (0.81–0.98) at 60 days and 0.90 (0.81–0.98) at 90 days

before diagnosis. The AUC (95% CI) was 0.79 (0.66–0.92) when

the model was tested on ECGs at least 30 days prior to diagnosis.

When we stratified by gestational age at delivery, the model had

an AUC (95% CI) of 0.76 (0.58–0.95) among women with

preeclampsia delivering at less than 37 weeks, and an AUC of

0.88 (0.77–0.99) for women delivering at 37 weeks or greater (no

significant difference in AUCs; DeLong test p-value 0.219). When

tested on women with preeclampsia diagnosed at less than 34
ECGs taken ±30 days from first PE diagnosis 0.92 (0.84–1.00) –

ECGs taken ±60 days from first PE diagnosis 0.89 (0.81–0.98) –

ECGs taken ±90 days from first PE diagnosis 0.90 (0.81–0.98) –

ECGs taken 30 + days before PE diagnosisa 0.79 (0.66–0.92) –

PE developed when delivery was <37 weeks GA 0.76 (0.58–0.95) 0.219

PE developed when delivery was 37 + weeks GA 0.88 (0.77–0.99)

PE diagnosed at <34 weeks of pregnancy 0.98 (0.89–1.00) 0.298

PE diagnosed at 34 + weeks of pregnancy 0.89 (0.75–1.00)

PE, preeclampsia; GA, gestational age.
aECGs taken in the first month before diagnosis were excluded.
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weeks gestational age the model AUC was 0.98 (0.89–1.00), and

when evaluated on women with preeclampsia diagnosed at 34

weeks or greater gestational age, the AUC was 0.89 (0.75–1.00)

(DeLong test p-value 0.298).

We also performed subgroup analysis of model performance

among African American and white women. The model AUC

(95% CI) was 0.83 (0.80–0.87) and 0.82 (0.76–0.88) for African

American women from UTHSC and AHWFB, respectively

(DeLong p-value = 0.724). Similarly, among white women, model

AUCs (95% CI) were 0.85 (0.79–0.92) and 0.79 (0.74–0.84) on

UTHSC and AHWFB, respectively (DeLong p-value = 0.161).

There were no significant differences in model performance

between African American and white women either at UTHSC

or AHWFB (DeLong p-values of 0.433 and 0.437, respectively).

Subgroup analyses were performed on women with a previous

diagnosis of hypertension. When tested on women with a prior

diagnosis of hypertension, the model AUC was 0.68 (0.45–0.91).

When women with a previous diagnosis of hypertension were

excluded from the dataset, the model AUC was 0.90 (0.82–0.98).
4 Discussion

In this study we show that ECG data can help identify pregnant

women at high risk for preeclampsia. Our CNN model used

250 Hz raw 12-lead ECGs to classify and predict risk of

preeclampsia with a cross-validated AUC of 0.85 on UTHSC

data followed by an AUC 0.81 from our external validation

(AHWFB) site, results comparable to other AI-based methods

that utilize more detailed information (including laboratory

testing) within machine learning algorithms (9, 20). The ECG-AI

model showed good performance in predicting preeclampsia

(AUC 0.89–0.92) between 30 and 90 days prior to the diagnosis.

These findings open the possibility for ECG-AI use in

smartwatches or similar mobile devices, which routinely capture

single-lead ECG data, for remote monitoring of women at high

risk during pregnancy.

Substantial research has been undertaken to identify females at

high risk for preeclampsia, preferably with low-cost tools that can

be used widely. Groups that have evaluated the utility of clinical

and laboratory biomarkers to assess risk of preeclampsia (21–24)

have reported moderate-high results (AUC between 0.80 and

0.90) when using such data within machine learning or neural

network algorithms as shown by Jhee et al., Marić et al.,

Neocleous et al. and Li et al. (8, 9, 20, 25) At the same time,

there has been considerable interest and research into the role of

PlGF and sFlt-1 in preeclampsia testing (26). Approaches based

on models using PlGF alone or the ratio of sFlt-1/PlGF have

shown good performance and have been implemented for short

term preeclampsia risk prediction and for assisting preeclampsia

diagnosis in the second and third trimesters. First trimester

screening performance is improved significantly when maternal

history is combined with biophysical and biochemical results

measured through pregnancy, including uterine artery pulsatility

index (PI), mean arterial pressure (MAP), PlGF, and pregnancy-

associated plasma protein-A (PAPP-A) (27). While promising,
Frontiers in Cardiovascular Medicine 05
these models fundamentally differ from our approach, as they

incorporate data that depend on blood analyses for biomarkers

typically at a few points in time and that are not largely in

clinical use (25).

As part of our work, we assessed model performance for

ECGs obtained 30, 60 and 90 days before preeclampsia

diagnosis. As would be expected, the highest AUCs were

obtained closer to the diagnosis (AUC of 0.92 within 30 days of

diagnosis) and remained high up to 90 days before diagnosis

(AUC of 0.90). There was a decrease in AUC (0.79) when ECGs

in the month prior to diagnosis were excluded. While this could

mean that markers of preeclampsia manifest more within the

30 days closer to the diagnosis (12, 20), our model still operates

well up to 90 days prior to diagnosis, at earlier stages of

pregnancy, with increased potential for patient monitoring and

clinical follow-ups (12, 16, 28).

We also assessed the model performance for subgroups of

particular interest. For example, pregnant females of African-

American ancestry are at higher risk of preeclampsia (29, 30).

Our model performed equally among African-Americans and

whites, with AUCs of 0.82 and 0.83, respectively. In addition, our

model performed well [AUC of 0.98 (0.89–1.00)] in the detection

of early-onset PE (diagnosed before 34 weeks).

We explored differences in women correctly identified as cases

(true positives) vs. those misidentified as controls (false negatives).

In the UTHSC holdout dataset, nine of the women with

preeclampsia were misidentified as controls and of these, the

majority had an ECG due to reported chest pain. Women

correctly identified as having preeclampsia had an ECG due to

history of hypertension or symptoms such as shortness of breath.

While chest pain is associated with preeclampsia, as others have

noted in some cases it might have inadvertently misled the

clinicians and ultimately been associated with missed detection of

preeclampsia (31, 32). Additionally, those correctly identified as

cases (true positives) had more severe preeclampsia (with

complications of childbirth) while women with missed

preeclampsia diagnosis (false negatives) were more likely to

have had preeclampsia diagnosed in the third trimester with

no complications.

Five out of nine women with a previous history of hypertension

who were misclassified as controls, (i.e., false negative) also

underwent a cesarean delivery. This could mean that these

women might have either undiagnosed or did not develop

preeclampsia due to cesarean delivery, which might have been

performed to reduce the risk of developing preeclampsia since

these women were already at high risk (33, 34).

Early risk prediction for preeclampsia can allow for lifestyle

intervention strategies, such as diet or physical activity (35, 36).

Other interventions for high risk women include the use of

pharmacological therapy, including the prescription of low dose

Aspirin (37, 38). Our models perform better when the ECG was

obtained within 90 days of diagnosis, which still allows time for

either lifestyle or pharmaceutical interventions to reduce the risk

for adverse maternal or infant outcomes. However, further model

development, especially with larger and multi-institute datasets, is

needed to identify the optimal performance windows.
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Prior research with ECGs included signal processing

methods to extract ECG features for use within machine

learning methods. Such methods include wavelet

transformation and probabilistic symbolic pattern recognition

and can also be used not only for signal processing and feature

extraction but also to reduce noise or artifacts (39–45). Our

team had previously developed a similar method to diagnose

preeclampsia, which used and compared signal processing

methods for ECGs. Our preliminary results showed a slight,

yet non-significant, increase in accuracy when using signal

processing methods, in combination with extracted ECG

features within machine learning algorithms (e.g., extreme

gradient boosting). However, this method required additional

processing steps, which reduces usability within clinical

workflows. Therefore, the trade-off for simplicity using raw

ECGs, with virtually no additional processing, within CNNs

was preferred to increase simplicity. The current CNN

structure can increase usability, application and

implementation within the clinical workflow without relying

on additional processing methods that can be time consuming

and/or computationally expensive to implement.

Our results have implications for the use of ECG-based AI

models, which are simple and cheap-to-execute and can also be

embedded within point-of-care technologies (46). Portable 12-

lead ECG monitors can be used this purpose, the data from

which can be remotely collected and transferred to and from

smart devices (47–49). There is also potential in developing

single-lead ECG-based models for remote monitoring using

smart wearables for pregnancies, especially among high risk

women. We have previously shown that single-lead models

perform well for the prediction and detection of heart failure

(19, 46) and fatal coronary heart disease (50) using solely Lead I

of a 12-Lead ECG, which is mimicked by smart watches and

other smart devices with ECG monitoring capabilities. A similar

approach can be taken for preeclampsia risk assessment. Since

the models in this research use 12-Lead ECGs, our goal is to

eventually develop and validate a single-lead ECG model (using

Lead I of the ECG) that can be easily used in resource poor

settings, and therefore focus on developing a model that requires

no user input. However, future improvements to the model will

consider including demographic characteristics such as age,

height and weight.

This study has some limitations. The ECG-AI models were

developed and tested on a dataset with mostly African-American

and White patients and requires further development and testing

on a more racially diverse cohort. While the models developed in

this research were externally validated with similar results to the

holdout-data, the models may not have leveraged the full

potential of ECG in preeclampsia detection and risk prediction

due to the limited sample size and relative lack of diversity

beyond African-American and white women. A larger, racially

diverse cohort could increase our models’ predictive power and

improve its generalizability to the general population and

represents a future direction for research. In addition, while most

clinical workflows are advancing to include AI to help with
Frontiers in Cardiovascular Medicine 06
decision making, there are still issues that are to be considered,

with most are related to standardizing its utility within clinical

systems as well as their explainability (51).
5 Conclusion

In conclusion, our research shows that ECG-based models can

detect women at high risk for preeclampsia with high accuracy.

The simplicity of these models allows for integration within

clinical workflows to help guide clinicians and/or patients to

obtain further evaluation. By validating our models on an

independent dataset from a different healthcare organization,

this research shows the applicability of the ECG-based models

across multiple healthcare institutions and its potential for

remote monitoring.
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