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Acute Coronary Syndrome (ACS) significantly contributes to cardiovascular
death worldwide. ACS may arise from the disruption of an atherosclerotic
plaque, ultimately leading to acute ischemia and myocardial infarction. In the
pathogenesis of atherosclerosis, inflammation assumes a pivotal role, not
solely in the initiation and complications of atherosclerotic plaque formation,
but also in the myocardial response to ischemic insult. Acute inflammatory
processes, coupled with time to reperfusion, orchestrate ischemic and
reperfusion injuries, dictating infarct magnitude and acute left ventricular (LV)
remodeling. Conversely, chronic inflammation, alongside neurohumoral
activation, governs persistent LV remodeling. The interplay between chronic LV
remodeling and recurrent ischemic episodes delineates the progression of the
disease toward heart failure and cardiovascular death. Colchicine exerts anti-
inflammatory properties affecting both the myocardium and atherosclerotic
plaque by modulating the activity of monocyte/macrophages, neutrophils, and
platelets. This modulation can potentially result in a more favorable LV
remodeling and forestalls the recurrence of ACS. This narrative review aims to
delineate the role of inflammation across the different phases of ACS
pathophysiology and describe the mechanistic underpinnings of colchicine,
exploring its purported role in modulating each of these stages.
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1 Introduction

Ischemic heart disease (IHD) continues to be the leading cause of mortality worldwide,

despite substantial advancements in diagnosis and treatment (1). Considering the

prevailing trends of IHD risk factors, cardiovascular (CV) mortality is expected to rise

through 2025 (2). Acute coronary syndrome (ACS) significantly contributes to CV

death, accounting for 49.2% of the global registered deaths in 2019 (3), underscoring

the importance of understanding the pathophysiology of the disease to significantly

impact CV morbidity and mortality. Atherosclerotic ACS encompasses various

phenotypes, including unstable angina (UA), ST-segment elevation myocardial

infarction (STEMI), and non-ST segment elevation myocardial infarction (NSTEMI)
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(4). The common denominator among the diverse pathobiological

manifestations of ACS is the obstruction of coronary artery blood

flow, most commonly due to the rupture or erosion of a pre-

existing atherosclerotic plaque and the subsequent thrombus

formation (5).

For decades, atherosclerosis has been understood as a disease

primarily driven by lipids, particularly emphasizing the role of low-

density lipoprotein (LDL) cholesterol as a central factor in its

pathogenesis. In fact, the introduction of potent cholesterol-lowering

medications like statins, along with other major advancements in

ACS treatment, has led to a significant reduction in morbidity and

mortality associated with this condition. However, despite these

achievements, a substantial residual risk remains, with recurrence

rates persisting at approximately 20% after 3 years and up to 40%

after 10 years (6, 7). As a result, there has been a shift in focus

towards exploring alternative pathophysiological pathways. It is

now recognized that this residual atherosclerotic risk encompasses

three main components: (i) residual lipidic components—primarily

lipoprotein(a) and triglyceride-rich lipoproteins—residual

thrombosis; and, notably, inflammation (8–12).

While the concept of inflammation driving atherosclerosis has

been present since the 19th century, significant advancements in

understanding its multifaceted roles in disease pathogenesis have

been achieved only recently (13). Evidence has accumulated,

highlighting inflammation as a central process in atherosclerotic

plaque formation (12, 14). Moreover, it has become evident that

the transition of a silent atherosclerotic lesion into a plaque

prone to erosion or rupture is heavily influenced by activated

immune and inflammatory cells that destabilize the lesion,

leading to thrombosis and ischemia (15, 16).

Inflammation is a central component of innate immunity and

serves as a crucial mechanism for neutralizing harmful agents or

facilitating tissue repair (14). However, failure to resolve an

inflammatory response can lead to a persistent state of low-grade

inflammation, commonly observed in conditions associated with

increased risk of IHD, such as type 2 diabetes mellitus and non-

alcoholic fatty liver disease (17). This persistent inflammation can

be local or systemic, and both forms of inflammation might coexist

and overlap within an individual, albeit with varying relevance to

each individual patient. In fact, systemic inflammatory disorders,

such as rheumatoid arthritis and systemic lupus erythematosus are

associated with increased cardiovascular risk, independent of other

traditional risk factors, underscoring the pivotal role of

inflammation as a driver of IHD (18, 19).

Given the significance of inflammation in residual atherosclerotic

risk, there has been a shift towards developing therapies that

specifically target inflammation to further enhance outcomes in

this high-risk population. The CANTOS trial pioneered the

investigation of the inflammatory hypothesis in atherothrombosis

(20). In this study, patients with a history of myocardial infarction

(MI) and elevated levels of high-sensitivity C-reactive protein

(hs-CRP) (≥2 mg/dl) were randomly assigned to receive either

canakinumab [an interleukin-1β (IL-1β) monoclonal antibody]

or placebo. Canakinumab demonstrated a 15% reduction in

cardiovascular events, independent of aggressive cholesterol

control. Despite these promising results, immunosuppression with
Frontiers in Cardiovascular Medicine 02
canakinumab was associated with an increase in infection-related

mortality, thus limiting its widespread adoption (20). Several

other anti-inflammatory agents have been investigated, but most

have proved to be ineffective or potentially harmful (21–23).

However, colchicine, an anti-inflammatory medication that inhibits

microtubule polymerization and interferes with various stages of

the inflammatory process (24), emerges as an appealing alternative

due to recent evidence of its efficacy, coupled with its cost-

effectiveness and favorable safety profile.

This narrative review outlines the role of inflammation in the

distinct stages of ACS pathophysiology. It subsequently provides

a comprehensive description of the mechanism of action of

colchicine and presents the evidence regarding its impact on

each delineated stage of ACS pathophysiology. Additionally,

this review explores recent advancements in alternative

anti-inflammatory approaches and their effects.
2 Pathophysiology of acute coronary
syndrome. Focus on inflammation

Acute coronary syndromes most commonly arise from

atherosclerotic plaque disruption (i.e., rupture or erosion),

leading to thrombus formation and coronary obstruction (25).

Subsequent myocardial ischemia results in cardiomyocyte death

and adaptive changes that determine cardiac remodeling (26–28).

Inflammation not only plays a central role in the development

and complications of atherosclerotic plaque but also in the

myocardial response to ischemic injury (29). Here, we briefly

review the pathophysiology of ACS, focusing on the role of

inflammation in 3 distinctive stages: (i) atherosclerotic plaque

build-up and disruption; (ii) acute myocardial injury, and

(iii) chronic left ventricular (LV) remodeling.
2.1 Atherosclerotic plaque build-up and
disruption

Atherosclerotic plaque development results from the

accumulation of apolipoprotein B-containing lipoproteins in the

vessel intima, followed by monocyte infiltration (14). Monocyte-

derived macrophages fail to eliminate the modified lipoproteins and

transform into highly inflammatory foam cells, releasing Tumor

Necrosis Factor-α (TNF-α) and interleukin-1β (IL-1β), exacerbating

endothelial dysfunction and perpetuating the inflammatory response

(30). Macrophage dysfunction also manifests as a failed attempt to

clear apoptotic cells within plaque (a process called efferocytosis),

which results in cell debris accumulation and early plaque

development. Recently, it has been shown that failed efferocytosis

relate to an enhance expression of the transcription factor GATA-2,

which in turn results in the dysregulation of key regulatory proteins

(31). Advanced atherosclerotic plaques are characterized by a lipid-

rich core consisting of foam cells, cell debris, and extracellular

cholesterol, as well as a fibrous cap composed of extracellular matrix

and smooth muscle cells. In the later stages of the disease, plaque

disruption may occur, potentially leading to an ACS (12, 14, 25).
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Autopsy studies and intravascular imaging through optical coherence

tomography (OCT) have recognized three plaque phenotypes in

atherosclerotic ACS: plaque rupture, plaque erosion, and eruptive

calcific nodule, with the latter being significantly less common. The

composition of the advanced plaque will determine whether it is

prone to rupture or erosion (32, 33).

Ruptured plaques typically encompass a thin cap fibroatheroma

(TCFA) overlying a large lipidic and necrotic core; when rupture

occurs, the core components become exposed to the circulation,

causing in situ thrombosis and impaired distal flow (16, 33).

Inflammation has a key role in the pathophysiology of plaque

rupture, with an abundance of macrophages and foam cells—along

with, to a lesser extent, T cells- typically near the margins of the

fissure (34, 35). Conversely, in eroded plaques, the fibrous cap

remains intact, but erosion of the endothelial layer exposes the

extracellular matrix (ECM) components to the circulation,

initiating thrombosis (36). Unlike ruptured plaques, this phenotype

typically involves fibrous plaques rich in ECM components -such

as glycosaminoglycans and proteoglycans-, rather than lipids (37);

and they have fewer inflammatory cells and more smooth vascular

muscle cells (36). The pathophysiology of plaque erosion is

complex and markedly distinct from that of ruptured plaques. This

involves disturbances in local flow patterns and accumulation of

subintimal low molecular weight hyaluronan, leading to the

activation of toll-like receptor 2 (TLR 2) and the desquamation

of endothelial cells (38–40). Subsequently, neutrophils react

releasing neutrophil extracellular traps (NETs), as detailed below,

with final platelet-rich thrombus generation (41, 42). Table 1

delineates the main characteristics distinguishing plaque rupture

from plaque erosion.

As observed, macrophages play a pivotal role in the

pathogenesis of TCFA and plaque rupture (43). In more

advanced atherosclerotic lesions, macrophages accumulate within

the plaque as cell debris and release matrix metalloproteinases,

which degrade the fibrous cap, predisposing to plaque rupture

(44, 45). The nucleotide-binding oligomerization domain-like

receptor, pyrin domain-containing 3 (NLRP3) inflammasome is a

multimeric protein complex responsible for generating IL-1β and

interleukin 18 (IL-18) by monocyte/macrophages (18, 46).

Elevated expression levels of NLRP3 inflammasome components

have been detected in human atherosclerotic plaques (47),

correlating with disease severity (48). Additionally, they have

been found to be elevated in ACS patients compared to controls
TABLE 1 Histopathologic and pathophysiologic characteristics of plaque
rupture vs. plaque erosion.

Plaque rupture Plaque erosion
Larger lipidic/necrotic core Smaller lipidic/necrotic core

Thin fibrous cap Thick fibrous cap

Larger plaque burden Smaller plaque burden

Inflammatory cell-rich (monocytes,
macrophages and foam cells, T cells)

Smooth muscle cell rich
Extracellular matrix-rich (Proteoglycan,
glycosaminoglycan, low molecular weigh
hyaluronan)

Monocyte predominance Neutrophil predominance (with NETosis)

Red thrombus (platelet and fibrn-
rich, with abundant red blood cells)

White thrombus (platelet rich, red blood
cell-poor and NETs present)
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(49). Conversely, the administration of a specific NLRP3

inflammasome inhibitor—MCC950—results in less plaque

development and a reduction in the inflammasome cytokine

products in murine models (50, 51). Notably, peripheral

monocytes in ACS patients appear to be “primed” for

inflammasome activation (52), highlighting the importance of the

IL-1β axis and proposing it as a potential target for therapeutic

interventions, as demonstrated in the CANTOS trial (20).

Neutrophils play significant roles throughout all stages of

atherosclerosis development (53). They promote foam cell

formation and metalloproteinase-induced plaque instability

(54, 55). They release extracellular matrix proteinases (i.e., elastase

and proteinase-3) which contribute to plaque destabilization (56–

59) and facilitate monocyte recruitment and activation (60, 61). Of

particular relevance is their role in the pathogenesis of plaque

erosion through NETosis. NETs are web-like structures composed

of DNA, histones, neutrophil elastase, and myeloperoxidase,

released upon neutrophil activation (62). This leads to neutrophil-

platelet aggregation and cytokine release from macrophages,

lymphocytes, and endothelial cells, creating a potent pro-

inflammatory and pro-thrombotic environment (63–66).

Furthermore, NETs have also been found in ruptured plaques (67)

and can further stimulate macrophages for cytokine production,

fostering the inflammatory milieu during an ACS (68, 69). On the

other hand, inflammasome activation promotes neutrophil

recruitment and NETs formation in atherosclerotic plaques (70).

The key role of this NETs-monocyte cross-talk is further

exemplified by a recent experiment by Schumski et al. (71). Here,

the injection of lipopolysaccharide into hypercholesterolemic mice

resulted in a myeloid-dependent increased of atherosclerotic

plaque size and the deposition of NETs in the arterial lumen.

Conversely, the inhibition of NETs release prevents lesion

expansion secondary to lipopolysaccharide administration.

In addition to their role in thrombus formation, platelets

have emerged as important regulators of inflammation and

immune responses implicated in the onset and progression of

atherosclerosis (72). They act as a key link between leukocytes and

endothelial cells by binding to dysfunctional endothelium, thereby

facilitating the recruitment of leukocytes to the subendothelial

compartment and initiating the inflammatory cascade during

atherogenesis (73). Moreover, platelets are increasingly recognized

for their involvement in lipid metabolism, influencing monocyte

differentiation into macrophages and modulating macrophage lipid

accumulation, thus promoting foam cell formation and plaque

destabilization (74). Additionally, platelets exhibit migratory

capabilities, being attracted by cytokines and chemokines to

migrate through endothelial barriers and actively translocate into

atherosclerotic lesions, where they interact with monocytes and

assist in their migration (75–77). Accordingly, studies in

atherosclerotic-prone Ldlr+/− mice have shown that induced

platelet apoptosis via Bcl-xL inhibition results in reduced

atherosclerotic plaque formation (78).

The role of inflammation in the onset and progression of

atherosclerosis is supported by the recognition of increased

cardiovascular (CV) risk associated with the presence of

clonal hematopoiesis of indeterminate potential (CHIP) (79).
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These age-acquired somatic mutations occurring in hematopoietic

stem cells within the bone marrow may confer upon them a

competitive advantage, thereby facilitating the accumulation of

their progeny—including mutated macrophages and neutrophils

—in the peripheral blood. The majority of CHIP cases can be

attributed to mutations in only a handful of genes, with all but

one of them implicated in DNA or histone methylation defects,

potentially influencing the modulation of inflammatory gene

expression (79). For instance, monocytes/macrophages carrying

CHIP-related mutations in Tet2, DNMT3A, or JAK2VF promote

inflammasome activation, thus exhibiting increased expression of

IL-1 and IL-6, alongside other inflammatory mediators (79–81).

On the other hand, neutrophils carrying the JAK2VF mutation

exhibit heightened NETosis (82). In addition to supporting the

role of inflammation in atherosclerosis, the CHIP hypothesis may

serve as a plausible bridge connecting age and atherosclerosis,

which may occur, at least partly, through inflammation (83).

Following an initial ACS patients remain at increased CV risk,

experiencing recurrent events in up to 20% of cases within 3 years,

despite adherence to current guideline-directed medical therapy

(6, 7). Notably, only one-third of these events are related to

culprit lesions at the index event, while the other two-thirds are

related to non-culprit lesions (84), underscoring the importance

of plaque progression. Persistent coronary inflammation,

extending beyond the culprit lesion, likely contributes to this

progression. Ischemic events associated with non-culprit lesions

typically involve TCFA or lipid-rich plaques, features strongly

correlated with heightened inflammation (7, 80). Consequently,

there exists substantial evidence supporting the relationship

between persistent inflammation and the risk of recurrent

cardiovascular events (85). Furthermore, hs-CRP seems to be a

stronger predictor than residual cholesterol risk of new

cardiovascular events and death (86).
2.2 Acute myocardial injury

Following acute coronary obstruction, infarct size and the acute

remodeling that follows thereafter (also called infarct expansion),

are directly related to ischemic time and ensuing cell death; and

reperfusion injury, the latter also known as ischemic-reperfusion injury

2.2.1 Ischemic injury
The main determinant of ischemic injury in the setting of an

MI is the time to reperfusion—the longer the time the greater

the myocardial damage (87, 88). Additionally, myocardial oxygen

consumption and the quality of collateral flow to the ischemic

region are also important factors (89, 90). Once myocardial

ischemia and necrosis ensue, an intense inflammatory response is

triggered (29). It is now recognized that this inflammatory

response does not merely follow ischemic injury, but modulates

tissue response to it, mediating both acute tissue healing and scar

formation, as well as chronic ventricular remodeling (91). This is

a highly orchestrated process, in which all components of innate

immunity are involved and follow each other in a predictable

sequence (29). In response to myocyte necrosis and edema
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occurring during the first 12 h after coronary occlusion,

granulocytes infiltrate the myocardial tissue, amplifying acute

inflammation (92, 93). Granulocytes are then followed by

monocytes, which dominate the infarct zone from days 2 to 7,

clearing debris (phagocytosis) and engulfing dead cells

(efferocytosis) (94, 95). This paves the way for a third wave

composed of fibroblasts, which synthesize extracellular matrix

and, together with neoangiogenesis, form the granulation tissue

during the second week, which will then be gradually

transformed into a mature scar after a couple of months (96).

Recent studies in mice have shown that mononuclear

infiltration is composed of two very different subsets of

monocytes (95). The first wave, occurring during days 2–3 after

MI, is characterized by monocytes with very high phagocytic and

proteolytic capacity, and highly proinflammatory cytokine

production [TNF, IL-1, interleukin-6 (IL-6)] (95). In mice, these

monocytes express high levels of the surface marker Ly-6C

(Ly-6Chigh), a subset resembled in humans by monocytes

expressing high levels of CD14 and low levels of CD16 (97).

Once necrotic tissue and debris have been cleared by the first

wave of monocytes, a second wave of distinctive monocytes

arrives to promote tissue healing. From days 4 to 7, monocytes

of less inflammatory potential and high reparative capacity are

predominant, producing the fibrogenic mediator transforming

growth factor beta (TGF-β) and the angiogenic mediator vascular

endothelial growth factor (VEGF), thus promoting the formation

of granulation tissue. In contrast with those from the first wave,

these monocytes express low levels of Ly-6C in mice (Ly-6Clow)

(89). This fine-tuned balance of pro-inflammatory (M1) and

reparative (M2) monocyte populations is key for physiologic

myocardial healing. An exuberant inflammatory response leading

to the predominance, or impaired transition, from the former to

the latter, may be related to pathologic acute remodeling, i.e.,

excessive myocardial thinning, infarct expansion, and aneurysm/

pseudoaneurysm formation (98).

2.2.2 Reperfusion injury
It refers to all types of injury that are believed to be secondary

to coronary reperfusion itself. These include myocardial stunning,

ventricular arrhythmias, the No-Reflow phenomenon, and an entity

called lethal myocardial cell injury induced by reperfusion (99).

Among them, the No-Reflow phenomenon is the clinically most

relevant. It is defined as inadequate myocardial perfusion in a

territory subtended by a given epicardial coronary artery without

angiographic evidence of mechanical vessel obstruction (100).

Mechanistically, the key event is endothelial damage at the

microcirculatory level, leading to microvascular obstruction.

During reperfusion, massive infiltration of neutrophils and

platelets occurs, with activation, adhesion, and migration of the

neutrophils, releasing oxygen free radicals, proteolytic enzymes,

and pro-inflammatory mediators (TNF-a, IL-1β). This causes

endothelial and tissue damage, leading to focal and diffuse edema,

and rupture of endothelial cells that then blocks flow. Also,

there are neutrophil-platelet aggregates that plug capillaries,

distal embolization from proximal lesions, and a release of

vasoconstrictor agents from damaged endothelial cells (100).
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Percutaneous coronary angioplasty in the setting of ACS can result

in rapid neutrophil recruitment to the site of mechanical trauma.

The subsequent inflammatory cascade can provoke endothelial

dysfunction, leukocyte-platelet aggregates in distal beds, and

microvascular obstruction, leading to periprocedural MI and

injury which are associated with poorer outcomes (101, 102).

Ischemic and reperfusion injury are processes affecting the

myocardium affected by coronary obstruction. Interestingly, there is

evidence that the acute inflammatory response to ischemic injury is

not limited to the infarct zone but can extend well beyond (103–

105). Hence, inflammation in the non-infarcted myocardium may

emerge as a significant prognostic and therapeutic target. In an

exploratory study conducted among patients post-ST elevation MI

undergoing primary PCI, Bergamaschi et al. demonstrated that

MRI-derived T2 mapping—a surrogate of tissue edema and thus of

inflammation (106–108)—in the non-infarcted myocardium tended

to increase with infarct size (109). Interestingly, the intensity of the

T2 signal correlated with a higher risk of major adverse cardiac

events (MACE) during follow-up, primarily driven by a heightened

risk of reinfarction related to non-culprit coronary arteries.

However, higher T2 values were not correlated with the presence of

multivessel disease or coronary anatomical complexity. This

observation might underscore the role of inflammation not only in

non-culprit atheroma but also in non-culprit myocardium, as the

latter may not simply mirror but actively contribute to plaque

progression or instability.
2.3 Chronic left ventricular (LV) remodeling

Late in the course of MI, changes in LV size, shape, and thickness

involving both the infarcted and non-infarcted myocardial segments

are observed (26, 27). Adverse remodeling resulting in LV dilatation

strongly correlates to adverse cardiovascular outcomes, such as

heart failure (HF) and mortality (28, 110).

Chronic LV dilatation initiates early after MI and progresses for

months or years thereafter, resulting in dilatation of the viable

segments of the LV, as a compensatory mechanism for

maintaining stroke volume despite the loss of significant

myocardial mass (26, 27). The acute drop in stroke volume

fosters the activation of a neurohumoral response, resulting in

both hemodynamic and molecular changes. However, the

neurohumoral response does not account for the discrepancy

observed between the size of the initial MI and the magnitude of

chronic LV remodeling. The inflammatory process involved in

infarct healing and acute remodeling may also affect chronic LV

remodeling (111, 112). In fact, the balance between a pro-

inflammatory response with matrix degradation vs. a reparative

response with collagen deposition may explain different degrees

of late LV dilation (113, 114). Elevated levels of CRP measured

at hospital admission, during the first days, or at discharge

consistently predict adverse ventricular remodeling and HF

(115, 116). On the other hand, persistent post-MI inflammation

represents an additional potential pathogenetic mechanism of

adverse ventricular remodeling. Proinflammatory cytokines such

as TNF-a, IL-1β and IL-18 can exert direct actions on
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cardiomyocytes, leading to a cardio-depressant effect,

cytotoxicity, and induction of apoptosis (114).
3 Colchicine: mechanisms of action

Colchicine is a botanical alkaloid derived from the flower

Colchicum autumnale. Its historical use dates back to ancient

Egypt, as documented on the Ebers papyrus around 1550 BC,

where it was employed as a remedy to alleviate pain and swelling

(117). Traditionally indicated for acute gout flares and Familial

Mediterranean Fever (FMF) (118, 119), colchicine has gained

recognition as a potential therapeutic option for various

inflammatory conditions, including pericarditis and, more

recently, atherosclerosis (120). Its notable attributes include low

cost, widespread availability, and a favorable safety profile,

rendering it an appealing strategy for long-term use.

The primary elucidated mechanism of action of colchicine

involves the inhibition of tubulin polymerization, leading to

cytoskeleton disruption and consequential impairment of pivotal

cellular functions such as mitosis, intracellular transport,

exocytosis, and phagocytosis (121). Nevertheless, emerging

evidence suggests that colchicine may exert effects on other key

aspects of the inflammatory process, potentially influencing

monocytes/macrophages, neutrophils, and platelets (Figure 1).
3.1 Colchicine inhibition of the NLRP3
inflammasome

The NLRP3 inflammasome is a cytosolic, multimeric protein

complex composed of three distinct components: NLR family

pyrin domain-containing 3 (NLRP3), the adaptor protein

apoptosis-associated speck-like protein containing a caspase-

recruitment domain (ASC), and caspase-1 (122, 123). Triggered

by various activators such as monosodium urate (MSU),

cholesterol crystals, and ATP, a two-step process is initiated,

leading to the activation of the potent inflammatory cytokines

IL-1β and IL-18 (124–126). The NLRP3 inflammasome plays a

central role in up-regulating the inflammatory milieu in ACS

patients, making it an attractive target for modulating

ACS-associated athero-inflammation.

Both basic and clinical studies have demonstrated the inhibitory

effect of colchicine on the NLRP3 inflammasome. The initial study

by Martinon and colleagues conducted on THP1 cells exposed to

MSU crystals, revealed the suppressive effect of colchicine upon

the NLRP3 inflammasome (127). Additionally, in bone marrow-

derived macrophages and peripheral blood monocytes from FMF

patients, colchicine administration markedly suppressed IL-1β

expression (128). Furthermore, in peripheral blood monocytes

from ACS patients, colchicine inhibited caspase-1 activity and

IL-1β production (52).

While the exact pathway of colchicine’s inhibition of the

NLRP3 inflammasome remains elusive, recent studies have

provided important insights. Using J774 macrophages treated

with inflammasome inducers, Misawa et al. demonstrated that
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FIGURE 1

Role of colchicine in atherothrombosis. Colchicine exerts three main effects preventing atherosclerotic plaque build-up and disruption. Effect on
monocytes: colchicine inhibits monocyte migration and the NLRP3 inflammasome, thus limiting the activation of the potent proinflammatory
cytokine IL-1β and downstream IL-6 and C-reactive protein. Effect on neutrophils: colchicine inhibits neutrophil chemotaxis, and endothelial
adhesion, and reduces deformability and motility, thus hindering recruitment and extravasation. Additionally, colchicine reduces NETosis. Both
effects on neutrophils contribute to plaque stability. Effect on platelets: colchicine reduces platelet aggregation both directly and through NETs
reduction. Created with Biorender.com.
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colchicine administration hindered the intracellular transport of

ASC, preventing the co-localization of NLRP3, ASC, and

caspase-1, thereby impeding inflammasome effector activity

(129). Another study by Otani and colleagues observed the

inhibitory effect of colchicine on caspase-1 protein expression in

a mice model of NSAID small intestinal injury, without affecting

mRNA levels of NLRP3 or IL-1 (130). Pore formation is a key

step in ATP-induced inflammasome activation. Colchicine was

shown to strongly inhibit P2X7 membrane pore formation

in ATP-stimulated mouse peritoneal macrophages, resulting in

decreased reactive oxygen species and IL-1β release (131). These

findings, though diverse, collectively suggest that colchicine

modulates various aspects of the NLRP3 inflammasome,

particularly affecting its effector functions.

Regardless of the precise mechanism, the inhibition of

monocyte/macrophage cytokine production by colchicine in ACS

patients holds the potential to modulate processes following

acute coronary occlusion and myocardial necrosis, as will be

discussed later.
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3.2 Colchicine effect on neutrophils

Previous research has extensively described the impact of

colchicine on neutrophil function (132–134). Of importance, as a

result of the lack of the P glycoprotein efflux pump, the

drug accumulates in abundance within neutrophils, affecting

their activity (135). In brief, colchicine impairs neutrophil

chemotaxis and endothelial adhesion, seemingly through effects

on E- and L-selectin. Additionally, colchicine appears to

influence neutrophil deformability and motility, further hindering

recruitment and extravasation.

Levels of NETosis positively correlate with myocardial infarct

size, and NETs release inversely associates with myocardial

perfusion after coronary angioplasty in ACS patients (136).

Colchicine administration 6–24 h before coronary angioplasty in

ACS patients resulted in a seven-fold lower production of NETs,

measured in the coronary sinus during the procedure (137).

Interestingly, this effect appeared to be driven by cytoskeleton

α-tubulin stabilization, impairing NETs transport and release.
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Supporting these findings, colchicine has also been shown to limit

NETosis in gallstones (138) and in neutrophils isolated from

individuals with Behcet’s disease (139).

Neutrophils and NETs actively contribute to plaque

destabilization, complications, and myocardial remodeling post-

MI. Therefore, their inhibition by colchicine could positively

impact ACS patients.
3.3 Colchicine effect on platelets

Platelet activity is crucial for intracoronary thrombus

formation following plaque destabilization and complications

(i.e., rupture or erosion) (140). NETs, on the other hand, can

promote thrombosis by enhancing all platelet functions

(adhesion, activation, and aggregation) and increasing the

accumulation of prothrombotic factors such as von Willebrand

factor and fibrinogen (141).

In vitro, colchicine has been shown to reduce platelet

aggregation by interfering with cytoskeleton rearrangement

through cofilin and LIM domain kinase 1 inhibition (142). In

healthy subjects, a single oral dose of 1.8 mg has been shown to

reduce leukocyte-platelet aggregation (both monocyte and

neutrophil) and levels of surface markers of platelet activity,

including p-selectin and PAC-1 (activated GP IIb/IIIa) (143).

Moreover, in another experiment, platelets from patients

receiving dual antiplatelet therapy incubated with colchicine

resulted in a reduction in Thrombin Receptor Activating Peptide

(TRAP)-induced platelet aggregation (144). Furthermore, in

subjects with clopidogrel resistance, the addition of colchicine

also inhibited ADP-induced platelet aggregation (144).

Given the role of NETs in coronary thrombosis (145), it is

plausible that the inhibition of NETs formation by colchicine,

as previously described, can result in reduced thrombus

production and thus a more favorable phenotype after acute

plaque destabilization.
4 Role of colchicine in acute coronary
syndrome

4.1 Atherosclerotic plaque build-up and
disruption and prevention of acute
coronary events

Evidence from both animal models and clinical studies

supports a positive effect of colchicine upon atherosclerotic

plaque formation. In a rabbit model of atherosclerosis induced

by a high cholesterol diet and balloon endothelial denudation,

colchicine treatment reduced the relative increase in aortic wall

volume, measured as normalized wall index, and inflammation,

measured as 18F-FDG uptake in PET/CT imaging, which could

potentially lead to plaque stabilization (146). Furthermore, in a

prospective non-randomized observational study including 80

patients with recent ACS, colchicine administration was

associated with a reduction in low attenuation plaque volume
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(LAPV)—a CT scan surrogate of plaque instability and predictor

of future coronary events. A positive correlation between LAPV

and reduced hs-CRP levels was also reported (147).

Two randomized control trials (RCT) have examined the

impact of colchicine on hard clinical outcomes in the aftermath

of an ACS. The COLCOT trial randomized 4,745 patients to

receive colchicine (0.5 mg daily) or placebo within 30 days post-

MI. Colchicine led to a significant reduction of the primary

outcome (a composite of death from cardiovascular causes,

resuscitated cardiac arrest, myocardial infarction, stroke, or

urgent hospitalization for angina leading to coronary

revascularization) by 23% (HR 0.77; 95% CI 0.61–0.96; p = 0.02).

This was mainly driven by a significant reduction in the

incidence of stroke (HR 0.26; 95% CI 0.10–0.70) and urgent

hospitalization for angina leading to coronary revascularization

(HR 0.50; 95% CI 0.31–0.81) (148). Interestingly, in a post-hoc

analysis of COLCOT, time-to-treatment initiation (i.e., length of

time between the index MI and the initiation of colchicine) was

inversely correlated with colchicine clinical benefit. Indeed, when

administered in-hospital within the first 3 days after the event,

colchicine was associated with a 48% reduction in the risk of

ischemic events, which contrasted with a lack of benefit when

started later (4–7 days, and 7–30 days) (149). A second study,

the COPS trial, was an Australian-based study that randomly

assigned 795 patients diagnosed with MI or unstable angina to

receive colchicine (0.5 mg BID for 1 month, then 0.5 mg daily

for 11 months) vs. placebo (150). Although the original trial

failed to demonstrate a benefit on the 1-year primary outcome,

an extended 24-month follow-up did show a significant 40%

reduction in the composite of all-cause mortality, ACS, ischemia-

driven- unplanned-urgent revascularization, and non-

cardioembolic ischemic stroke (151). Of note, just as in

COLCOT, the main outcome was driven by a significant

reduction in urgent revascularization (HR, 0.19; 95% CI 0.05–

0.66; p = 0.009) (151). It is noteworthy that the magnitude of the

benefit obtained with colchicine in patients with previous ACS is

comparable to that achieved by each of the mainstay therapies

for the secondary prevention of coronary artery disease—such as

antiplatelet agents and statins—and has been achieved against a

background of modern optimal treatment with these therapies

(152, 153). Table 2 summarizes the available data on colchicine

in atherosclerotic plaque stabilization and prevention of acute

coronary events.
4.2 Acute myocardial injury

Early colchicine administration may modulate the initial

inflammatory response triggered by myocardial necrosis and the

subsequent neutrophil recruitment during ischemia-reperfusion

(IR) injury, impacting infarct size and acute myocardial

remodeling (Figure 2).

Two animal studies explored the effect of colchicine after

myocardial necrosis using mice models with permanent ligation

of the left anterior descending coronary artery. In the study by

Fujisue et al, colchicine administered orally after the onset of MI
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TABLE 2 Evidence for the use of colchicine on atherosclerotic plaque stabilization and prevention of acute coronary events.

Preclinical studies

Trial Animal model Disease induction Colchicine usagea Main findings Length of
intervention

Cecconi et al.
(146)

New Zealand White
Rabbits

Balloon endothelial
denudation plus high
cholesterol diet

0.2 mg/kg/day 5 days/week, SQ Reduction of the increase in aortic wall
volume and inflammation

18 weeks

Clinical studies (Phase 2 and 3)

Trial Key inclusion
criteria

No of patients Treatmenta Main results Follow up
(mean)

Vaidya et al.
(147)

ACS (<1 month) 80 Colchicine 0.5 mg QD plus OMT
vs. OMT alone

↓ Low attenuation plaque volume in CCTA
(40.9% vs. 17%) ↓ total atheroma volume

12 months

COLCOT, Tardif
et al. (148)

MI (treated with
PCI) within 30 days

4,745 Colchicine 0.5 mg QD plus OMT
vs. OMT alone

↓ 23% MACE ↓ 84% Stroke ↓ 50% urgent
hospitalization for angina leading to coronary
revascularization

19.5 months

COPS, Tong,
Quinn, et al.
(150)

ACS treated with
PCI or OMT

795 Colchicine 0.5 mg BID for 1
month, then 0.5 mg QD for 11
months vs. Placebo

↓ 84% Ischemia-driven urgent
revascularization ↓ Death from any cause (8
vs. 1 patients)

12 months

COPS, Tong,
Bloom, et al.
(151)

ACS treated with
PCI or OMT

795 Same as above, no colchicine or
placebo from months 13 to 24

↓ 41% MACE ↓ 81% Ischemia-driven urgent
revascularization

24 months

aOral administration unless stated otherwise. SQ, subcutaneous; ACS, acute coronary syndrome; OMT, optimal medical therapy; CCTA, coronary computed tomography

angiography; MI, myocardial infarction; PCI, percutaneous coronary intervention; MACE, major adverse cardiovascular event.

Bulnes et al. 10.3389/fcvm.2024.1356023
attenuated the inflammatory response by reducing the infiltration

of inflammatory cells—both granulocytes at 24 h and

macrophages at 3 and 7 days -, the activation of the NLRP3

inflammasome, and the levels of pro-inflammatory cytokines in
FIGURE 2

Effect of colchicine in infarct size/acute left ventricular remodeling. Followi
directly related to both ischemic injury and reperfusion injury (referred here a
neutrophils and monocytes, with attenuated M1 (Pro-inflammatory)-mono
into reduced myocardial tissue destruction, with less release of proteinase
by activated monocytes; and enhanced tissue repair, with increased releas
formation. Reperfusion injury: colchicine lowered NETosis and platelet
leukocyte-platelet aggregates, and microvascular obstruction. Therefore, by
administration during the acute phase of ACS has been shown to reduce
scar size; and acute LV remodeling, as assessed by LV volumes and ejecti
NET, neutrophil extracellular traps; ACS, acute coronary syndrome. Icons fr
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the infarcted myocardium (154). This resulted in a reduced acute

LV remodeling, showing less expansion of the LV scar size at

histology and lower LV diastolic and systolic diameters, as well

as higher ejection fraction at 1 week, which translated into
ng acute coronary obstruction, infarct size and acute LV remodeling are
s PCI-related MI). Ischemic injury: colchicine shows reduced infiltration of
cyte and increased M2 (Reparative)-monocyte response. This translates
s, and inflammatory cytokines and reduced phagocytosis/efferocytosis
e of fibrogenic and angiogenic mediators leading to granulation tissue
aggregation, which translated into reduced endothelial dysfunction,
reducing the magnitude of ischemic and reperfusion injury, colchicine

infarct size, as assessed by levels of myocardial enzyme release and LV
on fraction. LV, left ventricle; PCI, percutaneous coronary intervention;
om Servier Medical Art, licensed under CC BY 4.0.
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reduced short-term mortality due to cardiac rupture (154).

Likewise, in another study by Li et al., colchicine showed reduced

acute cardiac remodeling as assessed by echocardiography at 7

and 28 days, and increased mice survival; interestingly, in this

study the anti-inflammatory effect was mediated by a reduction

in NETosis (155).

Two studies have explored the effect of colchicine in I-R injury

using mice models with transient ligation of the left coronary

artery. Firstly, Akodad et al. tested intraperitoneal administration

of low-dose colchicine before reperfusion and showed decreased

myocardial injury as assessed by troponin levels and infarct size

in autopsy at 24 h. This effect was accompanied by a decrease

in plasma levels of key cytokines implicated in the post-

ischemic inflammatory response, such as IL-6 and Monocyte

Chemoattractant Protein-1 (MCP-1) (156). Secondly, Mori et al.

showed that intraperitoneal administration of colchicine starting

one day after artery ligation demonstrated reduced macrophage

infiltration in infarcted areas on days 3 and 7 (157). The two

studies cited above showed a decrease in plasma levels of MCP-1.

Interestingly, the chemokine receptor CCR2 that responds to

MCP-1 predominates in the proinflammatory Ly-6C (high)

monocyte subset (M1), underpinning the possible role of

colchicine in modulating the balance of the main monocyte

subsets implicated in post-MI inflammatory response, in favor of

a more reparative Ly-6C (low) (M2) phenotype. Furthermore, in

the study by Fujisue et al., colchicine tended to attenuate M1

cytokines (TNF-α, IL-1β, and IL-6) and to increase M2 cytokines

[interleukin-10 (IL-10) and TGF-β], suggesting that this drug

could affect the M1/M2 balance (143). The colchicine effect upon

MCP-1 expression has also been confirmed in human samples

from patients with ACS, impairing human-derived mononuclear

cell migration capacity (158).

There is also clinical evidence of the effect of colchicine in

reducing infarct size in humans. As mentioned above, colchicine

administration 6–24 h before coronary angioplasty in ACS

patients resulted in a seven-fold lower production of NETs,

measured in the coronary sinus during the procedure (137),

which may translate into reduced infarct size. However, results

from phase 2 RCTs have been conflicting. In the pivotal study

conducted by Deftereos et al., peri-PCI colchicine administration

to STEMI patients significantly reduced CK-MB area-under-the-

curve concentrations and, in a subset of patients, infarct size

assessed by cardiac magnetic resonance (MRI) 1 week after MI

(159). Conversely, in the CONVERT-MI, a very similar study in

patients with STEMI, colchicine showed no effect on infarct size,

as assessed through both biomarkers and MRI (160).

Two RCTs have evaluated the impact of colchicine in

percutaneous coronary intervention (PCI) related MI. The

Colchicine–PCI randomized controlled trial evaluated the effect

of colchicine administration just before (1–2 h) PCI, in a mixed

group of patients with stable angina and ACS. Pre-procedural

colchicine did not protect against PCI-related myocardial injury

(including PCI-related MI and MACE at 30 days) (161).

Importantly, although they found that colchicine did decrease IL-

6 and hs-CRP levels 24 h post PCI, it did not attenuate the

increase of these biomarkers at 8 h, which may point to a lack of
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an anti-inflammatory effect of colchicine at the time of PCI, due

to the short time of administration before the procedure. Thus,

this might imply that the pharmacodynamic properties of

colchicine require a longer time for the onset of its anti-

inflammatory effect. Bearing this in mind, Cole and colleagues

designed a similar RCT, administering colchicine to a mixed

group of stable angina and ACS patients, but with a longer lead-

in administration time before PCI (6–24 h) (162). They showed

that colchicine administration significantly reduced major and

minor peri-procedural MI and injury, especially in NSTEMI

patients. Colchicine also significantly reduced pre-PCI

inflammatory cytokine levels (IL-6, IL-1β, TNF-α, IFN-γ), and

white blood cell counts, with no differences in post-PCI values

(163). Table 3 summarizes the available studies on colchicine and

acute myocardial injury.
4.3 Chronic left ventricular remodeling

Evidence for the role of colchicine in chronic LV remodeling is

scarce, although the same preclinical animal models of MI or

ischemia-reperfusion (I-R) injury can provide some insights into

a potential role in late remodeling. In the aforementioned study

by Fujisue et al., the reduction in post-MI acute remodeling was

sustained throughout the study follow-up, with lower LV

diastolic and systolic diameters, as well as higher ejection fraction

at 4 weeks (154). In the model of I-R by Akodad et al., in

addition to the acute cardioprotective effect, colchicine increased

cardiac output in cardiac ultrasounds performed 8 weeks after

transient artery ligation and lowered the histological assessment

of fibrosis at 10 weeks after I-R injury (156). In the model of I-R

by Mori et al, in addition to reduced macrophage infiltration,

colchicine demonstrated reduced LV volumes and higher ejection

fraction, as assessed by 99mTc-MIBI gated SPECT, with

differences starting as early as 2 weeks after MI, but becoming

statistically relevant at 8 weeks (157). Table 4 summarizes the

available studies on colchicine and chronic LV remodeling.

Translation of these results to clinical data is largely awaited.
5 Other anti-inflammatory therapies

During the last decades, multiple therapies that specifically target

inflammation in atherosclerosis have been tested. However, thus far

only agents targeting the IL-1β—IL-6 pathway have shown some

efficacy in atherosclerosis. These agents include mainly the NLRP3

inhibitors and direct IL-1 and IL-6 inhibitors. Here, we briefly

describe the most important recent advancements in alternative

anti-inflammatory approaches for patients with ACS.
5.1 IL-1β inhibitors

Experimental evidence links IL-1 to atherosclerotic plaque

formation, impaired vasodilation, and increased atherothrombosis

(164). Interleukin-1 has two isoforms, IL-1α and IL-1β. While
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1356023
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


TABLE 3 Evidence for the use of colchicine on acute myocardial (i.e., ischemia and reperfusion) injury in ACS.

Preclinical studies

Animal model Disease induction Colchicine usagea Length of
intervention

Main findings

Fujisue et al. (154) C57BL/6J mice Permanent ligation of
left anterior descending
coronary artery

0.1 mg/kg 7 days after MI - Reduced infiltration of
granulocytes and monocytes

- Attenuation of pro-inflammatory
- Cytokines and NLRP3

inflammasome
- Reduced acute LV remodeling:

reduced scar size, lower diastolic
and systolic volumes, higher EF
at day 7

Li et al. (155) C57BL/6J mice Permanent ligation of
left anterior descending
coronary artery

0.1 mg/kg 7 or 28 days after MI - Inhibition of NETs formation
- Reduced acute LV remodeling

with improved EF at day 7

Akodad et al. (156) C57BL/6J mice Ligation of left
coronary artery
followed by reperfusion

0.4 mg/kg, 1 or 2 mg/kg IP 25 min before reperfusion - Reduced IL-6 and MCP-1
- Reduced infarct size and

circulating T troponin at 24 h
after ischemia-reperfusion

Mori et al. (157) Wistar male rats Ligation of left
coronary artery
followed by reperfusion

0.4 mg/kg IP 3 or 7 days after reperfusion - Reduced macrophage infiltration
in the infarcted area

- Decrease in MCP-1

Clinical studies

Trials Key inclusion
criteria

No of patients Treatmenta Main results Follow up (mean)

Deftereos et al.
(159)

STEMI <12 h treated
with PCI

151 Colchicine loading dose after
diagnostic angiography,
followed by 0.5 mg BID vs.
placebo

↓ CK-MB and troponin ↓
Infarct size (MRI)

5 days

COVERT MI,
Mewton et al. (160)

STEMI <12 h treated
with PCI

192 2 mg loading dose, followed by
0.5 mg BID for 5 days vs.
placebo

No difference in infarct size,
CK levels, or inflammatory
markers

3 months

COLCHICINE—
PCI, Shah et al.
(161)

CCS or ACS referred
to PCI

400 Colchicine 1.8 mg pre-PCI vs.
placebo

No difference in risk of PCI-
related MI or injury, or
MACE at 30 days

30 days

COPE –PCI, Cole
et al. (162)

CCS or NSTEMI
going to PCI

75 Colchicine 1.5 mg pre-
procedural (6–24 h before
angiography) vs. placebo

↓ 41% PCI-related MI and
injury ↓ total WBC

24 h

COPE—PCI, Cole
et al. (163)

CCS or NSTEMI
going to PCI

75 Same as above ↓ levels of IL-1β, IL-6, IL-10,
TNFα and WBC ↓ PCI-
related MI and injury

24 h

aOral administration unless stated otherwise; MI, myocardial infarction; NLRP3, nucleotide-binding oligomerization domain-like receptor, pyrin domain-containing; LV, left

ventricle; EF, ejection fraction; NET, neutrophil extracellular traps; IP, intraperitoneal; IL-6, interleukin 6; MCP-1, monocyte chemoattractant protein-1; STEMI, ST-elevation

myocardial infarction; PCI, percutaneous coronary intervention; CK, creatine kinase; CK-MB, creatin kinase-myocardial band; MRI, magnetic resonance imaging; CCS,

chronic coronary syndrome; ACS, acute coronary syndrome; NSTEMI, non-ST-elevation myocardial infarction; MACE, major adverse cardiovascular event; OMT,

optimal medical therapy; WBC, white blood cells; IL-1 β, interleukin 1β; IL-10, interleukin 10; TNFα, tumor necrosis factor α.

Bulnes et al. 10.3389/fcvm.2024.1356023
IL-1α ignites inflammation during MI, IL-1β expression during the

subacute phase contributes to apoptosis and cardiac remodeling. As

previously mentioned, in the CANTOS trial, patients with a history

of MI and high levels of hs-CRP were randomized to receive either

canakinumab or placebo, resulting in a 15% reduction in CV

events, independent of aggressive cholesterol control (20).

Anakinra is an interleukin-1 receptor antagonist (IL-1Ra),

resulting in the inhibition of both IL-1α and IL-1β. Patients with

STEMI receiving anakinra showed lower levels of hs-CRP (165).

Furthermore, a pooled analysis of the VCUART trials found

anakinra to reduce the incidence of new-onset HF or hospitalization

for HF at 1 year following STEMI (166). Although initial results
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seem promising, future trials testing the role of anakinra in ACS,

and including a larger number of patients, are expected.
5.2 IL-6 inhibitors

IL-6 is an effector cytokine downstream of IL-1β, playing a

significant role in atherosclerosis. Cardiomyocytes produce IL-6

under ischemia, which leads to inflammation and cytotoxicity.

Tocilizumab, a monoclonal antibody blocking IL-6 signaling, has

shown success in treating conditions like rheumatoid arthritis

(167). In a phase II trial involving non-STEMI patients,
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TABLE 4 Evidence of colchicine in chronic left ventricular remodeling.

Preclinical studies

Animal
model

Disease induction Colchicine
usagea

Length of
intervention

Main findings

Fujisue
et al. (154)

C57BL/6J
mice

Permanent ligation of left
anterior descending
coronary artery

0.1 mg/kg 7 days after MI Reduced LV diastolic and systolic diameters, as well as higher
ejection fraction on echocardiography at 4 weeks Lower LV end-
diastolic pressure on cardiac catheterization at 4 weeks

Li et al.
(155)

C57BL/6J
mice

Permanent ligation of left
anterior descending
coronary artery

0.1 mg/kg 7 or 28 days after MI Improved LVEF on echocardiography at day 28 (26.2% vs. 14.8%)

Akodad
et al. (156)

C57BL/6J
mice

Ligation of left coronary
artery followed by
reperfusion

0.4 mg/kg, 1 or
2 mg/kg IP

25 min before
reperfusion

Improved hemodynamic parameters (ITV) on echocardiography at 8
weeks, without differences in remodeling parameters

Mori et al.
(157)

Wistar male
rats

Ligation of left coronary
artery followed by
reperfusion

0.4 mg/kg IP 3 or 7 days after
reperfusion

Reduced LV diastolic and systolic volumes and improved LVEF (42.2
vs. 28.4%) on SPECT at 8 weeks

aOral administration unless stated otherwise; MI, myocardial infarction; LV, left ventricle; EF, ejection fraction; IP, intraperitoneal; ITV, integral time velocity; SPECT, single-

photon emission computed tomography.

Bulnes et al. 10.3389/fcvm.2024.1356023
tocilizumab was shown to significantly reduce CRP levels (168).

Recently, the ASSAIL-MI trial investigated the effect of a single

dose of tocilizumab on STEMI patients within 6 h of symptoms,

revealing a significant improvement in MRI-derived myocardial

salvage index and less microvascular obstruction. In this trial,

however, the reduction in final infarct size at 6 months was not
FIGURE 3

A general framework of the effect of colchicine in ACS. ACS most commonl
acute ischemia and MI. Acute inflammation along with time to reperfusion an
and determines infarct size and acute LV remodeling. Chronic inflammation
Both chronic LV remodeling and recurrent ischemic events determine the p
anti-inflammatory effects both in the myocardium and the atherosclerotic p
-both ischemic and reperfusion injury-, thus limiting infarct size and acu
inflammation, limiting chronic LV remodeling (i.e., chamber dilation and re
features, thus preventing plaque disruption and recurrent events. Theoretic
chronic coronary syndromes. Finally, the effects of colchicine in both atte
the prevention of recurrent ACS, may translate into reduced heart failure an
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statistically different, and the beneficial effect of tocilizumab

seemed to be limited to patients presenting with more than 3 h

after symptom onset (22). The ongoing ARTEMIS trial is testing

the effect of Ziltivekimab, a novel IL-6 inhibitor, in patients

admitted with myocardial infarction. The results are eagerly

anticipated (clinicaltrials.gov/NCT06118281).
y derives from atherosclerotic plaque disruption (Initial event), leading to
d other hemodynamic factors, mediates ischemic and reperfusion injury
, alongside neurohumoral activation, determines chronic LV remodeling.
rogression to heart failure and cardiovascular death. Colchicine exerts its
laque. At the myocardial level, colchicine attenuates acute inflammation
te remodeling. Subsequently, colchicine attenuates chronic low-grade
duced EF). At the atheroma level, colchicine reduces plaque instability
ally, it may also prevent the occurrence of an initial ACS in patients with
nuating acute and chronic LV remodeling after an ACS, in addition to
d CV death. Icons from Servier Medical Art, licensed under CC BY 4.0.
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5.3 Methotrexate

Methotrexate is an immunosuppressant drug with adenosine-

mediated anti-inflammatory effects (169). It is commonly used as a

treatment for systemic inflammatory diseases, including

rheumatoid arthritis, psoriatic arthritis, and juvenile idiopathic

arthritis. The CIRT trial administered low-dose methotrexate to

patients with metabolic syndrome or type 2 diabetes with recent

ACS. Methotrexate did not reduce levels of IL-1β, IL-6, or hs-CRP

andwas not associated with a reduction in cardiovascular events (21).
6 Future perspectives

As depicted in the current review, a substantial body of evidence

has accrued over the past decade concerning the potential beneficial

impact of colchicine on ACS patients. Animal models indicate effects

extending beyond tubulin polymerization inhibition, encompassing

the modulation of monocyte, neutrophil, and platelet activity—key

cell types implicated in ACS pathophysiology.

Colchicine may have a different impact on each plaque

phenotype. Its demonstrated inhibitory effect on the NLRP3

inflammasome, with inhibition of monocyte/macrophage cytokine

production, may translate into reduced lipidic/necrotic core

volume and increased fibrous cap thickness, thus reducing the

probability of plaque rupture. As previously mentioned, this has

been suggested by one observational study, in which colchicine
TABLE 5 Summary of ongoing studies of colchicine in acute coronary syndro

Study Design Targe
Colchicine and spironolactone in
patients with mi/synergy stent registry
(CLEAR SYNERGY) NCT03048825

Phase 3, prospective, randomized,
placebo-controlled

STEMI a
(N = 7,00

Colchicine effects on cardiovascular
outcomes in acute coronary syndrome
study (COLCARDIO-ACS) ACTRN
12616000400460

Phase 3, prospective, randomized,
placebo-controlled

ACS 4–5
+ elevated
(N = 3,00

Effects of colchicine in patients with
myocardial infarction NCT 04218786

Phase 2, prospective, randomized,
double-blind

ACS (N =

Colchicine for reduction of
periprocedural myocardial injury in
percutaneous coronary intervention
NCT05745818

Prospective, open-label, randomized
cohort study

ACS and
undergoi
(N = 300)

Colchicine in patients Undergoing
Coronary Artery Bypass Grafting After
Acute Coronary Syndrome (COCAR)
NCT05726019

Prospective, open-label, randomized
study

ACS, wit
for myoc
revascula
(N = 100)

Effect of colchicine on MMP-9, NOX2,
and TGF-β1 in myocardial infarct
NCT05709509

Prospective, randomized, parallel
assignment (medical treatment vs.
revascularization with or without
colchicine)

Late pres
(>12 h) (

Effect of colchicine on coronary
reperfusion in patients with acute
coronary syndrome NCT05472337

Prospective, randomized, colchicine
vs. no colchicine

ACS pati
PCI (N =

Short course low dose oral colchicine
after ST elevation myocardial
infarction (STEMI) NCT06020300

Prospective, randomized, colchicine
vs. placebo

STEMI (

MI, myocardial infarction; STEMI, ST-elevation myocardial infarction; NSTEMI, non-ST-e

high sensitivity-C reactive protein; ACS, acute coronary syndrome; PCI, percutaneous
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administration was associated with a reduction in low attenuation

plaque volume measured by CT scan (147), as well as in an animal

model of atherosclerosis (128). The COCOMO-ACS is an RCT

that will provide more evidence on the effects of colchicine upon

high-risk features of coronary plaques, as assessed by OCT (170).

Moreover, given its crucial effects on neutrophils and NETosis, it is

plausible that colchicine might have also an important effect on

the thrombus formation during plaque erosion.

This postulated effect of colchicine in plaque stabilization has been

evidenced by randomized clinical trials demonstrating its efficacy in

reducing new ischemic events. Additionally, colchicine shows

potential in reducing infarct size and cardiac remodeling following

an ACS. Lastly, its effects on NETs are expected to mitigate

ischemia/reperfusion injury, leading to improved reperfusion during

percutaneous coronary intervention (PCI). Figure 3 depicts a

proposed general framework of the effect of colchicine in ACS.

The 2021 ESC guidelines on the prevention of cardiovascular

disease endorse colchicine as an alternative for the secondary

prevention of cardiovascular disease, particularly for individuals

experiencing recurrent events despite optimal medical therapy

(class IIb recommendation, level of evidence A) (171). Moreover,

colchicine has received approval from the FDA and Health

Canada for the prevention of cardiovascular events in patients

with established atherosclerotic disease or multiple cardiovascular

risk factors (172).

Nevertheless, several other aspects need to be addressed before

the widespread use of this drug in patients with ACS. Firstly, the

timing of initiation remains unclear. A substudy of COLCOT
me.
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2 weeks after event
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levation myocardial infarction; MACE, major adverse cardiovascular event; hs-CRP,

coronary intervention; MRI, magnetic resonance imaging.
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indicated that the benefit of colchicine was limited to those patients

who commenced the drug within the first 3 days following the event

(150). Moreover, if an effect on reperfusion and acute remodeling is

desired, early initiation of colchicine upon admission and before

percutaneous coronary intervention (PCI) may be necessary.

Secondly, targeting higher-risk populations (e.g., those with

increased inflammatory residual risk) could potentially enhance the

drug’s efficacy. While hs-CRP is a recognized biomarker that may

be reduced by colchicine treatment (173), large clinical trials did

not select patients based on its levels. The ongoing COLCARDIO-

ACS study, which aims to randomize 3,000 post-MI patients with

persistently elevated hs-CRP to receive either colchicine or placebo,

may provide valuable insights into this topic. Thirdly, the current

treatment for post-MI patients typically involves dual antiplatelet

therapy, lipid-lowering treatment with one or two drugs, beta-

blockers, angiotensin inhibitors, and possibly an SLGT-2 inhibitor.

This regimen can be further tailored based on MI severity and

patient comorbidities. Therefore, how to integrate a new drug into

this already comprehensive treatment approach remains to be

defined. In this context, the two aspects previously discussed—

timing of initiation and tailoring—require clarification to provide

recommendations on how best to utilize colchicine in these patients.

Finally, while data on the long-term effects of colchicine in

ACS patients is promising, the emergence of increased non-

cardiovascular deaths among patients randomized to colchicine

(174) warrants caution and needs to be addressed in future trials.

Several ongoing trials seek to elucidate many of these areas of

uncertainty (Table 5).
7 Conclusion

The pathophysiological mechanisms underlying an ACS

consist of coronary plaque destabilization and in situ thrombosis,

acute myocardial injury, and chronic left ventricular remodeling.

Through the modulation of monocyte/macrophage, neutrophil,

and platelet activity, colchicine holds promise for positively

influencing patients with ACS. This may lead to a reduced rate

of subsequent ischemic events, smaller MI, and a more favorable

remodeling. Although recent evidence supports its use in post-

MI patients, further research is warranted to determine the

optimal context for utilizing this resurging therapeutic agent.
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