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Deep learning techniques for
imaging diagnosis and treatment
of aortic aneurysm
Legang Huang, Jiankuan Lu, Ying Xiao, Xiaofei Zhang, Cong Li,
Guangchao Yang, Xiangfei Jiao and Zijie Wang*

Department of Vascular Intervention, Shengli Oilfield Central Hospital, Dongying, China
Objective: This study aims to review the application of deep learning techniques
in the imaging diagnosis and treatment of aortic aneurysm (AA), focusing
on screening, diagnosis, lesion segmentation, surgical assistance, and
prognosis prediction.
Methods: A comprehensive literature review was conducted, analyzing studies
that utilized deep learning models such as Convolutional Neural Networks
(CNNs) in various aspects of AA management. The review covered applications
in screening, segmentation, surgical planning, and prognosis prediction, with a
focus on how these models improve diagnosis and treatment outcomes.
Results: Deep learning models demonstrated significant advancements in AA
management. For screening and diagnosis, models like ResNet achieved high
accuracy in identifying AA in non-contrast CT scans. In segmentation,
techniques like U-Net provided precise measurements of aneurysm size and
volume, crucial for surgical planning. Deep learning also assisted in surgical
procedures by accurately predicting stent placement and postoperative
complications. Furthermore, models were able to predict AA progression and
patient prognosis with high accuracy.
Conclusion: Deep learning technologies show remarkable potential in
enhancing the diagnosis, treatment, and management of AA. These
advancements could lead to more accurate and personalized patient care,
improving outcomes in AA management.
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1 Introduction

Aortic Aneurysm (AA) refers to the permanent dilation of the human aorta, with a

diameter exceeding 1.5 times that of the normal aorta, often resulting from

atherosclerosis and hypertension. The occurrence of AA is associated with various

epidemiological factors, such as age, gender, race, family history, and smoking (1). AA

is a life-threatening condition, and its treatment depends on surgical repair, which can

be achieved through open surgery or endovascular aneurysm repair (EVAR). The

guidelines from the European Society for Vascular Surgery offer recommendations for

the management of patients with AA, suggesting that the treatment plan should be

based on balancing the assessed risks of surgery with the risks of growth and rupture of

the AA. Computed tomography angiography (CTA) imaging remains the most

commonly used technique in surgical planning, as it provides a comprehensive dataset
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2024.1354517&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fcvm.2024.1354517
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1354517/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1354517/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1354517/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2024.1354517
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Huang et al. 10.3389/fcvm.2024.1354517
of the entire aorta and access vessels, allowing for the assessment of

the extent and morphology of the AA and the identification of

coexisting occlusive diseases (2, 3).

Deep learning, often referred to as a subset of artificial

intelligence (AI), is an important branch of machine learning

technology. Compared with traditional machine learning

techniques such as Support Vector Machines (SVM), Random

Forests, Decision Trees, K-Nearest Neighbors (KNN), Naive

Bayes, and Logistic Regression, deep learning employs different

training models and methods. Traditional machine learning relies

on manually extracted features and clearly defined algorithmic

rules, whereas deep learning models, especially Convolutional

Neural Networks (CNN), significantly enhance the accuracy of

machine learning by automatically learning complex feature

representations from vast amounts of data. With the continuous

iteration and improvement of model complexity, machine

recognition capabilities have reached human-level performance

for the first time (4), driving significant developments in the field

of artificial intelligence and reshaping various aspects of

production and daily life, including applications such as AlphaGo,

facial recognition for payments, and autonomous driving.

Different deep learning models, including CNN, Recurrent

Neural Networks (RNN), Bayesian Neural Networks (BNN), and

Graph Convolutional Networks (GCN), each have their unique

structures and training methods, suitable for different types of

data and tasks. For example, CNNs excel in image processing

and visual recognition tasks, while RNNs are more suitable for

sequential data such as text and speech. BNN introduce

probability distributions into network parameters, offering a

method to handle uncertainty and assess prediction credibility,

which is particularly important in areas requiring highly reliable

predictions like medical diagnosis and financial analysis. GCN

extend deep learning to graph-structured data, enabling the

network to learn directly between nodes in a graph, applicable to

tasks such as social network analysis and protein structure

prediction. Unlike traditional predictive models, such as

regression models that directly establish mathematical

relationships between inputs and outputs, deep learning models

learn abstract representations of data through multiple layers of

nonlinear transformations, enabling them to capture more

complex patterns and relationships. The diversity and flexibility

of these models are key to the success of deep learning across

various fields.

With the rapid advancement of computer hardware and deep

learning theory, AI has found extensive application in the

classification of medical image processing and is evolving swiftly

(5). Currently, deep learning models have achieved diagnostic

accuracy on par with radiologists for most tumor imaging, such as

rectal cancer (6), breast cancer (7), lung cancer (8), and others.

CNN and improved models are widely employed in medical image

processing (9). In the field of vascular diseases, deep learning-

based predictive models have yielded significant achievements in

various areas, including coronary artery disease (10, 11), stroke

(12, 13), and thrombotic disorders (14, 15). This study provides a

summary of the current applications of deep learning technology

in the diagnosis and treatment of AA disease. The workflow and
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application of deep learning research in radiological image data

from patients with AA can be seen in Figure 1.
2 Application of deep learning in AA
screening and diagnosis

AA is a life-threatening condition that can be effectively treated

with surgical intervention if detected before rupture. The screening

for AA is crucial for the prevention of this disease’s progression.

As AA are often asymptomatic in their early stages, screening is a

key component in identifying potential risks. Traditional screening

methods face challenges, including difficulty in detecting small or

atypical aneurysms. Recently, deep learning technologies have

shown great potential in enhancing the accuracy and efficiency of

screening, particularly in image recognition and pattern analysis.

These technologies not only improve diagnostic accuracy but also

handle large volumes of data, playing a vital role in the early

screening of AA. Deep learning technology can extract additional

information from Non-Contrast CT (NCCT) scans that may be

imperceptible to the human eye, facilitating AA diagnosis and

assessment, with performance even comparable to CTA

examinations. Golla, A. K. et al. (16) developed a diagnostic model

that can automatically screen Abdominal Aortic Aneurysm (AAA)

in NCCT scans and can be employed in a hospital environment.

The study employed three different CNNs, including ResNet,

VGG-16, and AlexNet, to analyze a dataset comprising 187 NCCT

scans. ResNet addresses the vanishing gradient problem by

introducing residual connections, allowing for the training of

deeper networks; VGG-16 is characterized by its repetitive use of

3 × 3 convolutional layers and a deep stacked architecture,

emphasizing the importance of network depth; AlexNet, as one of

the earlier deep learning models, prevents overfitting through the

use of ReLU activation functions and dropout techniques. Each

model has its unique features and strengths, with ResNet being

particularly effective in AAA screening tasks due to its deep

network capabilities and residual learning mechanism. Among

these models, ResNet outperformed the others. Its accuracy

reached 0.856 and 0.953 in two separate validation sets, with the

area under the receiver operating characteristic curves (AUROC)

of 0.926 and 0.971. These results demonstrate the outstanding

performance of the algorithm in AAA) screening and its potential

for real-world medical application. However, its study still has

shortcomings, firstly the relatively small size of the dataset may

limit the generalization and robustness of the models.

Additionally, while these models show excellence in AA screening,

their capability in differentiating blood from other soft tissue

components remains untested. This sets the stage for the study by

Chandrashekar, A. et al. (17), they have proposed that sufficient

information can be extracted from NCCT images to distinguish

blood from other soft tissue components. The team developed

software that generates CTA images from NCCT images,

employing a deep learning algorithm based on Generative

Adversarial Networks (GAN). GANs are a critical technology in

the field of deep learning and have achieved remarkable success in

image generation, style transfer, augmented reality, and various
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FIGURE 1

The workflow and application of deep learning research in radiological image data from patients with aortic aneurysms (AA). Initially, radiological image
data from patients with AA are collected as input. These data undergo preprocessing before being fed into a deep learning model for training. Upon
completion of the training, the model is capable of producing various predictive outcomes, such as disease diagnosis, lesion segmentation, surgical
assessment, prognosis, etc., offering references for doctors’ subsequent diagnosis and treatment decisions. Additionally, the figure outlines some of
the current limitations in deep learning research in this context.
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other applications. They included paired NCCT and CTA images

from 75 AAA patients for training, comprising a total of 11,243

image pairs. Ultimately, both generated models were able to

perform image translation tasks, with the Cycle Generative

Adversarial Network model performing the best. It achieved an

aneurysm cavity segmentation accuracy of 86.1% and a thrombus

spatial morphology classification accuracy of 93.5%. This approach

not only overcomes the limitations of data scale and model

generalizability mentioned in Golla’s study but also showcases the

further application of deep learning technology in medical image

transformation and more complex image processing tasks.

Automatic AAA diagnosis on NCCT not only enables large-scale

screening but also benefits patients who cannot undergo contrast-
Frontiers in Cardiovascular Medicine 03
enhanced examinations, such as those with iodine allergies for

whom contrast agents are contraindicated. This research provides

a feasible alternative for patients who cannot undergo contrast-

enhanced examinations and underscores the potential of deep

learning technology in the future of medical applications.

Deep learning technology continues to excel in the screening

and diagnosis of Thoracic Aortic Aneurysm (TAA). TAA is

considered a risk factor for Acute Aortic Syndrome and must be

accurately reported in every CT scan. An essential method for

diagnosing TAA is to measure the diameter of the aorta.

However, due to the complex anatomical structure of the

thoracic aorta, TAA detection has remained challenging. To

address this issue, Pradella et al. (18) utilized screening software
frontiersin.org
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AI-Rad (version 0.2.9.2, Siemens Healthineers, Forchheim,

Germany), based on deep learning technology, to conduct TAA

screening on a large population using non-CTA images. It was

trained on more than 10,000 data sets for detection of aortic

landmarks using deep reinforcement learning. Aortic

segmentation was trained on more than 1,000 data sets using

adversarial deep Image-to-Image network. According to the

guidelines of the American Heart Association (AHA), this

software measured the diameter of the thoracic aorta at nine

different locations. The criteria for dilation were defined as a

diameter exceeding 45 mm at the aortic sinus, sinus-aorta

junction, ascending aorta, and near the aortic arch and exceeding

40 mm from the mid-arch to the descending aorta. This study

successfully analyzed 18,243 CT cases, of which 12,092 were

contrast enhanced CT (CECT) scans, and the remainder were

NCCT scans. In the end, 97.0% of the cases (17,691 in total)

were correctly classified, including 452 previously missed TAA

cases. Compared to similar studies, AI-Rad employs deep

reinforcement learning and adversarial deep Image-to-Image

network for detection and segmentation tasks. Deep

reinforcement learning combines the advantages of deep learning

and reinforcement learning, while adversarial deep Image-to-

Image network, through dual neural network adversarial training,

enhance model accuracy and stability. Additionally, its training

dataset originates from various manufacturers, granting the model

superior generalization capabilities. AI-Rad can also generate 3D

volumetric rendered images, allowing doctors to observe the

measurements of the aorta more intuitively. (See Table 1).
3 Application of deep learning in AA
segmentation

Segmenting lesions in CT images of AA is crucial for guiding

surgical decisions and subsequent treatment. However, existing

segmentation methods are often time-consuming and challenging
TABLE 1 Summary of studies on the AA screening and diagnosis.

Author Publication
date

Research
objectives

Imaging
type

Pat

Golla, A. K. (16) 2021 Screening for AAA NCCT A dataset co
187 heterog
scans.

Chandrashekar,
A. (17)

2023 Generation of CTA
images using
NCCT images

NCCT Paired NCC
images of 7
patients, tot
image pairs

Pradella, M. (18) 2022 Screening for TAA CECT、
NCCT

18,243 CT s
female) wer
analyzed by

Spinella, G. (19) 2023 Screening for AAA CTA 73 thoraco-
CTAs (48 A
control CTA

AA, aortic aneurysm; CNN, convolutional neural networks; CECT, contrast enhanced

AUC, area under the curve; GAN, generative adversarial network.
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to apply in everyday clinical practice. To address this challenge,

Siriapisith, T (20). introduced a deep learning-based novel AAA

segmentation method, employing a CNN structure enhanced

with coordinate information. This approach led to improved

segmentation accuracy, achieving impressive Dice similarity

coefficients (DSC) of 97.13% on CTA images and 96.74% on

NCCT images. DSC, a statistical measure, quantifies the

similarity between two sets, making it ideal for assessing

segmentation accuracy in medical imaging. Additionally, they

implemented transfer learning, a technique where a model

developed for one task is reused on a second, related task, which

here involved applying knowledge from preoperative datasets to

EVAR postoperative datasets. This resulted in DSCs of 95.66%

and 94.90% for postoperative aneurysm segmentation on CTA

and NCCT datasets, respectively.

Mohammadi et al. (21) conducted a study with the aim of

creating a fully automated model for abdominal region

segmentation, AAA detection, and disease severity grading using

CTA images. Their model consisted of three key steps: firstly (1),

a CNN-based classifier was designed to categorize the abdomen

into four distinct classes, including the abdominal inner region,

aorta, body boundaries, and bones. Then (2), once the aorta was

successfully detected, they used the Hough circle algorithm to

precisely define its edges and measure its diameter. Finally (3),

based on the detected aortic diameter, they categorized the

disease into three risk levels: high, medium, and low. The model

performed exceptionally well, achieving accuracy, precision, and

sensitivity of 97.93%, 97.94%, and 97.93%, respectively.

Additionally, a detection accuracy of 98.62% was achieved for the

aortic region, and the Hough circle algorithm accurately

classified 120 aortic regions with a precision of 98.33%. In

summary, all steps of this classifier yielded the expected results.

Another researcher, Abdolmanafi (22), utilized a Resnet-based

fully convolutional network (FCN) with dilated convolutions as

the deep learning architecture. They employed experienced

vascular radiologists to manually delineate the contours of the
ients DL model Predicted outcome accuracy

nsisting of
enous CT

ResNet、VGG-16 和

AlexNet
In the first dataset it achieved an accuracy
of 0.856 and AUC of 0.926. In second
dataset it ran accuracy of 0.953 and AUC of
0.971

T and CTA
5 AAA
aling 11,243

GAN aneurysm lumen segmentation accuracy
(Cycle-GAN: 86.1% ± 12.2% vs. Con-GAN:
85.7% ± 10.4%) and thrombus spatial
morphology classification accuracy (Cycle-
GAN: 93.5% vs. Con-GAN: 85.7%).

cans (45.7%
e successfully
AIRad

The DL-prototype
(AIRad, Siemens
Healthineers,
Germany)

AIRad correctly assessed the presence or
absence of TAA in 17,691 exams (97%),
including 452 cases with previously missed
TAA independent from contrast protocol.

abdominal
AA and 25
)

2.5D CNN The pipeline correctly classified 47 AAA
out of 48 and 24 control patients out of 25
with 97% accuracy, 98% sensitivity, and
96% specificity.

CT; NCCT, non-contrast enhanced CT; CTA, computed tomography angiography;

frontiersin.org

https://doi.org/10.3389/fcvm.2024.1354517
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Huang et al. 10.3389/fcvm.2024.1354517
aorta, the wall, and the intraluminal structures, and used the results

of these expert delineations as the gold standard to train the deep

learning model. The model includes three steps: First, it detects the

“aorta” as a whole; second, it masks the original image to remove

all surrounding similar organs and structures, thereby achieving

more precise wall segmentation; finally, it detects the

intraluminal structures and whether AAA is present. Notably,

compared to expert manual segmentation, the results of

automatic segmentation show good consistency, with a BF-Score

(Boundary F1 Score) of 0.97 ± 0.03 and an IoU-Score

(Intersection over Union) of 0.98 ± 0.02.

4D-flow technology, a non-invasive method based on MRI,

measures blood flow using 3D images and time series data. It

captures dynamic blood flow details like velocity, direction, and

location in 3D space, aiding in the assessment of AA. Marin-

Castrillon, D. M. et al. (23) successfully applied this technology

for automated segmentation of the TAA region in 4D-flow MRI

images. They used a U-Net based model, treating each image

frame independently. The method achieved impressive accuracy,

with a DSC of 0.90 and an average Hausdorff Distance (HD) of

9.58 mm, indicating its potential for wider use in TAA analysis.

Intraluminal thrombus is a significant factor in the progression

of AA, and its presence is associated with the aneurysm sac and

rupture. Precise quantification and volume analysis of thrombus

are essential for better assessing the risk of AA rupture.

Thrombus segmentation is a challenging task due to its irregular

boundaries and the lack of clear definition resulting from

adjacent structures with similar intensity values and low

boundary contrast. Brutti, F (24). introduced a fully automated

process for detecting and segmenting thrombus in AAA patients
TABLE 2 Summary of studies on the AA Segmentation.

Author Publication
date

Research
objectives

Imaging
type

Siriapisith, T. (20) 2022 Segmentation of AAA CECT、
NCCT

High
and N
conta
from
patie

Mohammadi (21) 2019 Abdominal region
segmentation, AAA
detection, and disease
severity classification

CTA、
CECT

10 pa
CTA

Abdolmanafi (22) 2022 Segmentation of AAA CTA 6,030
abdo
obtai
differ
AAA

Marin-Castrillon,
D. M. (23)

2023 Segmentation of TAA 4D flow
MRI

36 pa

Brutti, F. (24) 2022 Segmentation of AAA
thrombus

CTA Data
scans

Lareyre, F. (25) 2021 Segmentation of AAA
thrombus

CTA 93 pa

AA, aortic aneurysm; CNN, convolutional neural networks; CECT, contrast enhanc

tomography angiography; AUC, area under the curve; MRI, magnetic resonance imag
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using CTA images, coupled with an analysis of AAA geometry.

This approach creates polygonal models of the thrombus and

intraluminal space, including the automated extraction of the

intraluminal centerline to calculate aneurysm and intraluminal

space diameters. The model’s thrombus segmentation showed a

DSC of 0.89 when compared to expert manual segmentation.

Additionally, the AAA geometric analysis indicated a high

intraclass correlation coefficient (ICC) of 0.92, with an average

absolute diameter difference of 3.2 mm. ICC, a measure of

reliability or agreement, indicates a strong concordance in

measurements. These findings suggest that the developed deep

learning model is effective in segmenting intraluminal thrombus

in AAA patients. Lareyre, F (25)., integrated a feature-based

expert system with deep learning algorithms to achieve a fully

automatic segmentation of the abdominal vascular system. The

results showed that this hybrid approach outperformed the

expert system in intraluminal segmentation (volume similarity:

0.8128, DSC: 0.8266). Furthermore, the hybrid approach

improved thrombus segmentation accuracy (volume similarity:

0.9404, DSC: 0.8918) compared to the expert system. (See Table 2).
4 Application of deep learning in AA
surgery assistance

Surgery is a crucial treatment option for AA, and deep learning

technology, through the evaluation of patients’ preoperative,

intraoperative, and postoperative imaging, can provide a more

precise assessment of patients, assist in developing surgical plans,

and evaluate postoperative complications. Measuring and
Patients DL model Predicted outcome accuracy

resolution CECT
CCT images
ining 64 slices
each of 200
nts.

UNet、AG-DSV-
UNet、VNet、
ResNetMed 、

DenseVoxNet

The best accuracies on NCCT and CECT
images have average dice scores of
97.13% and 96.74%, respectively.

tients CT and
datasets

CNN Abdominal inside region, aorta, body
border, and bone with the accuracy,
precision, and sensitivity of 97.93, 97.94,
and 97.93% respectively.

CT slices from
minal CT scans
ned from 56
ent patients with
.

FCN The best model achieved 96.8640%
accuracy (99.3794% sensitivity and
94.0271% specificity) in the validation set
and 100% (case accuracy) and 93.3333%
(image accuracy) in the test set.

tients with TAA U-Net The segmentation performance was
0.90 ± 0.02 for the DSC and the mean
HD was 9.58 ± 4.36 mm.

set of 85 CTA U-Net The CNN-based classifier DSC of 0.89 is
achieved. The AAA geometry analysis
provided an ICC of 0.92.

tients U-Net The hybrid approach demonstrated a
good accuracy for lumen segmentation
(volume similarity: 0.8128 and DSC:
0.8266).

ed computed tomography; NCCT, non-contrast enhanced CT; CTA, computed

ing; DSC, dice similarity coefficient; ICC; intraclass correlation coefficient.
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assessing the aneurysm is the foundation of surgical decision-

making for AA patients. However, manual measurements by

clinical physicians are subject to errors and lack time

repeatability, which may lead to delays in intervention or

unnecessary surgeries. Bratt, A. et al. (26) trained a deep learning

assessment model capable of automatically measuring aortic

volume and diameter from preoperative CTA images. When

compared to measurements by three radiologists, the deep

learning model exhibited better time repeatability in volume

(p < 0.008) and diameter (p < 1e-5). The repeatability metrics

were comparable to the variability among manual assessors as

reported in the past. Adam, C. et al. (27) used deep learning

technology to detect and assess the maximum aortic diameter in

AAA patients’ preoperative and postoperative CTA images. The

training dataset included 489 CTA images. The authors

compared the maximum cross sectional diameter measurements

manually conducted by two experienced aortic surgeons, three

vascular surgery residents, and two general radiologists with the

trained model. Ultimately, compared to expert measurements, the

deep learning model exhibited a median absolute difference of

1.2 mm, outperforming the measurements of ordinary physicians.

The manual measurements by clinical physicians may vary due

to individual experience, differences in judgment standards, and

the state at the time of evaluation. These factors, combined,

inevitably lead to errors in measurements and lack of

repeatability over time. In contrast, the deep learning model, by

learning from a large dataset, provides a more consistent and

objective measurement method, reducing the impact of human

factors and thus enhancing the reliability of the measurements.

Jiang et al. (28) introduced a novel method combining a

computational model (vascular Growth and Remodeling, G&R

model) with deep learning (Deep Belief Network, DBN) to

address these challenges. The G&R model generates a limited

simulated dataset, which, combined with patient follow-up data,

is used to train the DBN. The model, tested with CT scan

images from 20 patients, shows better performance in predicting

AAA expansion compared to traditional models.

Patients with TAA undergoing Thoracic Endovascular Aortic

Repair (TEVAR) require preoperative feasibility assessment and

planning to determine adequate Landing Zones (LZs) for stent-

graft deployment. Saitta, S. et al. (29) developed an automated

technology based on CTA images for preoperative assessment in

TEVAR. This system automatically segments the thoracic aorta,

detects Proximal Landing Zones (PLZs), and quantifies essential

geometric features such as curvature, diameter, and angles.

Tested on 465 CT scans, the technique achieved a DSC of 0.95

for automatic segmentation and measurement, and was further

validated in 9 additional patients, providing accurate surgical

planning information for doctors. However, the study has certain

limitations. Firstly, the technology relies on preoperative CTA

images for planning, but actual surgery typically depends on

Digital Subtraction Angiography (DSA) images, which may limit

its practical utility in guiding operations. Further integration of

DSA images could enhance its guidance value during actual

procedures. Secondly, the technology focuses on planning for the

thoracic aorta, and its applicability to AAA surgeries has not yet
Frontiers in Cardiovascular Medicine 06
been explored. Kappe et al. (30) developed a fully automatic

aortic stent-graft segmentation method based on DSA images

acquired during EVAR surgery. They trained a 2D CNN with a

U-Net architecture for stent-graft segmentation on DSA images.

Through cross-validation, they obtained promising results with

an average DSC of 0.957 and a median DSC of 0.968.

Furthermore, the mean and median surface distance were

1.266 mm and 0.870 mm, respectively. This method provides

robust assistance and assessment for aortic stent-graft

implantation surgery, ensuring the accuracy of stent placement,

visualizing endoleaks, and facilitating smooth operation of

various functions such as image fusion correction.

Following EVAR for aortic intramural hematoma, long-term

follow-up is essential to prevent life-threatening complications

related to persistent type 2 endoleaks. Wang et al. (31) created a

deep learning model to predict whether patients would

experience severe adverse events associated with type 2

endoleaks. The training dataset included 10,240 CTA images

from 75 patients with type 2 endoleaks, and the test set included

19 patients. In the test set, the deep learning model exhibited

promising predictive performance, with an AUC of 0.917,

accuracy of 0.842, and an F1 score of 0.897. However, a

limitation of this study is that its training dataset is relatively

small, including CTA images from only 75 patients. This may

affect the model’s general applicability and accuracy in a wider

patient population. In response to this challenge, Hahn, S (32).

collected postoperative CTA images (N = 334) from 191 patients

to build a deep learning model for predicting postoperative type

2 endoleaks. The model also measured the diameter, area, and

volume of the AA. The best type 2 endoleak detection model

achieved a 0.94 AUROC and an optimized accuracy of 0.89 on a

balanced dataset. The authors stated that further testing will be

conducted on larger datasets. (See Table 3).
5 Application of deep learning in AA
progression and prognosis prediction

Predicting the growth rate and pattern of AAA is crucial for

early treatment and surgical intervention. Capturing key features,

such as the accumulation of blood flow and intraluminal

thrombus, plays a vital role in revealing the complex mechanisms

underlying vascular adaptation, ultimately improving the ability to

predict AAA growth. However, there is a high inter-patient

variability in the local correlations between hemodynamic indices,

biological characteristics, and morphological features with AAA

growth rate, making biochemical and mechanical processes in time

and space not fully understood. Rezaeitaleshmahalleh, M. et al.

(33) used structural information of intraluminal thrombus to

predict the growth status of AAA. They divided 54 AAA patients

into two groups: slow growth (<5 mm/year) or rapid growth

(≥5 mm/year). They generated 3D geometric AAA models using a

deep learning image segmentation model and predicted the AAA’s

growth status through automated analysis. The prediction model

had an AUROC of 0.89 and an overall accuracy of 83%. However,

solely analyzing the structural information of thrombus to assess
frontiersin.org
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TABLE 3 Summary of studies on the AA surgery assistance.

Author Publication
date

Research objectives Imaging
type

Patients DL model Predicted outcome accuracy

Bratt, A. (26) 2021 Measures of volume and
diameter

CTA 2,835 patients U-Net Deep learning models show better time
repeatability for volume (p < 0.008) and diameter
(p < 1e-5) measurements

Adam, C. (27) 2021 Detect and assess
maximum aortic diameter

CTA 551 patients CNN The median absolute difference with respect to
expert’s measurements ranged from 1 mm to
2 mm among all annotators

Saitta, S. (29) 2022 Preoperative measurement
of stent placement position

CTA 465 CT scans U-Net The trained CNN yielded a mean DSC of 0.95 and
was able to generalize to 9 pathological cases of
thoracic aortic aneurysm, providing accurate
segmentations.

Kappe, K. O. (30) 2022 Fully automatic
segmentation of the stent
graft

DSA DSAs of 47 AAA
patients treated
with EVAR

U-Net An average DSC of 0.957 and median of 0.968. The
mean and median of the average surface distance
are 1.266 mm and 0.870 mm, respectively.

Wang, Y. (31) 2022 Predict the outcome of
persistent type 2 endoleaks
after EVAR

CTA 94 patients with
persistent type 2
endoleaks

CNN Achieved an AUC of 0.917, accuracy of 0.842, and
F1 score of 0.897.

Hahn, S. (32) 2020 Endoleak detection and
measurement of aneurysm
diameter, area, and volume

CTA 191 unique
patients
undergoing EVAR

Retina Net、
ResNet-50、
U-Net

The best model of binary endoleak detection
obtained an AUROC of 0.94 with an optimized
accuracy of 0.89 on a balanced data set.

Jiang (28) 2020 Predicting AAA expansion
and deciding when to
perform surgery

CT 20 patients Deep Belief
Network
(DBN)

DBN can predict the enlargements of AAAs with
an average relative error of 3.1%, which
outperforms the classical mixed-effect model
by 65%.

AA, aortic aneurysm; CNN, convolutional neural networks; CECT, contrast enhanced CT; AUC, area under the curve; CTA, computed tomography angiography; DSC, dice

similarity coefficient; EVAR, endovascular abdominal aortic aneurysm repair; DSA, digital subtraction angiography.
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the prognosis of an AAA might result in an incomplete description

of the complex biomechanical characteristics of AAA. Therefore, it is

still necessary to collect and analyze multidimensional information

of the localized lesion. Kim, S. et al. (34) employed a CNN

approach to incorporate important multiphysical features related

to the progression mechanism of AAA and validate their impact

on AAA growth prediction. Testing four feature combinations

from 54 patients, including radius, intraluminal thrombus

thickness, time-averaged wall shear stress, and growth rate, the

results showed that utilizing multiphysical features significantly

improved AAA growth prediction, demonstrating that the

proposed architecture surpasses previous state-of-the-art methods

in this field. However, there are still shortcomings in this study.

For example, studies mainly focus on the physical characteristics

of AAA, ignoring the influence of biochemical indicators on

prognosis. And while their predictive model performed statistically

well, the general applicability of this approach across different

patient populations remains to be validated. Therefore, future

studies need to further explore the specific characteristics of

different types and stages of AAA patients to improve the

accuracy and generalization of predictive models.

EVAR for AAA has advantages such as minimal trauma, fast

postoperative recovery, shorter hospital stays, and lower mortality

and morbidity rates. However, long-term follow-up results show

a higher risk of postoperative complications and reinterventions

compared to open surgical repair. Therefore, guidelines

recommend lifelong follow-up for patients undergoing EVAR

(35, 36). Wang, Y (37). developed and compared multimodal

models based on morphological features, deep learning, and

radiomic features to predict the risk of EVAR-related Serious
Frontiers in Cardiovascular Medicine 07
Adverse Events (SAEs) after EVAR. The results of the

multimodal models showed that the radiomic model based on

logistic regression had superior predictive performance (AUC

0.93, accuracy 0.86, F1 score 0.91) compared to the

morphological feature model (AUC 0.62, accuracy 0.69, F1 score

0.81) and the deep learning model (AUC 0.82, accuracy 0.85, F1

score 0.89). Overall, all three models can assist in predicting the

risk of SAEs relatively accurately. Caradu, C. et al. (38) evaluated

a fully automated software named PRAEVAorta, which is

designed based on the classic U-Net architecture. It aims to

assess the development and associated risks of AAA after EVAR.

By automatically analyzing post-EVAR CT images, it can

measure the volume, surface, neck, and maximum diameter of

AAA. The study results indicated that the measurements of the

software were highly correlated with manual correction methods

and were highly accurate. Moreover, the segmentation speed of

the software is nine times faster than traditional manual

correction methods, significantly improving clinical workflow

efficiency. This technology could become a crucial adjunct for

EVAR follow-up through the early detection of sac evolution,

which might reduce the risk of secondary rupture. TAA is a

disease that needs monitoring and treatment. With age, the aorta

can dilate, become stiff, lose its elasticity, and may eventually

rupture, leading to aortic dissection, which has a high mortality

rate. The primary criterion for determining when a patient

should undergo surgery is aortic diameter. However, it has been

shown that aortic diameter alone is not sufficient to predict

aortic dissection, indicating that other features should be

considered. Markodimitrakis, E. et al. (39) aimed to assess the

elastic properties of four different quadrants of the ascending
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aorta in TAA patients to evaluate a patient’s aortic compliance and

predict the risk of TAA developing into aortic dissection. They

included 73 cine-MRI sequences of the ascending aorta and

experimented with various deep learning architectures with

different hyperparameters and settings to automatically segment

the aortic contour on each image and then automatically

calculate aortic compliance. This included U-Net and other

modified architectures, such as Residual-U-Net (where each sub-

module of U-Net is replaced with a residual connection and a

dense layer), Attention-U-Net (which introduces an attention

mechanism to adjust the encoder’s output characteristics and

provide the decoder with knowledge about high-level spatial

information through attention gates), Attention-Residual-U-Net

(inspired by the ResNet, implementing both residual blocks and

attention gates), and Recurrent-Residual-U-Net (inspired by

RNN, combining RNN and residual blocks). Among all models

attempted, the U-Net network performed the best, with a DSC of

98.09% and a HD of 4.88 mm. The results showed that the

lateral and posterior quadrants were stiffer, while the central and

anterior quadrants exhibited the lowest aortic stiffness. The in

vivo stiffness trends matched the values obtained ex vivo. The

developed automatic segmentation method is robust, clinically

compatible, and has reliable predictive capabilities. (See Table 4).
6 Discussion

Deep learning technology has now been applied to various

aspects of the diagnosis and treatment of AA, playing a crucial
TABLE 4 Summary of studies on the AA progression and prognosis predictio

Author Publication
date

Research
objectives

Imaging
type

Kim, S. (34) 2023 Prediction of AAA
growth

CTA

Rezaeitaleshmahalleh, M. (33) 2023 predict AAA growth
status

CTA

Wang, Y. (37) 2022 Predicting outcomes
after EVAR

CTA

Caradu, C. (38) 2022 EVAR surveillance CTA

Markodimitrakis, E. (39) 2023 Predict aortic
dissection in TAA
patients

cine-MRI

Feng, H. (40) 2023 Automatic
segmentation of
thrombosed AD
after surgery

CTA

AA, aortic aneurysm; CNN, convolutional neural networks; CECT, contrast enhanced

curve; MRI, magnetic resonance imaging; DSC, dice similarity coefficient; EVAR, end

distance.
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role in timely disease detection and improving patient survival

rates. However, as a category of disease research based on deep

learning models, avoiding the shortcomings typical of

conventional deep learning studies is challenging. These

shortcomings are primarily reflected in several areas. For

example, the size and quality of datasets directly impact the

accuracy and generalizability of models. Currently, there is a

significant lack of high-quality, large-scale, multi-center datasets

in research. Additionally, the “black box” nature of deep learning

models lacks the necessary transparency for diagnostic processes,

which is unacceptable in clinical decision-making. The

inadequacy of multi-center studies and coverage of diverse

populations limits the universality and reliability of models.

Moreover, clinical validation, model standardization, and legal

and ethical considerations remain pressing issues in deep

learning research. Lastly, the continuous updating and

maintenance of models also face significant challenges with the

rapid advancement of the medical field.

To address these limitations, several potential solutions can be

explored. Firstly, establishing more collaborative projects and

platforms that encourage different institutions to share and

integrate data might help alleviate the lack of datasets. To

increase model transparency and interpretability, researchers

could explore new algorithms and techniques, such as

explainable deep learning models, to provide clearer explanations

of the decision-making process. Improving the universality and

reliability of models could involve adopting cross-cultural and

cross-geographical research designs to ensure models accurately

reflect and cover the characteristics of diverse populations.
n.

Patients DL model Predicted outcome
accuracy

54 patients patch-based CNN The results demonstrate the
superiority of the presented
architecture to previous state-of-
the-art methods in AAA growth
prediction.

54 patients with
intraluminal
thrombus in their
AAA

CACU-Net Achieved an AUROC of 0.89 and
a total accuracy of 83%.

979 patients
underwent elective
EVAR

DCNN The logistics regression model had
better predictive performance
(AUC 0.93, accuracy 0.86, and F1
score 0.91)

48 early post-EVAR
CT scans and 101
follow-up CT scans

fully automated
software (PRAEVAorta;
Nurea, Bordeaux,
France)

a mean DSC of 0.950, Jaccard
index of 0.906, sensitivity of 0.929,
specificity of 0.965, volumetric
similarity of 0.973, and mean HD
of 8.7 mm.

73 patients U-Net Achieved a DSC of 98.09% and a
HD of 4.88 mm.

167 patients with
Stanford A AD

3D ResU-Net 0.903 in DSC, 0.828 in Jaccard
index, and 2.209 in 95% HD

computed tomography; NCCT, non-contrast enhanced CT; AUC, area under the

ovascular abdominal aortic aneurysm repair; AD, aortic dissection; HD, hausdorff
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Furthermore, working closely with regulatory bodies to establish

standardized clinical validation processes could help ensure the

safety and effectiveness of deep learning technologies. Lastly,

developing adaptive learning systems that continually optimize

and update models using new data could address the challenges

posed by the rapid development of the medical field. Through

these approaches, not only can the existing limitations be

overcome, but the full potential of deep learning technology in

clinical applications can also be harnessed, thereby enhancing the

diagnosis and treatment of AA.

In many areas of AA diagnosis and treatment, deep learning

technology is still lacking in research and requires more

investment and attention. The following are some examples,

which also represent key areas for future research:

Lack of assessment of calcification: The presence of aortic

calcification has an impact on the development and rupture risk

of AA, as it may lead to severe tissue overstretching in the

surrounding areas. Higher aortic calcification scores are

significantly associated with symptomatic and ruptured AA

(41, 42). AI may provide an opportunity to develop software for

rapid and objective quantification assessment of calcification in

large patient datasets (43). However, there are still relatively few

studies using deep learning techniques to assess calcification in

AA patients.

Lack of evaluation of stent placement during surgery: EVAR

and TEVAR are crucial methods for treating AA. The decision-

making process regarding the size and shape of the stent,

anchoring positions, and the extent of deployment significantly

depends on the operator’s personal experience and subjective

assessment. Currently, deep learning research in the AA field

primarily focuses on stent segmentation and measuring vascular

diameters, with fewer studies addressing comprehensive

judgment on various data or offering intuitive guidance to

operators. Additionally, this technology largely relies on

preoperative CTA images for surgical planning. Integrating DSA

images into this technology could potentially enhance its

guidance value during actual surgeries. Furthermore, while stent

deployment is mainly utilized in planning for the thoracic aorta,

its application in abdominal aortic aneurysm surgery planning

requires further exploration and development.

Lack of assessment of prognosis risk: AA is a life-threatening

disease, and real-time prognosis assessments for patients are

crucial. In the field of non-deep learning artificial intelligence,

there have been many achievements in the prognosis of AA

patients, including the assessment of rupture risk (44, 45), in-

hospital mortality risk (46, 47), 30-day mortality rate assessment

(48), and more. Deep learning, compared to traditional machine

learning algorithms, has higher fitting capabilities, and is

expected to achieve better results in these areas.

AA due to its potential threat to life and the difficulty in

diagnosis, has always been a focal point in medical research. Deep

learning technology has provided us with a new and more

accurate tool that can detect and locate AA from complex medical

images with precision, thus offering the possibility for early

intervention and treatment. Especially in the analysis of imaging

and segmentation of the aneurysm, deep learning models have
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demonstrated significant advantages over traditional methods.

More importantly, as the technology further develops, we expect

deep learning to gain a deeper understanding of the pathogenesis

of AA, providing more personalized and precise suggestions for

treatment strategies. Additionally, with the deepening of

interdisciplinary collaboration, we hope to discover more

biomarkers and risk factors related to AA, thereby further

enriching our understanding of this disease. Overall, deep learning

technology has opened new doors for the diagnosis and treatment

of AA, bringing endless possibilities for future medical research.
7 Conclusion

In this article, we delved deeply into the application of deep

learning in the diagnosis and treatment of AA, showcasing the

latest advancements in the field. We discovered that deep

learning technology has not only made significant progress in

enhancing the accuracy and efficiency of AA imaging but also

demonstrated substantial applicability in precise treatment

planning and risk assessment. Particularly in refining the

planning of surgical interventions and in predicting the risk of

aneurysm rupture, deep learning has shown a broad development

perspective. The core contribution of this paper lies in

synthesizing multiple key research outcomes and pointing out

the gaps and future directions in current research. Our review

provides a valuable source of information for researchers and

clinicians in the field, emphasizing the crucial role and extensive

development potential of deep learning in improving AA

management. It lays the groundwork for further exploration in

future studies related to this subject.
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