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Modelling human diseases serves as a crucial tool to unveil underlying
mechanisms and pathophysiology. Takotsubo syndrome (TS), an acute form of
heart failure resembling myocardial infarction, manifests with reversible
regional wall motion abnormalities (RWMA) of the ventricles. Despite its
mortality and clinical similarity to myocardial infarction, TS aetiology remains
elusive, with stress and catecholamines playing central roles. This review
delves into current animal models of TS, aiming to assess their ability to
replicate key clinical traits and identifying limitations. An in-depth evaluation of
published animal models reveals a variation in the definition of TS among
studies. We notice a substantial prevalence of catecholamine-induced models,
particularly in rodents. While these models shed light on TS, there remains
potential for refinement. Translational success in TS research hinges on
models that align with human TS features and exhibit the key features,
including transient RWMA. Animal models should be comprehensively
evaluated regarding the various systemic changes of the applied trigger(s) for a
proper interpretation. This review acts as a guide for researchers, advocating
for stringent TS model standards and enhancing translational validity.
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1 Introduction

Modelling human disease is invaluable for gaining new insights into the mechanisms

underlying organ function and establishing the pathophysiology of human diseases.

Takotsubo syndrome (TS) is an acute form of heart failure with mortality and clinical

presentation similar to that of myocardial infarction (1). It is recognized by reversible

regional wall motion abnormalities (RWMA) in the ventricles. Several hypotheses have

been proposed to explain this syndrome, but they are inconsistent, surrounded by

controversies, and leave many questions unanswered, resulting in a lack of evidence-

based treatments specifically for TS (2, 3). There seems however to be a consensus

regarding the pivotal role of catecholamines in the disease (2).

The main impediment to creating a TS model is the lack of an appropriate

understanding of the pathophysiology. However, several critical characteristic

phenotypes have been described (4), and based on these notions, animal models of TS

have been developed (5–16).
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In this article, we aim to review and evaluate current animal

models of TS, focusing on their ability to replicate essential

clinical characteristics observed in human patients and

identifying their limitations. Through this review, we will

summarize the existing animal models and highlight the crucial

features of TS.
2 Clinical characteristics of Takotsubo
syndrome

Although treatment trials are underway (17), there are

currently no evidence-based treatment options for TS. For

clinicians, differentiating TS from other cardiac diseases poses a

great challenge, often leading to unnecessary invasive procedures

and a high demand for the development of diagnostic markers.
2.1 History

Our knowledge and understanding of TS have developed over

the years, along with its definition, disease classification, and

nomenclature. TS was first described in the early 1990s (18). It

was initially named “takotsubo” due to its characteristic shape and

appearance during contraction, resembling a “Japanese octopus

fishing pot”. However, the disease as an entity is believed to have

been recognized earlier (19). The disorder later received the name

“stress-induced cardiomyopathy”, owing to the importance of

stress as its trigger. It was classified as both a primary and

acquired cardiomyopathy by the AHA in 2006 and as an

unclassified cardiomyopathy by the ESC in 2007. Moving forward,

we will use the term TS, acknowledging that its definition is based

on clinical observations (20).
2.2 Epidemiology

TS manifests as an acute form of heart failure that typically

begins suddenly and is frequently triggered by stress, either

emotional or physical, which is identified in approximately two-

thirds of patients. Not everyone develops TS following a stressful

event, suggesting that a variety of factors influence its

development. Some reported factors are related to thyroid function

(21), climatic and body temperatures (22, 23), malignancy (24), as

well as age, sex, and neurological and psychiatric disorders.

The incidence of TS increases with age for both men and

women, with a notably steeper rise occurring among women of

perimenopausal age. While TS can affect individuals of any age

and sex, it predominantly occurs in post-menopausal women,

who represent approximately 80% of all reported cases. In

comparison, TS is more frequently diagnosed in older men than

in premenopausal women and is relatively rare among younger

individuals, irrespective of their sex (25). This pattern

underscores that TS is a syndrome of the postmenopausal

woman, rather than women in general. The predisposing

mechanism of age has been speculated to be associated with the
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increase in resting sympathetic nervous activity observed with

aging (26). An age-related effect of hypogonadism, with

oestrogen deficiency being more important than testosterone

deficiency, have also been suggested (27).

Patients with TS frequently exhibit major depressive disorders

and generalized anxiety disorder, indicating the potential role of

psychosocial factors as predisposing risks in the pathophysiology

of TS (27, 28). This link is supported by the fact that regions in

the limbic system, which regulate sympathetic activation and

stress response, are closely associated with anxiety and depression

(29). Disturbances in these limbic regions could influence the

stress response, thereby contributing to the development of TS

(30). This theory is further corroborated by reports that associate

neurologic disorders with TS, underscoring the

interconnectedness of psychological and neurological factors in

its onset (25, 31).
2.3 Diagnostic criteria

Several diagnostic criteria have been proposed, and new and

updated criteria are continually being released. The latest

diagnostic criteria, the InterTAK Diagnostic Criteria, was

published in 2018 (4). These criteria are based on clinical

observations and mainly relate to morphological changes, the

natural course of the condition, the presence of myocardial

injury, and the exclusion of other diagnosis. Additional features

have also been described to assist clinicians in making the

diagnosis. We will consider these characteristics as we evaluate

current animal models of TS.

2.3.1 Morphological changes and natural course
One of the most characteristic features of TS is the presence of

transient RWMA. The observed RWMA can be localized in both

ventricles and affect any segment. The typical pattern, seen in

80% of cases, involves symmetrical involvement of the mid and

apical segments of the left ventricle with relatively preserved

basal segments, resulting in the characteristic “apical ballooning”.

Other variants include only mid-ventricular segments, basal

segments alone (i.e., reversed TS), or even a focal region. Cardiac

function and RWMA typically recover almost entirely within a

few days to weeks if the patient survives the acute phase (4). The

various diagnostic criteria proposed for TS differ in certain

aspects, yet they all emphasize the importance of observing

RWMA and its resolution. In clinical practice, cardiac imaging is

thus essential for diagnosing TS, as conclusively identifying the

condition without it is not feasible. In this regard, we consider

this characteristic of transient RWMA to be an essential feature

of TS. It is important to note that the recovery of RWMA is a

part of its natural course and should be present.

Echocardiography, the most readily available and commonly used

imaging technique, is often employed to assess changes in left

ventricular function. Other techniques include cardiac magnetic

resonance (CMR) imaging, cardiac computed tomography

angiography (32), and ventriculography. The latter can be

combined with coronary angiography, which is necessary for
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excluding acute coronary syndrome as a cause of RWMA. In

patients with acute TS, the typical pattern observed on CMR

includes RWMA, localized myocardial oedema, absence of

significant necrosis or fibrosis, and markers of inflammation,

such as increased early myocardial uptake of gadolinium (33).

This inflammation is primarily mediated by innate immune cells

during the acute phase. Histological observations also include

disturbances in protein metabolism, accumulation of lipid

droplets and glycogen deposits, contraction bands, and a

temporary reduction in contractile proteins (16, 34). The

importance of these changes for the development of RWMA

remains unknown. Cardiac nuclear imaging techniques have been

used in TS for assessment of perfusion, metabolism, and

innervation, but they do not directly diagnose the RWMA. It is

important to note that the mere presence of transient RWMA

alone is not sufficient for a definitive TS diagnosis.

2.3.2 Myocardial injury and exclusion of other
diagnosis

The necessity of myocardial injury, verified either by new

electrocardiogram (ECG) changes or the release of cardiac

biomarkers, for diagnosing TS varies across different criteria.

Neither ECG changes nor cardiac biomarkers possess clinically

meaningful sensitivity or specificity for TS (25). Despite this,

most of the proposed diagnostic criteria consider them either

mandatory or optional, attributing this to their strong association

with TS. Over 80% of patients with TS present with elevated

troponin values, and nearly the same percentage show new

changes in their ECG at presentation (25). Consequently, it is

quite rare to encounter a TS patient without elevated troponins

or new ECG changes, especially with the introduction of more

sensitive assays. The cardiac biomarker profile in TS is

characterized by a modest elevation in troponin and a more

significant increase in N-terminal prohormone of brain

natriuretic peptide (NT-proBNP) compared to acute myocardial

infarction (35, 36). Although the levels of troponin and NT-

proBNP vary among laboratories, the median troponin T peak in

TS patients has been reported in different studies. Patients with

acute myocardial infarction exhibit troponin peaks that are 6–15

times higher and NT-proBNP values that are 2.4–3 times lower

than those in TS patients (35, 37).

The ECG changes in TS are dynamic and bear a resemblance to

those observed in acute myocardial infarction, exhibiting a distinct

progression. Initially, any ST-segment elevation, present in about

50% of cases (32, 38), tends to resolve. This is followed by a

biphasic temporal pattern where T-wave inversion and QT

interval lengthening occur over several days (39). Eventually,

these changes gradually diminish, with both the T-wave

inversion and the QT interval prolongation resolving over time

(38). The typical ECG changes described for TS include deep

symmetrical T-wave inversion in the anterior leads with QT

prolongation (36), similar to the ECG pattern seen in Wellen’s

syndrome. Other less common changes, such as ST-depression

and pathological Q-waves, can also be observed.

The diagnosis of TS is contingent upon the presence of crucial

features such as transient RWMA, ECG changes, and elevated
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cardiac troponin. However, a definitive diagnosis of TS also relies

on ruling out other potential causes of these symptoms, with

coronary obstruction and myocarditis being the most common.

The concept of TS as a diagnosis of exclusion is a consistent

element across all diagnostic criteria. While these exclusion criteria

vary in their range of diseases, more recent diagnostic criteria have

become less stringent, featuring fewer contraindications. This more

flexible approach further emphasizes TS as a condition

characterized by transient RWMA. Therefore, when modelling the

disease, this feature is essential and cannot be overlooked. By

incorporating clinically relevant triggers into the model, we

acknowledge TS as a diagnosis of exclusion.
2.4 Complications and predictive factors

The reversible nature of TS often leads to the perception that it

is a benign disease, but its in-hospital mortality rate of 4%–5% is

comparable to that of acute myocardial infarction (1). Higher

mortality rates, between 7%–13%, have also been reported in

some studies (40, 41). Additionally, TS is associated with

relatively high complication rates, especially during the acute

phase, with up to two-thirds of patients experiencing

complications. The most common complication is heart failure,

followed by left ventricular outflow tract obstruction, mitral

regurgitation, and cardiogenic shock. Other less frequent

complications include the formation of apical thrombi in the left

ventricle and arrhythmias (32, 41). Predictive factors for

complications or worse outcomes include physical trigger, older

age, comorbidities, higher troponin levels, and reduced systolic

cardiac function (25, 42). While male sex is often significant in

univariate analyses, its significance tends to diminish in

multivariate analyses (25). High body temperature at admission

has been shown to be a strong predictor of poor outcomes in

patients with TS (43). Moreover, several retrospective studies

suggest that TS may carry a worse long-term prognosis, often

with persistent abnormalities in cardiovascular function (44, 45).

It has been reported that systemic inflammation can persist for at

least five months (46). While there is typically no evidence of

macroscopic fibrosis on CMR, diffuse microscopic fibrosis has

been detected (47). The recurrence rate of TS is approximately

5%. A significant number of these recurrences exhibit a different

TS pattern from the initial episode, suggesting a possible

protective effect of previous TS episodes on the affected region

(48). Additionally, neurological and psychiatric disorders have

been identified as independent predictors of recurrence (49).
2.5 Potential etiological mechanisms

The precise mechanisms underlying TS development are still

unknown, with several pathophysiological theories proposed.

These theories are broadly categorized into myocardial oxygen

imbalance and direct myocardial impact, as outlined in Figure 2.

When evaluating the validity of these mechanisms, it is

important to consider the diverse clinical manifestations of TS.
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Myocardial oxygen imbalance involves a mismatch between supply

and demand. Diminished supply may arise from coronary artery

spasms or microvascular dysfunction, while heightened demand

may stem from increased wall stress, either globally or in specific

regions (50). Direct myocardial impact is concerned with the

effects of β-receptor overstimulation. Typically, stimulation of β-

receptors leads to an increased inotropic effect through a signal

transduction cascade involving G-protein-coupled receptors and

the generation of second messengers like cyclic adenosine

monophosphate. These messengers play a crucial role in calcium

handling and contractile function. However, overstimulation of

this pathway can lead to reduced contractility and cell death due

to impaired calcium handling (51, 52). As a protective response,

it has been proposed that TS may develop from a negative

inotropic effect on myocyte contraction, attributed to a shift in

the β2-adrenoreceptor subunit (53). The negative inotropic effect

is expected to be most pronounced at the heart’s apex, where β-

receptor density is believed to be highest. However, this

hypothesis faces a challenge when considering the non-apical

variants of TS observed both across different patients and within

the same individual.
3 Animal models of Takotsubo
syndrome

Models of TS serve two distinct aims, each contributing valuable

insights. The first aim is to provide mechanistic understanding that is

not easily attainable in clinical settings. To achieve this, experimental

studies often employ reductionistic approaches that may have limited

direct applicability to the clinical situation. The second aim is to

bridge the gap between experimental findings and the clinical

scenario, necessitating models that closely replicate the clinical

setting. In this review, our primary focus is on models that align

with the latter aim, aiming to enhance translation to the clinical

context. However, it is important to recognize the significance of

both types of models.

Various frameworks for assessing the quality of an animal

model have been established (54–57). These frameworks

generally evaluate the relevance of the species used and the

extent to which the model replicates the human condition. In

this review, our primary focus will be on the latter aspect. We

will however briefly mention that it is commonly assumed that

the closer a species is to humans, the more likely it is to exhibit

similar disease pathophysiology. Due to practical and ethical

considerations, as well as the availability of genetic modification

techniques, small animals are frequently employed. Small animals

have been the primary choice for cardiovascular research for

many years, and their findings have demonstrated successful

translation to humans (58). This success is largely due to the

similarities in cardiovascular physiology between small animals

and humans. However, it is important to note that significant

differences do exist, including variations in total heart size,

physiological heart rate, and electrophysiological differences,

among others. The specific key features required for the

development of TS in humans remain unknown. However, the
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observation that stress can induce similar characteristic apical

ballooning in several species during experimental setups suggests

that these features might be shared across different species.

Furthermore, it is important to acknowledge that not all

individuals develop TS in response to stress, highlighting the role

of individual variability and the importance of environmental

factors. In this context, utilizing outbred animals (i.e., non-gene

modified) with a variable genetic profile recognizes that genetics

confer risk but not certainty.
3.1 Brief history

Effects of stress on the heart have been reported in scientific

research as early as 1906 (59), and since then, an increasing number

of reports have utilized catecholamines to study cardiac injury and

lesions (60). Reports during the 1970s demonstrated similar cardiac

lesions in humans following subarachnoid hemorrhage (61),

pheochromocytoma (62), and in victims of assault (63), resembling

the findings observed in rats after systemic administration of

catecholamines. These findings underscored the significance of

experiments involving the exogenous administration of

catecholamines and contributed to the coining of the term “stress

cardiomyopathy” (63). In 2002, Ueyama et al. introduced the first

animal model of TS (8). They achieved this by restraining a rat on its

back for 30 min, inducing intense emotional stress as evidenced by

elevated plasma catecholamine levels. This experimental setup led to

the observation of the characteristic phenotype of apical ballooning

during left ventriculography. A few years later, a model of

pilocarpine-induced epilepsy was reported to induce apical akinesia

or dyskinesia after 2 h (64), and the infusion of epinephrine was

reported to induce “takotsubo-like apical akinesia” in non-human

primates (9). Since then, the administration of exogenous

catecholamines has become the predominantmethod formodelling TS.
3.2 Discrepancy of TS definition

The method for our search strategy can be found in the

Supplementary Material. A total of 111 reports, comprising

original articles and conference abstracts, were retrieved and

evaluated for eligibility [the corresponding PRISMA 2020 flow

diagram (65) can be found in Figure 1]. Among these, 24 were

excluded due to the duplication of conference abstracts in

subsequently published original articles, although some overlap

might still exist. The remaining 87 reports encompass the

entirety of animal models employed in TS research. During the

screening process, we observed variations in the definition of TS.

TS was defined based on various potential manifestations of a

stressful trigger, encompassing measures of cardiac injury such as

histological findings and biomarkers, as well as the mere

presence of a stressor (19% of the reports). Alternative

definitions focused on changes in global myocardial contractility

or in specific regions only (27%) and assessment of RWMA

(53%) (Figure 2). Among these three definitions, it is worth

noting that the current criteria for diagnosing TS include only
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FIGURE 1

PRISMA 2020 flow diagram (65). *Terminology of stress-induced cardiomyopathy was used although not implying Takotsubo syndrome.
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the assessment of RWMA and cardiac biomarkers. Since the release

of cardiac biomarkers is highly unspecific for distinguishing cardiac

conditions, we included reports that assessed for RWMA as a

minimum requirement for further review. A possible reason why

nearly half of the reports did not include the assessment of

RWMA in their definition of TS may stem from the use of the

more general term “Stress-Induced Cardiomyopathy” (SIC). This

ambiguous terminology, possibly combined with the complex

relationship between stress, cardiac dysfunction, and cardiac

injury, could contribute to the observed variations. Nine records

that were excluded during the first screening used the
Frontiers in Cardiovascular Medicine 05
terminology of stress cardiomyopathy, although not implying to

TS. These records employed this terminology to study the effects

of reductive stress (66), exertional heat stroke (67), subarachnoid

haemorrhage (68), settings of catecholamine excess (69),

physiological disturbances (70), toxicity (71), etc., on the heart.

However, while both subarachnoid haemorrhage and exogenous

catecholamine administration can be used as induction methods

for a TS model, their presence does not necessarily implicate TS.

For the same reason, studies conducted in the 1900s on the

effects of exogenous catecholamine administration on the heart

should not be regarded as models of TS. We believe that SIC
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FIGURE 2

A comprehensive view of the definitions and underlying mechanisms in animal models of Takotsubo syndrome (TS), with respective proportions
(n= 87). (A) In animal studies, definitions of TS are largely based on the occurrence of cardiac injury (19%), reduced myocardial contractility (27%),
or transient regional wall motion abnormalities (RWMA, 53%)—with the latter, marked in green, being a hallmark of TS. The pathophysiological
mechanisms are categorized into two types: those related to an imbalance between myocardial oxygen supply and demand, and those arising
from direct myocardial effects due to excessive β-receptor stimulation. (B) The phenotypes highlighted here reflect the range of cardiac
manifestations to stress, which can occur either in isolation or in combination. We offer a potential explanation for the variable clinical
presentations and outcomes observed in TS. For example, extensive cardiac injury, denoted in red*, may trigger a strong inflammatory response,
leading to worse long-term outcomes. An obstruction in the left ventricular outflow tract could develop as a consequence of a hypercontractile
base, shown in blue#. Furthermore, reduced myocardial contractility, indicated in purple¤, is a predictor of worse prognoses.
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could be used as a hypernym for stress-induced changes in the

heart, and, as is apparent from the clinical setting, it is important

to distinguish the transient loss of cardiac function in a cardiac

region occurring after stress (Figure 2).

Among the remaining 51 reports, assessing wall motion

abnormalities was a common focus. However, we observed

variations in the specific endpoints studied and, importantly, in

distinguishing observations with a TS phenotype. Out of the 51

reports, 34 considered RWMA and identified observations with a

TS phenotype, representing less than half of all TS research

utilizing animal models. The remaining 17 reports either did not

attempt to distinguish the TS phenotype (including animals with

and without the TS phenotype) or examined changes in

contractility compared to the baseline. While it is important to

consider baseline measurements, comparing changes in

contractility to the baseline presents limitations in clinical

relevance and fails to account for regional differences within the

ventricle. This may explain why a significant change in this

endpoint does not always correlate with a significant change in

phenotype. Several reports included some form of measure of

systolic cardiac function as a primary endpoint. Global cardiac

function is an important outcome measure in TS, as it has been

identified as an independent predictor of worse outcomes (25).

However, for the study to be clinically applicable, it is crucial
Frontiers in Cardiovascular Medicine 06
that global cardiac function, when used as an outcome measure,

be evaluated in the context of a TS phenotype. The impact of

stress inducing a reduced global systolic function, in the absence

of RWMA, appears to be a recurring finding observed by us and

others (8, 10, 72). Thus, regions with wall motion abnormalities

can be associated with segments displaying hyperkinesia, no

change, or even hypokinesia. This variation in contractile

segments contributes to a variable exaggerated ballooning effect,

potentially indicating a condition distinct from the RWMA

observed in TS and characterized by different pathomechanisms.

For example, the akinetic regions could be primarily driven by a

myocardial oxygen imbalance, while the hypokinetic and

hyperkinetic regions depend on beta-adrenergic receptor

signalling. It is worth noting that global left ventricle

hypokinesia, although proposed as a potential manifestation of

TS (73) and an important cardiac state that should not be

disregarded, is not considered a defining feature of TS due to its

broad differential diagnosis. This is consistent with the diagnostic

criteria, which emphasize the importance of pattern (i.e.,

regionality) in identifying TS (4). We propose a model to explain

how stress can induce various manifestations through potentially

different pathophysiological mechanisms (Figure 2). This model

provides a potential explanation for the variable clinical

presentations and outcomes seen in TS, emphasizing the
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complex nature of TS and the importance of precise definitions in

preclinical research.
3.3 Translational aspects

A summary of the current published models of TS is presented

in Table 1. The most widely utilized model, accounting for 85% of

all publications, involves the exogenous administration of

catecholamines. Isoprenaline is the catecholamine most

frequently used, employed in 79% of cases, and is predominantly

administered intraperitoneally (IP) in 87% of studies. The IP

administration of isoprenaline, which reproduces the RWMA as

reported in patients, was first introduced by the Omerovic Lab

(Gothenburg, Sweden) in 2013 in mice (16) and later in rats

(14). The TS-like RWMA has also been reproduced in non-

human primates (9) and rabbits (74). However, the most

commonly used animal for TS research is the naïve rat (no pre-

treatment or genetic modification), accounting for 72% of studies.

Doctor Scantlebury and Prasad neatly summarized the

proposed diagnostic criteria and features of TS in their table 3

(113). In our Table 2, we present a modified version of this,

summarizing the key characteristics of TS and associated features

observed in humans, alongside the InterTAK criteria, and

illustrating how different models of TS replicate these features. A

model that reproduces all of these characteristics would indicate

a very high degree of construct validity. Our aim is to highlight

the features of TS, shed light on the strengths and limitations of

each model, and identify possible actions to bridge the gap for

successful translation. This initial step in model evaluation can

be seen as “reverse translation”, and if a model demonstrates

high construct validity, it is reasonable to assume that the

pathophysiology is also accurately represented in the model. A

strong model provides a platform for both translational research

and the investigation of pathophysiological mechanisms.

When observing Table 2, several aspects stand out. First, there

is a set of features considered crucial for diagnosing TS. As

previously mentioned, they relate to the presence of RWMA, the

transient course, the exclusion of myocardial infarction and
TABLE 1 Models of Takotsubo syndrome categorised by trigger and
animal (51 reports).

Transaortic constriction on gene-modified mouse (74, 75)

Pilocarpine-induced epilepsy in rat (64, 76)

High dose of catecholamine in:

• Mouse (16, 72, 77–85)
• Rat (11–15, 23, 86–103)
• Monkey (9)
• Gene-modified mouse (104)
• Subarachnoid haemorrhage in rabbit (105)

High dose of PDE-3 inhibitor in rat (106)

Low-moderate dose of catecholamine in:

• Rat (10, 107, 108)
• Transfected rat (109)
• Refined model in rat (110)

Immobilization in rat (8, 111, 112)
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myocarditis, ECG changes and the release of cardiac biomarkers.

For an animal model to be relevant in translational research for

TS, these features must be present. Second, there is a need for

further validation of the animal models. Many features are either

not recognized or reported, underscoring the importance of

presenting negative findings as well. Table 2 is available for

researchers to validate their models. If a non-crucial feature is

not replicated, it does not invalidate a model but rather

illuminates differences whose importance may not be

immediately apparent. The features listed are not considered to

be exhaustive and may need updates based on our evolving

understanding of TS. The table can serve as a guide for future

investigations. It is noteworthy that the role of hormonal status

and age in the context of TS has not been extensively studied.

The reason why approximately 80% of reported cases occur in

postmenopausal women is unkown (25). While studies have been

published on the effect of stress and hormonal status on cardiac

function (76–78), they have not addressed the crucial features of

TS. We would like to emphasize further that being a

postmenopausal woman is a characteristic feature of TS, rather

than a general trait applicable to all woman. This distinction

appears to be a common misconception in TS modelling, where

female animals are incorrectly assumed to be more relevant.

Considering the clinical characteristics previously discussed, both

females and males are suitable choices for studying the TS

phenotype, i.e., apical ballooning. However, it is important to

note that female rodents, whether young or aged, may not

accurately represent postmenopausal women (79).

Critical aspects in the assessment of TS models include the

induction trigger or experimental design, the transient nature, and

acute onset. The use of exogenous catecholamines as a trigger in TS

models has raised concerns due to their similarity to

pheochromocytoma, previously a diagnosis excluded from TS.

However, revised criteria now acknowledge pheochromocytoma as a

potential TS trigger, emphasizing the importance of treating the

underlying disorder (4, 20). Exogenous catecholamine

administration has moreover been identified as a trigger for TS in

patients. Notably, catecholamines can induce dose-dependent

cardiac toxicity (80, 81), unrelated to the TS phenotype. Thus, for

this trigger, the lowest effective dose that allows extensive apical

akinesia with a high incidence and low mortality is recommended.

This also highlights the need for positive controls, i.e.,

catecholamine-treated rats without TS development. The transient

course further lacks a specific timeframe, recovery is generally

described as days to weeks (4). Published animal models show

variations, with some reporting recovery within minutes (10, 74)

and others over hours to days (14–16, 82). The different diagnostic

criteria do not specify the onset as either acute or chronic. To our

knowledge, the development of TS over days or weeks has not been

reported. TS is recognized as an acute form of heart failure, akin to

acute coronary syndrome in its clinical presentation. We believe

that accurately replicating an acute onset and recovery similar to

that seen in patients is crucial for representing the essential

pathophysiological mechanisms within the model. We would like to

emphasize the importance of considering these aspects in model

development by reviewing Dong et al. recent gene-modified mouse
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TABLE 2 Features of Takotsubo syndrome. Bolded features correspond with mandatory clinical criteria. ‘✓’: Replicated; ‘✗’: Not replicated; ‘?’: Not
studied or reported; ‘NA’: Not applicable. InterTAK Diagnostic Criteria: ‘m’ for mandatory, ‘o’ for optional, ‘x’ not explicitly mentioned for diagnosis.
Abbreviations: Iso, Isoprenaline; Epi, Epinephrine; Norepi, Norepinephrine; SAH, Subarachnoid Hemorrhage; TAC, Transverse Aortic Constriction.

Diagnostic criteria
(4, 20, 113)

Refined
TS-model
in rat
(110)

Iso IP (rat
(11–14, 23,
86–103) /
Mouse (16,
72, 79–84))

Iso SC (rat
(15)/
mouse
(77, 78,
85))

Epi rat
(IV (10,
120,

121)/IP
(11))

Restrained rat
(30 (8, 112)/
120 min
(111))

Kv-/-
mouse
(TAC (74,

75)/
Norepi
(104))

SAH in
rabbit (105)
/epilepsi in
rat (64, 76)

Epi IV
monkey

(9)

InterTAK
(4)

- Morphology

Regional wall motion
abnormality (RWMA)

✓ ✓/ ✓ ✓/ ✓ ✗/ ✓ ✓/✓ ✓/✓ ✓/✓ ✓ m

…extending beyond a
single epicardial vascular
distribution (or
circumferential pattern)

✓ ✓/✗ ✓/✗ ?/? ✓/? ✓/✓ ?/ ✓ ? o

Involvement of apical
with mid-ventricular
segments (classic apical
ballooning pattern)

✓ ✓/✗ ✓/✓ ?/? ✓/✗ ✓/✓ ?/ ✓ ? o

Atypical TS
(midventricular, basal,
focal)

? ✓/✓ ✗/✓ ?/ ✓ ?/ ✓ ?/? ?/? ? o

Right ventricular wall
motion abnormalities

? ?/? ?/? ?/? ?/? ?/? ?/? ? o

- Time course of RWMA

“Transient” ✓ ✓/ ✓ ✓/? ?/? ✓/? ✗/? ✓/✓ ✓ m

(Near) Complete
recovery within days to
weeks

✓ ✓/✓ ?/ ✗ ?/? ✓/? ✗/? ✓/✓ ✓ o

- Evidence of ischemia/
myocardial injury

New and dynamic ST-
segment deviation, QT
prolongation, T-wave
inversion and/or left
BBB

✓ ✓/✓ ?/? ✓/✓ ✓/? ?/? ✓/✓ ✓ o

‘Mild’ or ‘modest’
increase in cardiac
biomarkers

elevated ?/elevated ?/elevated ?/? ?/elevated ?/? ?/? ? m

Disparity between the
troponin level and the
amount of the
dysfunctional
myocardium present

? ?/? ?/? ?/? ?/? ?/? ?/? ? x

- Exclusions

Potential coronary
culprit (e.g., stenosis,
evidence of plaque
rupture, dissection,
thrombosis or spasm)

✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓ m

Myocarditis ✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓ m

Other pathological
conditions that may
explain regional
dysfunction

✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✗/? ✓/✓ ✓ x

- Other features

Symptoms similar to that
of acute coronary
syndrome

NA NA NA NA NA NA NA NA x

Elderly patient ? ?/? ?/? ?/? ?/? ?/? ?/? ? x

Postmenopausal woman ? ?/? ?/? ?/? ?/? ?/? ?/? ? o

Antecedent stressful
event

✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ x/✓ ✓/✓ ✓ o

Normal or near normal
filling pressures

? ✓/? ✓/? ?/? ?/? ?/? ?/? ? x

? ?/? ?/? ?/? ?/? ?/? ?/? ? x

(Continued)
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TABLE 2 Continued

Diagnostic criteria
(4, 20, 113)

Refined
TS-model
in rat
(110)

Iso IP (rat
(11–14, 23,
86–103) /
Mouse (16,
72, 79–84))

Iso SC (rat
(15)/
mouse
(77, 78,
85))

Epi rat
(IV (10,
120,

121)/IP
(11))

Restrained rat
(30 (8, 112)/
120 min
(111))

Kv-/-
mouse
(TAC (74,

75)/
Norepi
(104))

SAH in
rabbit (105)
/epilepsi in
rat (64, 76)

Epi IV
monkey

(9)

InterTAK
(4)

Abnormal myocardial
scintigraphy

Mortality (emotional 1%,
physical 7–13%) (4)

✓ ✗/✗ ✗/? ?/? ?/? ?/? ?/? ✗ x

Psychiatric disorders
(25)

? ?/? ?/? ?/? ?/? ?/? ?/? ? x

Reocurrent (32, 48) ✓ ?/ ✓ ?/? ?/? ?/? ?/? ?/? ? x

Complication profile (32)

Acute heart failure ✓ ✓/✓ ✓/✓ ?/ ✓ ✓/✓ ✓/✓ ?/? ✓

LVOT ? ?/? ?/? ?/? ?/? ?/? ?/? ?

Mitral regurgitation ? ?/? ?/? ?/? ?/? ?/? ?/? ?

Cardiogenic shock ✓ ✓/✓ ?/? ?/ ✓ ?/? ?/? ?/? ?

Atrial fibrillation ? ?/? ?/? ?/? ?/? ?/? ?/? ?

Ventricular
tachyarrythmia

✓ ✓/✓ ?/? ✓/✓ ?/? ?/? ?/? ✓

bradyarrhythmia ✓ ✓/✓ ?/? ?/? ?/? ?/? ?/? ✓

Thrombus formation ✓ ?/? ?/? ?/? ?/? ?/? ?/? ?

Predictive factors (25, 32,
42, 43)

Systolic cardiac function ✓ ?/? ?/? ?/? ?/? ?/? ?/? ?

Body temperature ? ?/? ?/? ?/? ?/? ?/? ?/? ?

Trigger ✓ ?/? ?/? ?/? ?/? ?/? ?/? ?

Cardiac troponins ? ?/? ?/? ?/? ?/? ?/? ?/? ?

Treatment ? ?/? ?/? ?/? ?/? ?/? ?/? ?

Age ? ?/? ?/? ?/? ?/? ?/? ?/? ?

Comorbidities
(malignancy, kidney
disease, neurologic
disorders etc.)

? ?/? ?/? ?/? ?/? ?/? ?/? ?

Zulfaj et al. 10.3389/fcvm.2024.1351587
model of TS involving transaortic constriction (74).While theirmodel

induces apical akinesia resembling RWMA in TS, it overlooks crucial

TS characteristics: acute onset, relevant trigger, and transient nature.

Their model aligns more closely with “myocardial hibernation”,

occurring in chronic supply-demand mismatch states (119).

Molecular investigations in their study reveal gene expression

similarities with hibernation, as noted by the authors. This

connection suggests that hibernation, stunning, and RWMA in TS

could partly share pathogenesis, supporting previous reports that

link supply-demand mismatch as a key TS driver. Other induction

methods for triggering TS include restraining, pilocarpine-induced

epilepsy, the combination of intracranial blood infusion with

norepinephrine, and a PD3-inhibitor (Table 1). The latter three

induction methods require chemical agents which, similar to the

catecholamine-induced models, might induce toxicity or

physiological changes unrelated to the TS phenotype and need to be

evaluated. In the first three induction methods, a systemic stress

response plays a central role. The TS model that combines

intracranial blood infusion and norepinephrine offers an important

clinical scenario resembling subarachnoid haemorrhage (120).

Although clinically relevant, this model provides a limited

representation of TS, characterized by a sparse akinetic region and a
Frontiers in Cardiovascular Medicine 09
duration of only 15 min (105). Both restraining and pilocarpine-

induced epilepsy results in an endogenous increase of

catecholamines and a TS phenotype that recovers within 24 h.

Inducing TS by physically restraining an awake animal offers a

stress response without drug administration but raises significant

ethical considerations. Mortality numbers in such models have not

been presented, however, an incidence of 40%–90% from two

different labs has been reported, with the onset described as acute

(30 min) and accompanied by troponin release and new ECG-

changes (8, 111). The pilocarpine-induced epileptic seizure could

serve as a relevant trigger (121). The model have a reported

incidence of 67%, featuring an acute onset ranging from 30 to

120 min, and accompanied by new ECG-changes (76). However,

mortality data are lacking. Models applying a PD3-inhibitor aim to

induce TS by circumventing the process of catecholamine ligand

binding and β-receptor activation. High-dose administration of a

PD3-inhibitor in rats has led to apical ballooning after 90 min,

resembling the RWMA in TS (106). A mortality rate of 30% and an

incidence rate of 20% were reported in this setting, although

essential TS features such as a transient course and ECG-changes

were not mentioned. Whether bypassing catecholamine ligand

binding and β-receptor activation actually occurred in the model
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was not verified, which is most likely considering that a PD3-inhibitor

can increase norepinephrine release (122). Many TS models found in

the literature review lack a proper evaluation of the TS features

observed in humans (Table 2).
3.4 Modelling TS moving forward

As we have discussed, the validity, reliability, and translational

potential of an animal model are paramount. We have summarized

TS features to assist researchers in this endeavour (Table 2). Table 3

presents a concise assessment tool for evaluating TS animal models.

This tool incorporates the essential human TS features and

considers favourable model-specific attributes. The first six

features in the assessment tool correspond to the criteria and

definition of TS in animal models. Maintaining high fidelity

while achieving reproducibility is challenging. This is evident in

the use of predisposed animals (gene-modified, pre-treated,

specific age or sex, and so on) or in more accessible outcome

assessments, which may impact construct validity to varying

extents. Study goals may justify reduced fidelity, but essential TS

features must be retained (Figure 3). Near-zero mortality rates

are moreover ideal but challenging in diseases with inherent risk.

Patients suffering from physically triggered TS have a 30-day

mortality of 7–13.3% (40, 41), thus a model with no

complications would limit its translational relevance.

Any challenge to the body’s homeostasis necessitates an

adaptive response, engaging not only the cardiovascular system

but also the nervous, endocrine, and immune systems. In the

context of TS, triggers are broadly categorized as either

emotional or physical, encompassing a wide array of stressors

with variable responses. A model of TS should include an

evaluation of the different physiological systems. This approach

ensures a comprehensive understanding of the model, which can

be achieved through imaging techniques, blood chemistry studies,

histology, and various experimental setups. Myocardial infarction

and myocarditis involve significant cardiac stress and may

potentially act as triggers for TS by activating the body’s stress

response systems. However, it’s critical to distinguish TS from

these conditions, as TS is characterized by transient regional wall

motion abnormalities without the coronary artery occlusion seen

in myocardial infarction or the primary inflammation

characteristic of myocarditis. Experimental designs aimed at
TABLE 3 Assessment tool for animal models of Takotsubo syndrome.

aClinically relevant trigger/experimental design
aAkinetic and/or dyskinetic regional wall motion abnormalities
aAcute onset
aTransient natural course
aIncreased levels of cardiac biomarkers
aNew ECG-changes

Genetically modified animal is not required

Low mortality

Reproducible

aDefinition and criteria for TS in animal models.
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modelling TS should employ triggers that replicate the stressors

observed in human cases. This approach is intended to increase

the likelihood that the model closely mirrors TS’s

pathophysiology and facilitates differentiation from myocardial

infarction or myocarditis, based on the nature of the trigger and

the subsequent cardiac response. We can further highlight

pathophysiological distinctions or similarities by incorporating

comparative studies, where animals exposed to different TS-
FIGURE 3

When employing models for conducting TS research, it’s crucial that
clinical TS criteria are met. A model that closely replicates other
clinical features will enhance its translational possibilities (green).
Study goals may justify reduced fidelity, but essential TS features
should still be retained (blue). The majority of TS research lacks the
incorporation of a proper definition (red). Advanced models do a
good job in capturing human features but do not meet the criteria
for TS. These models could offer insights or novel findings extending
beyond the current clinical understanding. Foundational models are
early-stage and basic models, typically in-vitro studies, that could
provide essential insights or building blocks for TS understanding.
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specific triggers are contrasted with each other and those in

established myocardial infarction or myocarditis models.

In addition to translational relevance, an animal model should

prioritize reproducibility, low mortality, and minimal suffering,

adhering to the principles of the 3Rs in animal research.

Applying these principles to the study of TS, a condition closely

linked with stress, deserves further consideration, though this

topic extends beyond the scope of this article.
3.5 New and refined model of TS

We have recently introduced a refined TS model in outbred

rats. This model exhibits high fidelity, demonstrating strong

reproducibility (∼90%) at our facility, and low mortality (16.1%).

Unlike the IP route, our model employs intravenous

administration of isoprenaline at doses up to 100–500 times

lower. This addresses the limitation of uncontrolled drug levels

in the bloodstream associated with IP injections. Additionally,

hyperthermic conditions (23) are unnecessary in this model, and

it accurately replicates key TS features across sexes (86). The

onset is acute, peaking at 4–6 h, followed by a recovery phase at

24 h. Rats recover in cardiac function and contractility within 1–

14 days, with the majority recovering within 48–72 h. At 30 days,

all surviving rats show normal behaviour, ECG, and imaging.

Similar to human patients, the model replicates both a

comparable complication profile and the significance of systolic

cardiac function as a notable predictor for unfavourable

outcomes. We are continuously evaluating the model, and so far,

it demonstrates promising translational potential.
4 Conclusion

We advocate for use and definitions of TS in preclinical

research to reflect the clinical setting, particularly within studies

that implement animal models of TS. It is imperative to report

the method for RWMA assessment and clearly state the TS

definition employed in a study. The term “stress-induced

cardiomyopathy” should be avoided and instead be viewed as a

hypernym for TS. Studies using global function or cardiac injury

alone to define TS should refrain from using terms like “TS,”

“TS-like,” or “TS model.” Wall motion abnormality should be

confined to akinesia or dyskinesia and measured using clinically

applicable methods. Crucial features of TS necessary for its

diagnosis should be present in a model of TS. A model that

closely replicates other clinical features of TS will enhance its

translational potential. Furthermore, considering the adaptive

responses of the body to various stressors, a comprehensive

evaluation of these physiological systems is essential for accurate

interpretation. By using Embase and Pubmed for this literature

review, we ensure a comprehensive coverage of the existing

literature of animal models employed in TS research. Our in-

depth analysis focused on animal models that consider key TS
Frontiers in Cardiovascular Medicine 11
features, which also necessitated exclusion of non-English

reports. Although this resulted in the exclusion of several articles

and models studying various manifestations of stress, it considers

the clinical picture, which is crucial for translational success. This

article provides a guide for investigators conducting TS research

with animals, enabling the successful translation of preclinical

results into benefits for humans.
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