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Coronary atherosclerosis remains a leading cause of morbidity and mortality
worldwide. The underlying pathophysiology includes a complex interplay of
endothelial dysfunction, lipid accumulation and inflammatory pathways.
Multiple structural and inflammatory features of the atherosclerotic lesions
have become targets to identify high-risk lesions. Various intracoronary
imaging devices have been developed to assess the morphological,
biocompositional and molecular profile of the intracoronary atheromata.
These techniques guide interventional and therapeutical management and
allow the identification and stratification of atherosclerotic lesions. We sought
to provide an overview of the inflammatory pathobiology of atherosclerosis,
distinct high-risk plaque features and the ability to visualize this process with
contemporary intracoronary imaging techniques.
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1 Introduction

Atherosclerotic cardiovascular disease continues to be a major health burden worldwide

(1). Ischemic heart disease is responsible for more than 15% of all global deaths (2, 3). The

coronary vessel wall experiences accumulation of inflammatory cells, lipids, fibrous tissue

and calcium leading to progressive narrowing of its lumen (4–6). Rupture of the fibrous

cap or plaque erosion can trigger local thrombosis, which extends into the coronary

lumen and subsequently impedes blood flow (7, 8). Plaque rupture is the most common
Abbreviations

PCSK9, proprotein convertase subtilisin kexin type 9; LDL, low-density-lipoprotein; NLRP3, NOD-, LRR-
and pyrin domain-containing protein 3; IL, interleukin; TCFA, thin-cap fibroatheroma; ACS, acute
coronary syndrome; CCS, chronic coronary syndrome; IVUS, intravascular ultrasound; VH-IVUS, virtual
histology intravascular ultrasound; NIRS, near-infrared spectroscopy; LCBI, lipid core burden index;
MACE, major adverse cardiovascular events; OCT, optical coherence tomography; µOCT, micro optical
coherence tomography; NIRF, near-infrared fluorescence; ICG, indocyanine green; NIRAF, near-infrared
autofluorescence.
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mechanism of fatal acute myocardial infarction and sudden cardiac

death (9). To reduce cardiovascular events, lipid-lowering- and

plaque stabilization therapies, including statins and ezetimibe, have

become cornerstones in treatment strategy. More recently,

Proprotein Convertase Subtilisin Kexin type 9 (PCSK9)

monoclonal antibodies have been added to the treatment

possibilities (10, 11). Despite these intensive lipid-lowering

treatments, residual risks persists. This most likely reflects

mechanisms in the biology of atherosclerosis that are incompletely

managed by controlling dyslipidemia, which includes the

inflammatory response (12, 13). As exemplification, patients with

target concentrations of low-density-lipoprotein (LDL) below

1.8 mmol/L and a high-sensitivity C-reactive protein (hsCRP)

< 2 mg/L have the best clinical outcomes (14, 15). Furthermore,

the anti-inflammatory drugs canakinumab and colchicine have

demonstrated to reduce recurrent cardiovascular events (16, 17).

Detection of coronary artery wall inflammation might identify

which patients benefit from anti-inflammatory therapy (18).

Intracoronary imaging has greatly improved our understanding of

the pathophysiology in atherosclerotic cardiovascular disease (19).

Most articles discussing intracoronary imaging, focus on the

structural characteristics of high-risk plaque. In addition to structural

features, the present review aims to address the underlying

inflammatory process and whether it is feasible to visualize markers

of this process with current and future invasive in vivo imaging.
2 Inflammation in atherosclerosis

Atherosclerosis is initiated at the inner layer of the intima

(Figure 1). LDL particles accumulate in the subendothelial space
FIGURE 1

Graphical overview of the inflammatory pathobiology of atherosclerosis.
accumulated LDL particles become oxidized and promote the recruitme
scavenging of lipids, macrophage differentiate into foam cells. Within foam
inflammasome becomes activated and initiates cytokine en chemokine p
proteases causing proteolysis of the extracellular matrix and destabilizing th
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at sites with endothelial dysfunction and turbulent flow (20).

Subsequently, LDL particles cluster and become oxidized by

reactive oxygen species. Oxidized LDL increases local endothelial

permeability (21). As a result, patrolling monocytes enter the

subintimal space and differentiate into macrophages. These

macrophages amass lipids through cholesterol uptake by

scavenger receptors, leading to “foam cell” formation. Foam cells

induce chemokine and cytokine production, which attracts new

leukocytes (22). This positive feedback loop perpetuates and

increases plaque formation. The accumulated inflammatory cells

secrete a wide range of proteases. Cathepsins and matrix

metalloproteinases are common, macrophage-derived, proteases

within the atherosclerotic plaque. These proteases are involved in

proteolysis of the extracellular matrix, lesion progression and

plaque instability (23, 24).

In addition to inflammatory cells, vascular smooth muscle cells

have shown to migrate into the intima (20). Upon exposure to

lipids and cytokines, vascular smooth muscle cells transform into

a proliferating cell type, expressing markers of macrophages (25).

These macrophage-like cells can also take up lipids and may

promote inflammation (20, 26).

Within the monocytes and macrophages, the NOD-, LRR- and

pyrin domain-containing protein 3 (NLRP3) inflammasome

pathway initiates cytokine production (27, 28). This protein

complex is activated by cholesterol crystals (29, 30). Upon

activation, Caspase 1 cleaves the inactive interleukin-1β (IL-1β)

precursor. Thereafter, activated IL-1β is released into the

circulation. IL-1β induces the inflammatory function of

human endothelial cells and stimulates adhesion molecules that

recruit leukocytes. IL-1β triggers the release of multiple

cytokines, chemokines and other inflammatory mediators (31).
Legend: Low-density-lipoprotein (LDL) enters the intimal space. The
nt of monocytes. Monocytes transform into macrophages. Upon the
cells, the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3)
roduction, perpetuating the inflammatory process. Foam cells secrete
e atherosclerotic plaque.
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For example, interleukin-6 is a downstream cytokine which induces

the production of C-reactive protein (CRP) and fibrinogen,

promoting thrombosis (28). Therefore, IL-1β is perceived to be

the pivotal cytokine in the inflammatory cascade and a driver of

atherosclerosis (32). Our understanding of atherosclerosis has

thereby evolved to a complex, cholesterol crystal-induced,

inflammation of the arterial wall.
3 Morphological features of high-risk
plaque

Identification of high-risk lesions is of great importance, given

that most atherosclerotic plaques responsible for acute coronary

syndromes (ACS) are angiographically mild (33, 34). High-risk

plaque refers to a lesion at high short-term risk of causing an

acute clinical event (5). Lipid pools, cholesterol crystals, presence

of macrophage, a large necrotic core, intraplaque hemorrhage

and microcalcifications have been identified as hallmarks for

high-risk lesions and represent markers of the underlying

inflammatory driven process of atherosclerosis (35, 36). These

hallmarks have become targets of intracoronary imaging

techniques (Figure 2).
3.1 Lipid pools and cholesterol crystals

Plasma-derived lipids accumulate in the subintimal space in

the initial phase of plaque formation (20). Lipid pools do not

only initiate an inflammatory reaction, but also increase

biomechanical stress (37). Liquid cholesterol in these pools

crystalizes, leading to volume expansion (38). This volume

increase destabilizes the atherosclerotic plaque. Moreover,

cholesterol crystals can injure the arterial wall and disrupt

the plaque (39).
FIGURE 2

Atherosclerotic lesion, markers of inflammation and high-risk plaque and in
the inflammatory pathobiology of atherosclerosis. Contemporary intrac
spectroscopy, NIRS; optical coherence tomography, OCT; near-infrared flu
signal reused with permission from Ughi et al. (122).
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Cholesterol crystals are found in ∼39% of de novo culprit

lesions of patients with either ACS or chronic coronary

syndrome (CCS), and correlate with high-risk morphological

features of culprit lesions (40). Cholesterol crystals are more

often observed in culprit lesions in ST-elevation ACS patients

compared to non-ST-elevation ACS patients, as is an increase in

macrophage accumulation, spotty calcifications, mean lipid arc,

thin-cap fibroatheromas (TCFAs) and thrombus (41). This

supports the hypothesis that cholesterol crystals increase plaque

vulnerability and trigger plaque rupture.
3.2 Macrophage and necrotic core

The necrotic core results from cell death and the inability to clear

this debris. Macrophages play a major role in this process (42).

Hypoxia, lipids and oxidative stress have shown to induce apoptosis

in different cell types, including leukocytes and vascular smooth

muscle cells (43). These signals trigger DNA fragmentation and

expression of cell-surface markers that attract phagocytes (44). As

macrophages are also the main phagocytes within the atherosclerotic

plaque, effective clearance depends on neighboring cells. This process

is called efferocytosis (45). There is no inflammatory reaction

associated with apoptosis or efferocytosis, as cellular constituents are

phagocytosed instead of released in the surroundings (44, 46). Within

lipid-laden foam cells, intracellular cholesterol crystallizes and induces

apoptosis (39). Efferocytosis becomes insufficient, which leads to a

pool of dead macrophage forming a necrotic core.

A TCFA containing a large necrotic core, infiltrated by a high

amount of macrophages is often displayed as “a classical example”

of a lesion prone for rupture (47–49). The fibrous cap is defined as

a distinctive layer of connective tissue overlying the necrotic core. It

consists of smooth muscle cells in an extracellular matrix of

collagen, proteoglycans and elastin. The media and adjacent

adventitia may be infiltrated by varying degrees of lymphocytes,
travascular imaging techniques. Atherosclerotic lesion (middle) depicting
oronary imaging tools (intravascular ultrasound, IVUS; near-infrared
orescence, NIRF) and their ability to display the process. Image of NIRF
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macrophages and foam cells (50, 51). Historically, fibrous caps with

a minimum thickness of <65 µm are considered to be thin, as

histopathological analysis showed a cap thickness of <64 µm in

95% of arteries with ruptured plaque (49).
3.3 Plaque neovascularization and
intraplaque hemorrhage

Neovascularization and intraplaque hemorrhage are common

phenomenons within atherosclerotic plaques (52, 53). Neovessels

are already established in the early phase of the atherosclerotic

process and mainly originate from angiogenesis out of the vasa

vasorum (53). Such neovessels are thin-walled, more fragile and

may function as entrance for erythrocytes, lipids and inflammatory

cells (35). As example, neovessel density is more prominent at sites

infiltrated by macrophages and lymphocytes (53). Neovessels exhibit

inadequate endothelial integrity, making them susceptible for

microvascular leakage, which is thought to induce intraplaque

hemorrhage (54). Accumulation of erythrocytes is associated with

lesion instability and necrotic core expansion (52). Therefore,

intraplaque hemorrhage may promote inflammation.
3.4 Microcalcifications

Atherosclerotic calcification is initiated within areas of

inflammation (55). Serial in vivo imaging in apoE−/− mice showed

that inflammation precedes osteogenic activity and that the initially

formed crystals colocalize with macrophages (56). Proposed

mechanisms of calcification include the nucleation of necrotic

debris into calcium phosphate crystals, reduced activity of inhibitors

of vascular calcification and transdifferentiation of intraplaque

vascular smooth muscle cells and circulating hematopoietic stem

cells into an osteo-, and chondrogenesis phenotype (55, 57). In

turn, calcium phosphate crystals have shown to induce a pro-

inflammatory response by macrophages (58). This suggests a

positive feedback loop between inflammation and calcification. The

calcium phosphate crystals congregate into microcalcifications.

These microcalcifications, if present in the fibrous cap, may cause

microfractures that could destabilize the atherosclerotic plaque (59).

Therefore, presence of microcalcifications may refer to a more

vulnerable phase in the progression of atherosclerotic plaque within

regions of inflammation. Whereas increasing density is thought to

reflect a stabilizing process (55).
4 Invasive imaging

4.1 Coronary angiography

Invasive coronary angiography has established itself as a

reference standard for the assessment of coronary artery disease

(60). It provides a two-dimensional representation of the

coronary lumina, by injecting contrast media and performing

different radiographic projections, with minimal information on
Frontiers in Cardiovascular Medicine 04
the vessel wall. Coronary angiography is able to identify, albeit

suboptimally, the presence of calcification and thrombus.

Calcified lesions can be recognized as apparent radiopacities

before contrast injection (61). Thrombus can be determined by

contrast filling defects and intraluminal lucencies on the

“luminogram” (62). The application of other intracoronary

diagnostic tools offers the opportunity to look beyond luminal

dimensions to identify previously indiscernible lesions.

Thermography was introduced in the early 2000s as an

alternative tool to detect coronary artery wall inflammation (63). It

was suggested that temperature heterogeneity could identify high-

risk lesions. “Hot plaque”, was supposed to reflect the higher

metabolic rate of inflammatory cells. However, intracoronary

thermography could not meet its expectations (63). In vivo

experiments showed that intracoronary thermistors could not

detect subtle changes in temperature during substantial influence

of pressure, cardiac motion and coronary blood flow (64).

Thereafter, it fell in oblivion. Notwithstanding, contemporary

imaging techniques do have the ability to target inflammation.
4.2 Intravascular ultrasound (IVUS)

Novel high-definition IVUS may reach an axial resolution of

approximately 40–60 µm using high-frequency ultrasound signals

(60 MHz) (65). IVUS can differentiate between various plaque

components, since calcified plaques are brighter with acoustic

shadowing, while lipid-rich plaques appear less echo dense.

Furthermore, IVUS can evaluate serial changes in coronary

atheroma, to measure for example the effect of statins or PCSK9

inhibitors on atheroma volume (66–69). Using spectral analysis of

the “backscattered” ultrasound signals, IVUS offers the opportunity

to estimate plaque composition, so-called virtual histology IVUS

(VH-IVUS). VH-IVUS has been used to differentiate fibrous

plaque, fibrofatty plaque, necrotic core and calcium (Figure 3),

which correlates with histologic samples (70). Moreover, serial

changes in plaque morphology and pharmacological effects can be

identified with VH-IVUS. For example, the “Integrated Biomarker

and Imaging Study 2” (IBIS-2) trial showed that darapladib, a

“lipoprotein-associated phospholipase A2 inhibitor”, prevented

necrotic core expansion after 12 months (71). However, not all

studies could confirm the accuracy of VH-IVUS. Necrotic core

determined by VH-IVUS did not correlate with histology within a

porcine model (72). Therefore, concerns about the validity remain.

IVUS is less suited to detect microcytic or molecular factors of

inflammation, such as macrophage accumulation or cholesterol

crystals, owing to its relatively low resolution (73). However,

high-risk plaque features detected by IVUS seem to be positively

correlated with circulating inflammatory biomarkers, reflecting

higher inflammatory activity (74–77). Within the “European

Collaborative Project on Inflammation and Vascular Wall

Remodeling in Atherosclerosis—Intravascular Ultrasound”

(ATHEROREMO-IVUS) study, higher plaque burden and TCFA

lesions were associated with higher levels of circulating tumor

necrosis factor alpha and lower levels of circulating interleukin-

10 (74). Furthermore, lesions with a plaque burden of ≥70% or
frontiersin.org
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FIGURE 3

Virtual histology intravascular ultrasound (VH-IVUS) image of atherosclerotic plaque. Based on the reflected ultrasound signals, VH-IVUS automatically
provides a colorized tissue map of plaque composition: fibrous (dark green), fibrofatty (light green), calcified (white) and necrotic core (red). (A)
Longitudinal VH-IVUS image of an atherosclerotic lesion in the right coronary artery. (B) Cross-sectional images within the region of interest
showing different tissue compositions. (C) A thin-cap fibroatheroma (TCFA), characterized as a necrotic-core rich lesion without a clear overlying
fibrous cap (arrows). Reused with permission from Kuroda et al. (126).

Los et al. 10.3389/fcvm.2024.1352025
TCFA were independently associated with higher rate of major

adverse cardiac events within the same study (78).

In addition to tissue characterization, mechanical stress can affect

coronary arteries (79). It is feasible that plaque rupture occurs at a

location subject to higher mechanical stress. Mechanical strain

refers to the tensile stress caused by the pulsatile intravascular blood

pressure, whereas wall shear stress results from the tangential

component of shearing deformation from blood flow (79).

Mechanical strain can be assessed by using the displacement of

radiofrequent IVUS signals at two different intracoronary pressures.

This technique is called palpography (80). Patients presenting with

ACS have more high strain spots than patients with CCS (80).

Furthermore, the number of high strain spots seemed positively

correlated with levels of hsCRP (80). Another in vivo study using

Yucatan minipigs showed that regions with high strain levels were

associated with presence of macrophage (81). However, within “The

Providing Regional Observations to Study Predictors of Events in

the Coronary Tree” (PROSPECT) trial, no difference was found in

strain values between thin- and thick-cap fibroatheroma. They

could not confirm the correlation between high strain spots and

hsCRP in humans (82). Therefore, the diagnostic value of

palpography remains uncertain.

Although smaller inmagnitude thanmechanical strain, wall shear

stress is receiving increasing attention because of its biomechanical

relevance. Low wall shear stress acts as a pro-inflammatory and pro-

atherogenic stimulus on endothelial cells (79). A three-dimensional

reconstruction of the coronary artery lumen is required, which also

can be obtained using coronary angiography in combination with

IVUS or optical coherence tomography (OCT). Thereafter, wall

shear stress maps can be constructed using coronary geometries and

computational fluid dynamics calculations (79). Unfortunately,

results from in vivo studies on the correlation of wall shear stress

and plaque progression remain scarce and conflicting. Both low and

high wall shear stress have been associated with atherosclerosis and
Frontiers in Cardiovascular Medicine 05
inflammation (79). Therefore, more clinical studies are needed to

explore its use.
4.3 Near-infrared spectroscopy (NIRS)

IVUS can be combined with near-infrared spectroscopy (NIRS),

which projects near-infrared light on the coronary wall, after which

the reflected light is analyzed. Since cholesterol has unique features

in the wavelength region, NIRS can be applied to characterize lipid-

rich plaque, expressed by the lipid core burden index (LCBI)

(83, 84). This index is calculated as the number of pixels with a

probability of lipid core plaque > 0.6 divided by the total number

of pixels and multiplied by 1,000. The MaxLCBI4mm is often used

to detect the presence of a large lipid pool, which is the maximum

LCBI value for any 4-mm segment (85). The PROSPECT II study

showed that highly lipidic lesions with a MaxLCBI4mm≥ 324.7

were independently associated with future cardiac events (86).

Moreover, risk of non-culprit major adverse cardiovascular events

(MACE) increased significantly for each 100-unit increase in

MaxLCBI4mm in the “Lipid Rich Plaque” (LRP) study (87). NIRS

confirms the crucial role lipids fulfil in the development of

cardiovascular events and NIRS can be used to assess response to

medical therapy, primarily lipid-lowering therapies (88). However,

NIRS is unable to identify crystallization of cholesterol and lacks

the ability to differentiate between inflamed or non-inflamed

lesions. Furthermore, no association between LCBI and

inflammatory biomarkers have been found so far (89).

A novel OCT-NIRS catheter is being developed to provide

simultaneous microstructural and compositional imaging

(Figure 4) (90). The superior resolution and characteristics of

OCT could overcome some limitations inherent to IVUS

imaging, as discussed in the next paragraph. A first-in-human

study using OCT-NIRS is ongoing (NCT05241665).
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FIGURE 4

Optical coherence tomography near-infrared spectroscopy (OCT-
NIRS) of cadaver coronary artery. Combinded OCT and NIRS (red
and yellow circle) imaging of 2 lesions of cadaver coronary artery,
showing reduced backscattering (arrows). (A) Lesion with low
amounts of lipids, compatible with fibrotic tissue, as it is is shown
in red. (B) Lipid-rich plaque displayed as yellow area. Reprinted
with permission from Hoang et al. (90) © The Optical Society.

Los et al. 10.3389/fcvm.2024.1352025
4.4 Optical coherence tomography (OCT)

OCT can provide microstructural images up to a maximal axial

resolution of 10 µm at the cost of penetration depth, compared

with IVUS (1–2 mm vs. 10 mm). The high resolution not only

enables more detailed visualization of calcified nodules, thrombi,

TCFAs, plaque erosions and ruptures, but also cholesterol crystal

accumulation, macrophages and microvessels (Figure 5) (91, 92).

Macrophages scatter light efficiently, which creates signal-rich

regions called bright spots with a cast shadow behind (93).

(Figure 5A) While OCT has not been proven to distinguish between

active and inactive macrophages (94), bright spots do have a strong

correlation with inflammation measured by hsCRP (95). Bright spot

density is significantly higher in lipid plaques compared to fibrous

plaques and plaques with TCFA show a trend toward higher bright

spot density (95). Moreover, bright spot density is also significantly

higher in plaques with rupture than those without (95). These

findings imply the ability of OCT to provide an overall estimate of

macrophage accumulation. Furthermore, presence of OCT-defined

macrophage accumulation is associated with adverse clinical

outcome. In the “Relationship Between OCT Coronary Plaque

Morphology and Clinical Outcome” (CLIMA) study, presence of

macrophage accumulation in native left anterior descending
Frontiers in Cardiovascular Medicine 06
coronary artery was associated with more clinical events, especially

in the copresence of other high-risk plaque features including a thin

fibrous cap and a large lipid arc (96).

Cholesterol crystals appear as thin, linear structures with high

signal intensity, often localized nearby lipid-rich plaque

(Figure 5C). It is suggested that needle-shaped cholesterol crystals

could perforate the fibrous cap, causing plaque instability (93).

Intraplaque neovessels can be identified as well delineated

signal-poor voids, which can be followed in consecutive frames

(Figure 5D) (93). An ex vivo OCT study showed that coronary

atherosclerotic plaques with neovessels were accompanied with

greater luminal narrowing (97). Subsequent neovessel rupture

could induce intraplaque hemorrhage. However, studies about

neovessels and neovessel rupture on OCT imaging remain scarce.

OCT is the only imaging modality with sufficient spatial

resolution to adequately measure fibrous cap thickness (Figure 5B).

Numerous prospective and retrospective studies have demonstrated

an association between OCT-identified TCFA and clinical outcome,

whether or not in combination with other features of plaque

instability (96, 98). The fibrous cap thickness cutoff to define TCFA

differs between studies, as it has been suggested that the 65 um

cutoff obtained in histopathological studies should be enlarged to

adjust for potential tissue shrinkage during histopathological tissue

processing (93). Nevertheless, Jiang et al. found a similar optimal

cutoff of 66.7 um to distinguish lesions at higher risk of causing

events (98). In this study, 883 patients were included, all 3 main

epicardial vessels were scanned and follow-up lasted up to 4 years.

OCT can differentiate whether ACS arises from rupture of the

fibrous cap or endothelial injury with an intact fibrous cap, i.e.

plaque erosion. These distinct patterns might have different

underlying pathobiologies. The presence of OCT-identified culprit

plaque rupture is associated with lower levels of T-cells but higher

levels of effector molecules involved in the innate immune response

compared to ACS with intact fibrous caps (99). This may indicate

that the adaptive immune system plays an important role in

inducing endothelial erosion. In proteomics analysis, patients with

ruptured plaques also had a higher inflammatory response and

more MACE during 2 years of follow-up (100).

OCT allows to evaluate change in high-risk plaque characteristics

(101). The “High-Resolution Assessment of Coronary Plaques in a

Global Evolocumab Randomized Study” (HUYGENS) showed that

intensive lipid-lowering therapy with high-dose statins and

evolocumab increased minimum fibrous cap thickness and

decreased the macrophage index on serial OCT. The combination

of statin and evolocumab resulted in more favorable changes than

statin therapy alone (102).

4.4.1 Micro optical coherence tomography
(µOCT)

In 2011, micro-OCT (μOCT) was introduced to improve the

resolution of OCT imaging systems to achieve an axial resolution

of 1–2 μm, which is another ten-fold improvement (103).

Therefore, μOCT is capable of visualizing independent cells and

subcellular features. Moreover, μOCT is able to differentiate

between multiple inflammatory cells, including leukocytes,

monocytes and macrophages.
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FIGURE 5

Optical coherence tomography (OCT) images of atherosclerotic plaque and inflammation markers. (A) Macrophages appear as signal-rich bright spots
with a signal-poor region below (arrows). (B) Thin-cap fibroatheroma are identified as an atherosclerotic plaque covered by a fibrous cap of <65 µm
(between arrows). (C) Cholesterol crystals appear as thin and linear structures with high signal intensity (arrow), often localized nearby lipid-rich
plaque. (D) Intraplaque neovessels can be identified as well delineated signal-poor voids (arrows).

Los et al. 10.3389/fcvm.2024.1352025
An intravascular μOCT catheter suitable for in vivo imaging

was recently introduced. This device is able to display a wide

range of cells and subcellular structures, including leukocytes,

macrophages, smooth muscle cells, cholesterol crystals and

platelets within rabbit aortae in vivo and human cadaver

coronary arteries (104). To acquire high-resolution images,

current μOCT imaging systems emit light with 800 nm

wavelength. The use of a shorter wavelength compared to

standard OCT might be at the expense of penetration depth,

which is already a disadvantage compared to IVUS (105).

Nevertheless, μOCT has the potential to visualize local

inflammatory processes in vivo such as leukocyte adhesion, foam

cell formation or inflammatory cells surrounding cholesterol

crystals on microscopic level. More clinical studies are needed to

explore further utilities.
4.5 Near-infrared fluorescence (NIRF)

Near-infrared fluorescence (NIRF) imaging is an emerging

technique, allowing the visualization of molecular processes

within the atherosclerotic plaque. It uses imaging agents which

bind to specific targets, including protease activity, LDL, fibrin
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deposition and microcalcifications (106–108). These imaging

agents consist of an fluorochrome, conjugated to an antibody,

molecule or peptide. After injection, a NIRF-catheter is

advanced within the coronary artery. A continuous wave laser

diode emits excitational light within a 650 to 950 nm window

(NIR spectral region) to stimulate the fluorophores. The

subsequent fluorescence emission is collected and filtered within

the NIRF-catheter (109).

Protease-activatable fluorophores have been developed to

visualize enzymatic activity. At baseline, fluorophores emittance is

quenched, but increases significantly after cleavage (110).

Enzymatically active cathepsins, detected by NIRF, seem to

colocalize with cathepsins and macrophages on

immunohistochemistry in animal and human atheromata

(107, 111, 112). Matrix metalloproteinase-specific fluorophores

have shown similar results on NIRF imaging (113, 114).

Indocyanine green (ICG) is an imaging agent, which can directly

visualize macrophages. After injection, ICG is internalized by

macrophages and foam cells by binding to albumin or LDL (108).

In a recent study, the ICG NIRF signal, measured in freshly

isolated carotid plaques, was highest in the most stenotic area.

Subsequent histopathological analyses established that ICG

targeted endothelial abnormalities, such as disrupted fibrous caps
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and areas of neovascularization. ICG concentrated on zones of

plaque lipids, macrophages and intraplaque hemorrhage (115).

Furthermore, fluorophores have been developed to target fibrin

deposition, activated factor XIIIa or thrombin activity to assess

thrombosis. Validation of these fluorophores mostly rely on non-

invasive NIRF imaging techniques (116–118). However,

intravascular NIRF has been able to detect fibrin deposition

overlying stent struts in rabbits (119).

Hybridization of intravascular molecular and structural

imaging could potentially allow further study of the

pathophysiological mechanisms of arterial plaques (120, 121).

Both NIRF-OCT and NIRF-IVUS are being developed.

The dual-of modality OCT and NIRF, can detect fluorescence
FIGURE 6

Optical coherence tomography near-infrared autofluorescence (OCT-N
angiography of the left circumflex coronary artery. (B) 2-dimensional map
rupture of a thin fibrous cap covered with a small thrombus. The rupture
crystal (F, arrow), thrombus (G, arrows) and the rupture site (H, arrow).
demonstrating that the high NIRAF signal appears within regions contain
catheter artefact. L, lipid; R, rupture site; T, thrombus. Reused with permiss
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from naturally occurring molecules, called near-infrared

autofluorescence (NIRAF). NIRAF is elevated in advanced

necrotic core-containing lesions and is associated with a high-

risk morphological plaque phenotype (Figure 6) (122, 123).

Interestingly, NIRAF elevation is specific to plaques with

macrophage accumulations, as shown by OCT (122).

However, the converse is not true, since many areas with

elevated macrophage accumulation on OCT were NIRAF

negative. This could be explained by low sensitivity/high

specificity of NIRAF to macrophage accumulation, or by the

concept of different macrophage phenotypes. The underlying

molecular and chemical mechanisms that produce NIRAF are

not yet fully understood.
IRAF) imaging of a ruptured thin-cap fibroatheroma. (A) Coronary
of NIRAF signal. (C–E) Cross sectional OCT—NIRAF images showing a
site shows high NIRAF. (F,G) Magnified views revealing a cholesterol

All colocalized with elevated NIRAF. (I) 3-dimensional rendered map
ing high amount of lipids (arrow). The asterisk (*) corresponds with

ion from Ughi et al. (122).
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TABLE 1 Characteristics of the imaging modalities and their ability to display high-risk features and inflammation markers.

(VH) IVUS NIRS (µ)OCT NIRF
Technique Ultrasound Near-infrared Infrared Near-infrared

Requiring blood removal − − + −
Axial resolution up to 40–60 µm (HD IVUS) NA 10 µm (OCT), 1–2 mm (µOCT) NA

Penetration depth 10 mm <3 mm 1–2 mm 3 mm

Quantification of plaque
burden

+++ − + −

Lipids ++ +++ ++ +++

Cholesterol crystals − − + −
Macrophage − − ++ (quantification, plus

differentiation for µOCT)
+++ (activity)

Necrotic core + − ++ −
Detection of TCFA (<65 µm) + − +++ −
Neovessels − − + +

Intraplaque hemorrhage − − − +

Microcalcifications + − ++ +++

Suitable (clinical) settings for
use

– Assessment of vessel- and
lumen dimensions, plaque
morphology and aorto-
ostial junction

– Identification of high-risk
lesions based on high
plaque burden and small
minimum lumen area

– Guidance of percutaneous
coronary intervention

– Detection of lipid-rich
plaque

– Combined with IVUS with
similar indications

– Detailed assessment of
plaque morphology and
lumen dimensions

– Detection of thrombus,
plaque rupture and plaque
erosion in unclear ACS
mechanism

– Identification of high-risk
lesions based on TCFA

– Guidance of percutaneous
coronary intervention

– Detection of specific target
molecules

– Combined with OCT with similar
indications

(VH) IVUS, (virtual histology) intravascular ultrasound; NIRS, near-infrared spectroscopy; (µ)OCT, (micro) optical coherence tomography; NIRF, near-infrared fluorescence.

−, not possible; +,adequate; ++, good; +++, excellent; NA, not applicable; TCFA, thin-cap fibroatheroma; HD, high-definition; ACS, acute coronary syndrome.

Los et al. 10.3389/fcvm.2024.1352025
5 Discussion

Atherosclerotic cardiovascular disease is a complex chronic

inflammatory and fibroproliferative process fueled by atherogenic

lipoproteins. This implies the requirement of precise diagnostic

tools and targeted treatment strategies (124). Systemic

inflammation has emerged as a therapeutic target to reduce

cardiovascular events (16, 17). Intracoronary imaging allows the

judgement of disease state of atheromata and identification of

high-risk lesions. Given the inherent characteristics of different

imaging modalities, they all facilitate distinctive insights in the

inflammatory pathobiology of atherosclerosis (Table 1). IVUS

gives a good “overview” of plaque burden and plaque

composition. A higher plaque burden is associated with elevated

systemic inflammation, reflected by increased pro-inflammatory

biomarkers. However, it is unable to directly visualize the

inflammatory process. NIRS provides a chemical analysis of the

arterial wall but lacks the ability to detect inflammatory markers

or cholesterol crystals. OCT is able to detect and measure TCFA,

macrophages, neovessels and cholesterol crystals. Moreover,

additional increase of resolution with µOCT allows further

detection of individual cells and subcellular substances. NIRF

imaging displays molecular- and inflammatory activity by

targeting specific molecules, thereby allowing detection of early-

and advanced stages of atherosclerosis.

Lesions with high-risk features on intracoronary imaging have

shown to be predictive of MACE (125). However, current positive

predictive value is still moderate. Novel hybrid modalities, in

particular NIRF-OCT, could provide complementary morphological
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and functional imaging, further improving the diagnostic

performance and prognostic stratification. In the near future, they

may identify high-risk lesions of clinical value to revascularize or

optimize medical therapy. For the moment, invasive imaging mainly

has clinical indications (Table 1), but they can simultaneously

identify more specific inflammatory characteristics, which

strengthens the case for inflammation-targeted therapies. Moreover,

hallmarks of inflammation and high-risk plaque are useful surrogate

endpoints to assess the potency of medical therapy.
6 Conclusion

Contemporary and future intracoronary imaging techniques

allow the identification of inflammatory markers within

atherosclerotic plaque. They assess the biochemical composition

and the underlying pathophysiology. Furthermore, they serve as a

mechanism to evaluate drug efficacy. Conscientious

implementation may allow the development of patient tailored

treatment strategies and improve patient outcome.
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