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The occurrence and development of myocardial dysfunction are associated with
damage in the cardiac microvascular endothelial cells (CMECs), which can
regulate nutrient exchange and oxy-gen-carbon cycling to protect
cardiomyocytes. Interventions targeting microRNAs (miRNAs) can effectively
mitigate CMEC injury and thus improve cardiovascular diseases. MiRNAs are a
class of noncoding single-strand RNA molecules typically 21–23 nucleotides
in length that are encoded by endogenous genes. They are critical regulators
of organism development, cell differentiation, metabolism, and apoptosis.
Current clinical trials on miRNA drugs indicate that patient-specific miRNA
levels are now being used as one of the criteria for predicting heart disease.
However, the cellular process of various miRNAs in CMECs in cardiovascular
diseases has not been fully elucidated. These mechanisms are a field that
immediately requires further investigation. Accordingly, this review summarizes
the roles and mechanisms of various miRNAs in CMECs in cardiovascular
disease and includes the process of CMEC crosstalk between miRNAs and
other cell types in the heart. Our study serves as a theoretical basis for the
formal introduction of miRNA use into the treatment of cardiovascular
diseases in the future.
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1 Introduction

Cardiovascular disease (CVD) now accounts for one-third of all fatalities globally, and

it has recently emerged as one of the most significant variables affecting people’s health

(1). Coronary artery disease (CAD) is the most common type of CVDs and is caused

by atherosclerotic blockage of the coronary arteries (2). Its clinical manifestations are

usually myocardial infarction (MI) and ischemic cardiomyopathy (3). CAD is becoming

more common every year in developed and developing countries, which is seriously

endangering people’s lives (3, 4). Inflammation, oxidative stress, autophagy, and

apoptosis are the fundamental pathological reactions to CAD. The primary pathological

processes are cell damage and excessive cellular autophagy (5). Additionally, CAD has

the further pathophysiological features of vascular dysfunction and myocardial

dysfunction. Previous research has demonstrated that endothelial damage causes

reduced bioavailability of nitric oxide (NO), which throws off the delicate balance

between vasoconstriction and diastole. The outcomes are increased endothelial
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permeability and endothelial secretion disorders, further resulting

in vascular dysfunction (6). Cardiovascular dysfunction is an

early event of CVDs such as atherosclerosis and heart failure and

can be utilized as an early predictor for the assessment of heart

failure (7–9). Therefore, cardiac vascular dysfunction has become

a major potential target for the treatment of heart disease.

The cardiac microvascular endothelial cell (CMEC) is the first

line of defense for tissues and organs and can be used to detect

alterations in hemodynamic and blood propagation signals.

Together with smooth muscle cells, it regulates blood flow and

plays a critical role in regulating angiogenesis and inflammatory

reactions (10). The primary cause of coronary microvascular

dysfunction (CMD) is endothelial dysfunction occurring in the

CMECs (11), and it leads to severe tissue damage. Damaged

vascular endothelial cells can have an impact on other cells and

aggravate the illness (12). Moreover, the damage to CMECs

precedes cardiac myocytes in the development of CVDs (13). In

the event of hypoxic or inflammatory injury, among others,

CMEC not only regulates nutrient exchange and oxygen-carbon

cycling in cardiomyocytes but also protects cardiomyocytes from

damage (14). In the heart, multiple capillary-based CMECs

tightly encircle the cardiomyocytes to create a perfusion unit.

The space between the two cells is extremely narrow and

contiguous. For example, NO has an important regulatory role in

the cardiovascular system. Decreased NO activity can lead to

increased coronary artery constriction and inflammation. Two

NO-converting enzymes, constitutive NO synthase (cNOS; type

III) and inducible NO synthase (iNOS, type II), are highly

expressed in endothelial cells (15). The released NO affects

cardiac diastolic function by raising cyclic guanosine

monophosphate (cGMP) levels in cardiomyocytes. However,

excessive NO can induce myocardial disorders under pathological

conditions (16). Several studies have demonstrated that the

crosstalk between CMECs and other cells plays a crucial role in

cardiac function (17, 18). Together, targeted CMECs have

become a significant prospective therapeutic pathway in the

management of CVD.
2 Composition and action mode of
miRNA

MiRNAs are a class of noncoding single-strand RNA molecules

typically 21–23 nucleotides in length that are encoded by

endogenous genes. They have been found to play a regulatory

role in gene expression (19). qPCR, in situ hybridization,

microarrays, and RNA sequencing are some of the current

techniques for miRNA detection (20). Typically, the sequence of

miRNA is located within an intron or exon of a noncoding RNA

(21). Most genes are transcribed by Pol II to pri-miRNA (22).

The pri-miRNA is cleaved in the nucleus by Drosha and

DiGeorge syndrome critical region gene 8 (DGCR8) into a

pre-miRNA of approximately 70 nucleotides long (23). The

pre-miRNA is transported into the cytoplasm via XPO5 and

ras-associated nuclear protein (RAN), which is cleaved by Dicer

into multiple double-strand miRNAs (24). After the original
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structure is restored in the Argonaute protein, single-strand

mature miRNA is generated by eliminating the passenger strand

of the miRNA double-strand body (22).

The mode of action of miRNAs is usually through the base

pairing of several nucleotide sites of the miRNA with the

untranslated region of the target mRNA, which in turn inhibits

the expression of the target mRNA. Particularly crucial to the

suppression of mRNA expression are nucleotide 2–8 sites (25).

Target prediction often relies on the nucleotides in this region of

the binding site (25, 26).
3 miRNAs a new therapeutical target

A single miRNA can control the expression of multiple target

mRNAs, and a single mRNA can also be regulated by multiple

miRNAs. Thus, miRNAs are generally considered promising for

their potent and diverse therapeutic functional effects as well as

their ability to affect multiple target genes (27). MiRNAs are

critical regulators of organism development, cell differentiation,

metabolism, and apoptosis (24). Clinical therapeutic strategies

targeting miRNAs are already being implemented. For example,

clinical study has shown that therapeutic measures targeting

miRNAs in viral hepatitis C are efficacious and well tolerated

(28). Beg et al. found that miRNA-43 mimics showed

considerable potential for the treatment of patients with

advanced cancer in phase I clinical studies (29).

MiRNAs can regulate necrotic apoptosis (30). Necrotizing

apoptosis in cardiac myocytes in patients with heart disease is

usually regulated by miRNAs, which in turn increases or

decreases infarct size (31). For example, the hearts of pre-miR-

223 knock-out mouse are more vulnerable to ischemia

reperfusion (IR) injury. MiR-873 can reduce the infarct size of

heart in mice with coronary artery occlusion and reperfusion by

inhibiting the necrotic death of cardiomyocytes (31, 32).

Although few clinical trials focus on miRNAs for CVDs, changes

in the levels of particular miRNAs can often be used in the clinic

as a marker to evaluate disease severity. MiRNA-133a/b, a

myocardial-specific miRNA, maybe a potential target for the

therapy of ventricular fibrillation after MI. Several targets

associated with miRNA-133 are related to cardiac disease (33).

Reduced miRNA-133a/b expression in patients is reportedly a

hallmark of the development of ventricular fibrillation after MI

in clinical studies (34). Additionally, miRNA-133 plays an

important regulatory role in the differentiation of embryonic

stem cells to cardiomyocytes (35). Patients with CAD have

significantly elevated peripheral blood miRNA-218 levels, which

can also be used as one of the criteria to measure the condition.

This finding indicates the feasibility of monitoring variations in

miRNA levels to measure and predict the progression of disease

(36). Meanwhile, miRNA-133 can inhibit angiogenesis in

endothelial cells by targeting vascular endothelial growth factor

receptor 2 (VEGFR2) and fibroblast growth factor receptor 1

(FGFR1) (37). Cardiac microvascular injury has important

implications for cardiac pathological recovery and the

maintenance of physiological homeostasis (38). Therefore, this
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review summarizes the role and mechanism of various miRNAs in

CMECs in CVDs. This review can guide the use of miRNA drugs

for the clinical treatment of CVDs.
4 Role of miRNA in CMEC in
cardiovascular disease

4.1 Coronary artery disease

CAD is an atherosclerotic disease with inflammatory properties

(3, 39). MI is a CVD caused by the formation of plaques in the

interior walls of the arteries, reducing blood flow into the heart

and injuring heart muscles because of insufficient oxygen supply

(40). MI leads to the apoptosis of cardiac myocytes and

nonmyocytes including CMECs (41), which ultimately induces

apoptosis and fibrotic scarring with impaired heart function. In

patients with CAD, CMD always coexist. CAD-induced reduction

in perfusion pressure can trigger functional and structural

alterations in microvasculature. Functional alterations include

impaired vasodilator function, whereas structural alterations

include arteriolar and capillary rarefaction distal to the coronary

stenosis. Conversely, CMD-induced impaired vasodilatation and

metabolic disturbances can exacerbate CAD (42). Previous

studies have shown that CMD in the coronary vasculature is an

important contributor (43, 44). The degree of improvement in

the coronary microvascular system of patients with MI has a

serious impact on morbidity and mortality in a clinic (45).

Coronary microcirculation has become a primary target for

therapies aimed at mitigating MI injury (46). The ratio of cardiac

CMECs to cardiomyocytes is about 3:1, which determines its

importance in cardiovascular health (17). Therefore, we

summarize the roles and mechanisms of various miRNAs in

CAD in CMECs and briefly describe them in Figure 1.

4.1.1 miRNA-218
MiRNA-218 is located at the introns of the SLIT2 and SLIT3

genes (47, 48). In rat primary CMECs, miRNA-218 is

significantly lower after homocysteine (Hcy) treatment than in

the control group. Hcy-induced reductions in NO bioavailability

result in impaired endothelium capacity to regulate vascular tone.

Hcy-induced oxidative stress causes the oxidative inactivation of

NO and endothelial NO synthase (eNOS) uncoupling and

contributing to the formation of more reactive oxygen species

(ROS) (49, 50). Elevated Hcy levels are considered a risk factor

for the development of atherosclerotic vascular injuries in

coronary heart disease (51). Therefore, a CAD model is usually

built by Hcy (52). Overexpression of miRNA-218 alleviates Hcy-

induced apoptosis, pro-inflammatory cytokine release, and

improved CMEC migration. When CMEC injury occurs in

advanced atherosclerosis, miRNA-218 expression is likewise

decreased to increase high mobility group protein B1 (HMGB1)

expression. HMGB1 is released from macrophages/monocytes

upon stimulation with lipopolysaccharide (LPS), tumor necrosis

factor (TNF), interleukin-1beta (IL-1β), and necrotic cells.

HMGB1 binds to cell surface receptors and mediates the
Frontiers in Cardiovascular Medicine 03
inflammatory response via the mitogen-activated protein kinase

(MAPK) signal pathway. In clinical studies, miRNA-218 is also

found to be significantly higher than normal in the peripheral

blood of patients with CAD, which can be one of the criteria for

diagnosing CAD (36, 53).
4.1.2 miRNA-26b-5p
MiRNA-26b-5p is a member of the miR-26 family, which is

located at CHR2 gene in human. Bidzhekov et al. have

demonstrated that miRNA-26b-5p is also associated with

atherosclerosis, the main cause of CVDs (54). In the MI model

(55), the long non-coding RNA (lncRNA) expression of Malat1

is significantly elevated in injured CMEC after 7 days. LncRNAs

are transcripts >200 nucleotides long which modulate

transcription, epigenetic modifications, and posttranslational

modifications by interacting with DNA and signaling receptors

(56). Previous study has shown that Malat1 plays an important

regulatory role by sponging miRNAs in CVD and endothelial

dysfunction (57). Its specific target miRNA-26b-5p causes a

significant increase in the expression of downstream signaling

factor mitofusin 1 (MFN1). MFN1 is usually involved in

oxidative stress pathways and mitochondrial apoptosis, such as

decreasing ROS activity, maintaining mitochondrial homeostasis

in CMEC thereby alleviating cardiac microvascular dysfunction.

What’s more, Malat1 is the competing endogenous RNA

(ceRNA) for miR-26b-5p. Knockdown of Malat1 caused an

exacerbation of MI, suggesting that endogenous miRNAs are also

critical for the development of CVD. However, miRNA-26b-5p

expression in circulating blood is significantly lower in heart

failure patients than in normal subjects in clinical trials and is

positively correlated with ejection fraction (58).
4.1.3 miRNA-128
MiRNA-128 is embedded on CHR 2q21.3 and 3p22.3 (59).

MiRNA-128 is often considered as a potential therapeutic target

to regulate vascular smooth muscle cells (60). The study has

shown that overexpression of miRNA-128 promotes

mitochondrial dysfunction by directly targeting NADH

Dehydrogenase (Ubiquinone) Fe-S Protein 4 (NDUFS4) (61).

MiRNA-128 in CMEC targets IRS1 in the Hcy-induced coronary

heart disease model (62). Inhibition of IRS1 expression promotes

vascular endothelial growth factor (VEGF) expression inhibits

oxidative stress, and enhances the anti-apoptotic capacity and

migration ability of CMEC.
4.1.4 miRNA-33a-5p
MiRNA-33a-5p is an intron miRNA that is located inside the

intron sequence of the sterol-response-element-binding protein

gene 2 (SREBP2) (63). The study has shown that miR-33a-5p

promotes apoptosis via targeting nodal modulator1 (NOMO1)

and other targets (64). After treatment with Hcy in the CMEC

vascular dysfunction model, growth-arrest specific transcript 5

(GAS5) expression is markedly reduced whereas miRNA-33a-5p

expression is elevated (65). GAS5 would compete with miRNA-

33a-5p to bind the target ATP-binding cassette transporter A1
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FIGURE 1

Change of expression and mechanisms of miRNA in CMEC in cardiovascular disease.
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(ABCA1), while miRNA-33a-5p action on ABCA1 would promote

apoptosis and inhibit cell growth (66).
4.1.5 miRNA-21
MiRNA-21 is located on CHR 17 in human. The study has

shown that miRNA-21 enhances hypoxia inducible factor-1α

(HIF-1α) activity via targeting Hsc70-interacting protein (CHIP),

playing a role in promoting angiogenesis (67). In a rat MI model

simulated by left anterior descending branch ligation (LAD)

infarct surgery, miRNA-21 expression was elevated in CMEC.

MiRNA-21 has an impact on the downstream target phosphatase

and tensin homolog deleted on phosphatase and tensin homolog

(PTEN), regulates protein kinase B (AKT) and extracellular

regulated kinases (ERK) pathway, promotes VEGF expression,

which ameliorates the injury caused by acute infarction. And

when miRNA-21 inhibitors are administered, angiogenesis is

inhibited to aggravate the disease (68, 69).
4.1.6 Other miRNAs
LncRNA HULC expression is downregulated in cardiac tissue

in a LAD infarct model. HULC can interact directly with

miRNA-29b to inhibit inflammatory cytokines such as

interleukin-6 (IL-6) and interleukin-8 (IL-8) and promote

angiogenesis. And miRNA-29b overexpression in CMEC

eliminates the effect of HULC and exacerbates the inflammatory

response (70). In primary CMEC isolated from rats with MI, the

level of miRNA-223-3p is considerably increased during the

migratory and proliferative phases (71), which can directly target

the gene recombinant ribosomal protein S6 kinase Beta 1

(RPS6KB1) and participate in the RPS6KB1/HIF-1α signaling

pathway. This results in the cell being blocked in the S-phase
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of the cell cycle, inhibiting migration and proliferation of

ischemic CMEC.
4.2 Ischemia reperfusion

Reperfusion is currently the only effective strategy to address

cardiac ischemia (72). Thrombolysis, percutaneous coronary

intervention, and coronary artery bypass surgery have been

applied in clinics (72, 73). However, these techniques inflict

secondary damage due to myocardial IR injury (74). IR injury

not only leads to necrotic apoptosis and autophagy due to

excessive ROS release (75, 76), but also activates senescent cells

and exacerbates fibrosis formation (77, 78). Previous studies have

shown that endothelial function plays a fundamental role in the

protection against IR injury (79). IR is a major cause of the

coronary microcirculation injury, inducing endothelial cell

dysfunction and increased vascular leakage. Conversely, ischemia

alone has a limited effect (80). Thus, understanding the

functional role of miRNAs under IR injury is crucial.
4.2.1 miRNA-206
MiRNA-206 is a member of the miRNA-1 family, which is

located between the interleukin-17 gene and the polycystic

kidney and hepatic disease 1 gene in human (chr 6), mouse

(chr 1) and rat (chr 9) (81). MiRNA-206 normally regulates the

function of skeletal muscle. Once its dysregulation is usually

accompanied by skeletal muscle disorders such as duchenne

muscular dystrophy (DMD) and amyotrophic lateral sclerosis

(ALS) (82). In the hypoxia/reoxygenation (H/R) model, YAP

expression is reduced and miRNA-206 expression is

downregulated within CMEC. Elevated expression of its direct
frontiersin.org
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target gene, programmed cell death 4 (PDCD4), decreases eNOS

phosphorylation and inhibits platelet endothelial cell adhesion

molecule-1 (PECAM-1) expression with CMEC damage (83).

PDCD4 may improve the mitigation of inflammatory

responses as well as oxidative stress through the heme oxygenase

1 (HO-1) pathway (84).

4.2.2 miRNA-126
MiRNA-126 is located on CHR 9 in human, which is involved

in cell apoptosis, inflammation, proliferation, angiogenesis, and

other processes by negatively targeting phosphatidylinositol 3-

kinase (PI3K), VEGF, vascular cell adhesion molecule-1 (VCAM-

1), and low density lipoprotein receptor related protein (LRP6)

(85). Yang et al. found that miRNA-126 expression is reduced in

CMEC after H/R treatment. MiRNA-126 reduced pro-

inflammatory cytokine expression and controlled the

inflammatory response by stimulating the PI3K/Akt/eNOS

signaling pathway in human CMEC. When miRNA-126

expression is reduced, the anti-inflammatory effects and lumen

formation are inhibited after CMEC injury (86).

4.2.3 miRNA-200a
MiRNA-200a is located on CHR 1p36.33 (87). The study has

shown that miRNA-200a is highly sensitive to ROS (88). In the

H/R model, the level of ROS increases in both cardiomyocytes

and CMEC, and miRNA-200a expression reduced in CMEC.

Accordingly, miRNA-200a is usually involved in pathway

responses related to oxidative stress. When miRNA-200a is

overexpressed in H/R-treated CMEC, apoptosis is ameliorated.

The mechanism may be through inhibiting the expression

of oxidative stress pathways such as nuclear factor erythroid

2-related factor 2 (NRF2) (89, 90).

4.2.4 Other miRNAs
In the IR model, miRNA-495 expression is decreased, while

pro-inflammatory cytokine expression is increased in CMEC.

Excessive miRNA-495 can inhibit pyrin domain-containing 3

(NLRP3), thereby reducing the secretion of pro-inflammatory

cytokines such as IL-6 and TNF-α. It alleviates inflammation

while enhancing CMEC cell activity as well as migration ability

(91). MiRNA-145-5p levels decreases in patients with coronary

artery disease, while its overexpression effectively alleviates H/R-

induced CMEC injury by inhibiting mothers against

decapentaplegic homolog 4 (SMAD4). SMAD4 is a crucial

element of the transforming growth factor β (TGFβ) signaling

pathway and is involved in cell proliferation, differentiation,

migration, and apoptosis (92).
4.3 Heart failure

Heart failure is the end stage in the development of various

heart diseases, such as MI and myocarditis. Several studies show

that endothelium-dependent vasodilation is blunted in patients

with heart failure (8, 93, 94). Currently, Nebivolol is often used

clinically to treat heart failure. Nebivolol plays a role in the beta
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(3)-adrenoceptor agonistic effect on endothelial cells that

stimulates eNOS, as well as in repairing vascular dysfunction

(95, 96). Nebivolol also inhibits the high salt-induced elevated

expression of miRNA-320, which is located in CMECs and is

involved in IR injury after MI via the antithetical regulation of

heat-shock protein 20 (Hsp20) (97–99). Thus, improving

vascular dysfunction has become an important direction in the

treatment of heart failure in clinics.
4.3.1 miRNA-1-3p
MiR-1-3p is encoded by the miR-1-2 gene located on CHR

18q11.2 (100). Wang et al. found that the level of miRNA-1-3p

is decreased in CMEC when chronic heart failure occurs (101).

When a vast array of miRNA-1-3p is secreted, it could directly

inhibit the expression of endothelin-1 (ET-1), improve vascular

endothelial dysfunction and cardiac remodeling. Moreover, up-

regulated miR-1-3p inhibits cell proliferation and promotes

apoptosis by targeting stress-associated endoplasmic reticulum

protein 1 (SERP1), which leads to dysfunction of CMECs (102).

We summarize the miRNA of CMEC in cardiovascular disease

to provide a theoretical basis (Table 1, Figure 1).
5 Role of miRNA in CMECs in diabetes

Diabetes mellitus (DM), caused either by deficient insulin

secretion or damaged of pancreatic β cell consists of type I and

type II DM. Type I DM is an autoimmune disease that affects

pancreatic cells and reduces insulin production. Type II DM is a

disease caused by the dysfunction or defect of pancreatic β cells,

which reduces insulin signaling and secretion from the pancreas

(103). Diabetic patients have elevated blood glucose due to islet

damage. High intracellular glucose levels usually lead to

metabolic abnormalities with a variety of complications,

including cardiac microangiopathy (104). Endothelial cells are

some of the first cell types to be exposed to hyperglycemia (105).

Hyperglycaemia-induced mitochondrial dysfunction and

endoplasmic reticulum stress are associated with mechanisms,

such as the activation of protein kinase C (PKC), polyol, and

hexosamine pathways. Hyperglycaemic lesion also induces ROS

accumulation that damages proteins or DNA and modulates

intracellular signaling pathways, such as mitogen activated

protein kinases and redox sensitive transcription factors (106). In

hyperglycemic CMECs, the glycolytic reserve is significantly

reduced, and the ability to produce ATP via glycolysis is

impaired (107). Additionally, higher ROS levels and oxidative

stress brought on by hyperglycemia frequently result in

endothelial cell apoptosis, lowering the mRNA levels of oxidative

phosphorylation (OXPHOS)-related genes. Thus, diabetes-

induced hyperglycemia damages CMECs through oxidative stress,

as well as inhibits mitochondrial glycolysis and the ability of

OXPHOS to generate ATP. In turn, CMEC proliferation is

inhibited, apoptosis is promoted (107–109). Moreover, this

damaged CMECs activate PKC, and release inflammatory

cytokines and adhesion factors (110, 111).
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TABLE 1 miRNAs with altered expression in CMEC in cardiovascular disease.

miRNA Subject of experiment Disease Changes of
expression

Target Function Reference

miRNA-
218

CMEC of Sprague-Dawley (SD)
rats

Atherosclerosis ↓ HMGB1 Inhibits HMGB1 interacting with a large number
of anti-inflammatory factors

(36, 53)

miRNA-
33a-5p

CMEC of SD rats Atherosclerosis ↑ ABCA1 Promotes apoptosis (65, 66)

miRNA-
128

CMEC of SD rats Coronary heart
disease

↓ IRS1 Promotes VEGF expression and increases SOD
activity

(62)

miR-26b-5p CMEC of C57BL/6 mice MI ↓ (7 days) MFN1 Inhibits MFN1 expression and elevates ROS
activity

(55)

miRNA-21 CMEC of SD rats MI ↑ PTEN Promotes VEGF expression (68, 69)

miRNA-
29b

CMEC of SD rats MI ↑ Promotes the expression of inflammatory
cytokines such as IL-6 and IL-8

(70)

miRNA-
223-3p

CMEC of SD rats MI ↓ RPS6KB1 Participates in the RPS6KB1/HIF-1α signaling
pathway and promotes angiogenesis

(71)

miRNA-
206

CMEC of Wistar rats IR ↓ PDCD4 Enhances eNOS phosphorylation and promotes
PECAM-1 expression

(83, 84)

miRNA-
126

Human cardiac microvascular
endothelial cell (HCMEC)

IR ↓ PI3K Activates PI3K/Akt/eNOS signaling pathway and
exerts anti-inflammatory effects

(86)

miRNA-
200a

Human coronary endothelial cell
(HCAEC)

IR ↓ NRF2 Inhibits the expression of oxidative stress
pathways such as NRF2

(89, 90)

miRNA-
495

CMEC of C57BL/6 mice IR ↓ NLRP3 Inhibits pro-inflammatory cytokines (91)

miRNA-
145-5p

HCMEC IR ↓ SMAD4 Inhibits SMAD4 and inhibits cell proliferation
and migration

(92)

miRNA-1-
3p

Rat cardiac microvascular
endothelial cell (RCMEC)

Heart failure ↓ ET-1 Inhibits target ET-1 expression and improves
vascular endothelial dysfunction

(101)

Yan et al. 10.3389/fcvm.2024.1356152
Clinical research is gradually focusing on targeting miRNAs in

the blood of diabetic patients. Studies have shown that diabetic

patients with high plasma miRNA-19a expression have less

vascular circulating tissue factor (TF) expression (112). TF is a

procoagulant factor released by vascular endothelial cells, which

are suppressed by miRNA-19a and miRNA-126. TF content in

the peripheral blood of type II diabetic patients is also

significantly negatively correlated with miRNA-181b (113). We

summarize the miRNA of CMEC in diabetes (Table 2).
5.1 miRNA-92a

Mature miRNA-92a can be produced by miR-92a-1 and miR-

92a-2 manipulation. MiRNA-92a-1 is situated within the third
TABLE 2 miRNAs with altered expression in CMEC in diabetes.

miRNA Subject of experiment Changes of
expression

T

miRNA-92a Mice cardiac microvascular endothelial
cell (MCMEC) and HCMEC

↑ ADAM
KLF4

miRNA-503 Human microvascular endothelial cell
line (HMEC-1)

↑ Apelin

miRNA-
216b

RCMEC ↑ FZD5

miRNA-
193-5p

CMEC of Wistar rats ↑ IGF2

miRNA-
200b

MCMEC ↓ VEGF
ZEB1,

miRNA-
146a

MCMEC and HCMEC ↓ TRAF
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intron of an open reading frame 25 (C13orf25) gene located at

chromosome 13q31-q32 (120). MiRNA-92a-2 is encoded in miR-

106-363 cluster on the X chromosome, region q26.2 (121), which

is of great importance in cardiac development and angiogenesis.

According to the study, high glucose induction dramatically

increases the level of miRNA-92a in human CMECs, reduces the

ability of cells to migrate and proliferate, and increases

inflammatory response. MiRNA-92a can inhibit the expression of

A disintegrin and metalloproteinase 10 (ADAM10), Krüpple-like

factor2 (KLF2) and Krüpple-like factor4 (KLF4). ADAM10

promotes cell migration, KLF2 and KLF4 are important

transcriptional regulators of anti-inflammatory and antioxidant

activity (114). Therefore, cells in the high glucose group with

elevated miRNA-92a expression have a significantly reduced ability

to migrate and proliferate, and an increased inflammatory response.
arget Function Reference

10, KLF2, Inhibits ADAM10, KLF2 and KLF4 expression and
inhibits cell migration

(114)

-12 Promotes pro-inflammatory cytokine release through
the JNK and p38MAPK signaling pathways

(115)

Inhibits CMEC proliferation capacity and migration
ability

(116)

Inhibits cell proliferation (117)

, p300,
ZEB2

Reduces expression of endothelial-specific markers
such as VEGF and CD31

(118)

6, IRAK1 Promotes the release of pro-inflammatory cytokines
such as IL-6 and IL-1β

(119)
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5.2 miRNA-146a

MiRNA-146a is located on CHR 5, which is an important

element in the regulation of inflammatory responses (122).

Previous study has shown that miRNA-146a inhibits the target

gene TGF-β1 to anti-angiogenesis. The high glucose treatment of

CMECs induces a decrease in miRNA-146a expression with

increasing the expression of tumor necrosis factor receptor

associated factor 6 (TRAF6) and interleukin-1 Receptor-

Associated Kinase 1 (IRAK1) (119). Promoting the release of

pro-inflammatory cytokines, such as IL-6 and IL-1β, increases

inflammatory response and promotes fibrosis. Moreover, when

normal CMEC’s miRNA-146a expression is suppressed, it also

causes hyperglycemic lesions.
5.3 miRNA-503

MiRNA-503 is located on chromosome Xq26.3 and is elevated

in the high-glucose treated CMEC model (115, 123). MiRNA-503

inhibits Apelin-12 levels by binding to the promoter region of

Apelin gene, which can promote the release of pro-inflammatory

cytokines such as TNF-α, IL-6, and IL-1β through c-Jun

N-terminal kinase (JNK) and p38 MAPK signaling pathways,

further causing vascular dysfunction and the development of

heart failure in severe cases (115).
5.4 Other miRNAs

Elevated miR-216b expression in diabetic CMECs inhibits the

expression of its downstream target frizzled class receptor 5

(FZD5), while decreased miR-216b level inhibits the proliferative

capacity and migratory capacity of CMEC (116). In addition,

miR-193-5p expression is increased in CMECs, which interacts

with the direct target insulin growth factor 2 (IGF2) to inhibit

cell proliferation (117). Feng et al. show that hyperglycemia in

diabetic models is expressed by suppressing endothelial cell

miRNA-200b (118). MiRNA-200b prevents endothelial

mesenchymal transition (EndMT) which is caused by decreased

levels of endothelial-specific markers like VEGF and PECAM-1,

which impact greatly on heart failure and cardiac fibrosis.
6 miRNAs in cell crosstalk

MiRNAs play an important role in cellular crosstalk, especially

in cardiovascular aspects. We summarize the crosstalk mechanisms

between other cells in the heart and CMEC (Figure 2).
6.1 Cardiomyocytes

One cardiomyocyte is typically surrounded by multiple CMECs

in the heart to create a perfusion unit, and the space between the

two cells is incredibly narrow. Consequently, the interaction
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between CMECs and cardiomyocytes has significant effects on

heart function (18).

Hypoxia-treated cardiomyocytes release exosomes containing

excessive circHIPK3, which acts as an endogenous miR-29a

sponge. Exosomes then enter oxidative stress-injured CMECs to

inhibit miRNA-29a activity, drive increased insulin-like growth

factor 1 (IGF-1) expression, and reduce ROS and

malondialdehyde (MDA) expression (124). In contrast to the

above results (125), in the H/R model, injured cardiomyocytes

release a large amount of miRNA-499. Subsequently, miRNA-499

translates into CMEC to inhibit the level of α7-nachr, promote

an inflammatory response, and exacerbate vascular dysfunction.

CMEC also affects cardiomyocytes. Hypoxia-treated primary

CMECs in vitro release miRNA-27b-3p-rich exosomes to prevent

cardiomyocyte damage (126). MiRNA-27b-3p-rich exosomes

released from hypoxia-treated CMECs injected in advance into

the myocardium significantly inhibit H/R-induced MI injury in

rats. The mechanism involves the ability of miRNA-27b-3p to

significantly inhibit Foxo1 expression and this suppress

cardiomyocyte apoptosis. Moreover, rat hypoxia-treated CMECs

release miRNA-210-3p-rich exosomes that are delivered to H/R-

treated cardiomyocytes. MiRNA-210-3p further targets

transferrin receptor (TFR) in cardiomyocytes to alleviate

cardiomyocyte ferroptosis (127).
6.2 Cardiac telocytes

Cardiac telocyte (CT) is a population of cells with a very small

gap to cardiac muscle cells (128). When a cardiac infarction occurs,

CTs in the area of ischemic infarction die in large numbers.

Conversely, CT cell density is gradually restored during infarct

healing. When CT is therapeutically transplanted into the

damaged myocardial area, it can effectively improve myocardial

function and the degree of myocardial fibrosis (129).

Additionally, CT can release exosomes and transfer them to

hypoxic CMECs, and the most abundant miRNA in the

exosomes is miRNA-21-5p (130). MiRNA-21-5p enters CMECs

to repress the target gene cell death inducing p53 target 1

(Cdip1), thereby downregulating activated caspase-3 and

inhibiting apoptosis.
6.3 Mesenchymal stem cells

Mesenchymal stem cells (MSCs) are a group of multipotent

precursor cells that can differentiate into multiple cell types

and are used clinically to address hematologic and CVDs. MSC

can secrete immunomodulatory and angiogenic bioactive

factors that promote tissue repair and regeneration (131, 132).

Previous studies have shown that MSC is beginning to become

the focus of clinical studies for the treatment of AMI and

ischemic heart failure (133). Moreover, hMSC can out miR-

543-rich exosomes that transfer into hypoxia-treated CMEC

to down-regulate recombinant collagen type IV alpha 1

(COL4A1) expression and ameliorate hypoxic injury (134).
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Mechanisms by which CMEC crosstalk with other cells occurs in disease.
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Ning et al. showed that MSCs protected cardiac endothelial

cells from damage by releasing miRNA-153-3p low-expressing

exosomes and activating the Angiopoietin-1 (ANGPT1) and

VEGF/VEGFR2/PI3K/Akt/eNOS pathways (135).
7 Discussion

A single miRNA can have multitargeting effects, so miRNA-

targeted therapeutic approaches have recently become a research

hotspot with great prospects. For example, miRNA-145 can

reduce in-stent restenosis rate via anti-vascular proliferation with

no side effects (136). Improving microvascular endothelial

dysfunction has also become an important direction for studying

CVD treatment. This review summarizes the roles played by

numerous significant miRNAs in CMECs and their mechanisms

of action, with the aim of providing a theoretical basis for the

clinical use of miRNA therapies. This review also elaborates on

the role of miRNAs in the crosstalk between CMECs and other

cells in the heart and summarizes the mechanisms of action.

MiRNAs in diseases are currently being investigated further and

are frequently used as diagnostic criteria (36). However, some

remaining issues with miRNA therapy need to be resolved,

including the requirement for extremely accurate miRNA

sequence prediction and a certain number of miRNAs with

highly conserved sequences among different organisms. MiRNA-

targeted treatment will undoubtedly advance with the

improvement in detecting technologies, such as gene sequencing.
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Furthermore, miRNA therapy has the advantage of

multitargeting, which theoretically fits cardiovascular therapies

well. This promising future will undoubtedly serve as a catalyst

for the development of cardiovascular therapies.
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