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Estimation of aortic stiffness by
finger photoplethysmography
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analysis and machine learning
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1Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska
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Introduction: Aortic stiffness plays a critical role in the evolution of
cardiovascular diseases, but the assessment requires specialized equipment.
Photoplethysmography (PPG) and single-lead electrocardiogram (ECG) are
readily available in healthcare and wearable devices. We studied whether a
brief PPG registration, alone or in combination with single-lead ECG, could be
used to reliably estimate aortic stiffness.
Methods: A proof-of-concept study with simultaneous high-resolution index
finger recordings of infrared PPG, single-lead ECG, and finger blood pressure
(Finapres) was performed in 33 participants [median age 44 (range 21–66)
years, 19 men] and repeated within 2 weeks. Carotid–femoral pulse wave
velocity (cfPWV; two-site tonometry with SphygmoCor) was used as a
reference. A brachial single-cuff oscillometric device assessed aortic pulse
wave velocity (aoPWV; Arteriograph) for further comparisons. We extracted
136 established PPG waveform features and engineered 13 new with improved
coupling to the finger blood pressure curve. Height-normalized pulse arrival
time (NPAT) was derived using ECG. Machine learning methods were used to
develop prediction models.
Results: The best PPG-based models predicted cfPWV and aoPWV well (root-
mean-square errors of 0.70 and 0.52 m/s, respectively), with minor improvements
by adding NPAT. Repeatability and agreement were on par with the reference
equipment. A new PPG feature, an amplitude ratio from the early phase of the
waveform, was most important in modelling, showing strong correlations with
cfPWV and aoPWV (r=−0.81 and −0.75, respectively, both P <0.001).
Conclusion: Using new features and machine learning methods, a brief finger
PPG registration can estimate aortic stiffness without requiring additional
information on age, anthropometry, or blood pressure. Repeatability and
agreement were comparable to those obtained using non-invasive reference
equipment. Provided further validation, this readily available simple method
could improve cardiovascular risk evaluation, treatment, and prognosis.
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Abbreviations

aoPWV, aortic pulse wave velocity (by Arteriograph); BP, blood pressure; cfPWV, carotid-femoral pulse
wave velocity (by SphygmoCor); HR, heart rate; LASSO, least absolute shrinkage and selection operator;
ML, machine learning; NPAT, normalized pulse arrival time; PPG, photoplethysmography; RMSE, root-
mean-square error; WSCV, within-subject coefficient of variation
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1 Introduction

Arterial stiffness can be considered a summation of all key

cardiovascular risk factors throughout the life of an individual.

Increased arterial stiffness is a hallmark feature of vascular ageing

and has several adverse consequences for the cardiovascular

system (1, 2). Measures of large artery stiffness, particularly

aortic stiffness, improve risk stratification beyond traditional risk

scores and serve as independent markers for future

cardiovascular events and mortality (3, 4).

Several methods exist to assess aortic stiffness. The

measurement of the carotid–femoral pulse wave velocity

(cfPWV) by tonometry at the carotid and femoral arteries is

considered the best non-invasive method, while brachial single-

cuff-based oscillometric methods, which primarily rely on pulse

wave analysis, are easier to perform (5). However, these methods

are seldom used outside research settings, mainly due to low

availability and often cumbersome procedures. There is a need

for new, convenient methods to facilitate the implementation of

aortic stiffness measurements into clinical practice (6).

Photoplethysmography (PPG), widely available in pulse

oximeters, measures light intensity changes in the skin and

underlying tissue and vasculature; it could be a method to

assess aortic stiffness. The PPG waveform contains valuable

information about the cardiovascular system, including numerous

features (i.e., characteristics) associated with vascular ageing (7, 8).

The physiological interpretation of the PPG waveform is however

not fully understood, and the repeatability and reproducibility

among PPG waveform features are known to vary (8, 9). The

finger PPG signal reflects the peripheral blood pressure (BP) signal

but is also affected by, for instance, ambient temperature and

vasoconstriction (10). Still, there may exist information in the BP

signal that could be used to better understand the PPG signals.

The electrocardiogram (ECG) is another broadly availablemethod

that provides an electrical representation of the heart activity. ECG can

also serve as a time reference, for instance, to calculate the travel time

of a pulse from the heart to a peripheral sensor, i.e., the pulse arrival

time (PAT). Finger PAT is associated with both PWV and BP and is

used in many BP estimation devices (11).

Modern machine learning (ML) methods offer new possibilities

to evaluate large biomedical datasets and develop prediction models.

Given its tradition of analysing waveform features, the field of PPG

is well suited for these methods (12), and some previous studies

have used ML and finger PPG for the classification of high vs.

low cfPWV (13) and wrist PPG for the estimation of cfPWV

(14). Jang et al. also used finger PPG features in linear regression

models to predict brachial–ankle PWV (15).

PPG sensors are common in healthcare settings but are also

increasingly becoming available in wearable consumer devices,

like smartwatches, fitness trackers, and smart rings, often

complemented with single-lead ECG. The increasing accessibility

and ease of use warrant further studies on best utilization of

these signals for cardiovascular risk assessments (16).

We hypothesized that waveform features from a short

registration of finger PPG, alone or in combination with single-

lead ECG, could be used to assess aortic stiffness using ML
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methods. In addition, we aimed to develop improved PPG

features that provide a more reliable reflection of aortic stiffness.
2 Materials and methods

2.1 Participants

We invited volunteers aged 20–75 years from among colleagues

and students at Danderyd University Hospital, Stockholm

(Sweden) to participate during 2020–2021, provided they did not

have chronic atrial fibrillation or significant kidney disease (there

were no other criteria for exclusion).
2.2 Study protocol

The weight of each subject was measured, and information on

height, medications, tobacco use, and a standard medical history

was collected. All participants were instructed to avoid caffeine,

alcohol, tobacco, and large meals at least 4 h prior to the

examinations and to take any medications as prescribed. During

the first visit, the distances from the jugulum (suprasternal

notch) to the right common carotid artery pulsating site and

from the jugulum to the right femoral artery pulsating site were

measured using inelastic tape and the distance from the jugulum

to the symphysis was measured using a caliper.

After at least 10 min of rest in the supine position, BP

measurements and assessments of PWV respectively PPG, ECG,

and finger BP recordings were performed in random order as

groups, as described in the following. The measurements were

performed in a quiet, dimly lit room at an ambient temperature of

21–24°C and repeated within 2 weeks under similar conditions. The

same physician (HH) performed all measurements in all participants.
2.3 Blood pressure and assessments of
pulse wave velocity

As the reference method, the original SphygmoCor device

(AtCor Medical Pty. Ltd., West Ride, Australia) was used with a

tonometer (Millar Instruments, Houston, TX, USA) for

sequential collection of the right carotid and right femoral pulse

waves, which were gated with the ECG signal (17, 18). The pulse

travel distance was calculated as the distance from the jugulum

to the right femoral artery minus the distance from the jugulum

to the right carotid artery, and the cfPWV was calculated by the

device as this distance divided by the average pulse travel time

(19). Two measurements were performed (a third was added if

the first two measurements differed by more than 0.5 m/s), and

the mean value of these was used as the cfPWV for the visit.

For complementary evaluation, the brachial single-cuff-based

Arteriograph device (Tensiomed Ltd., Budapest, Hungary) was

used, which utilizes the oscillometric method for BP measurements

and an occlusion technique to obtain aortic pulse wave velocity

(aoPWV) (20–22). Using the right arm, one standard BP
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https://doi.org/10.3389/fcvm.2024.1350726
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Hellqvist et al. 10.3389/fcvm.2024.1350726
measurement was taken, and subsequently two measurements [also

giving standard BP, heart rate (HR), and mean arterial pressure

through diastolic + (systolic—diastolic)/3] of aoPWV, which by the

device is calculated from the jugulum-to-symphysis distance and

back divided by the return time of the reflected pulse wave. The

mean values of the last two BP measurements and the two aoPWV

recordings were used as the supine resting BP and aoPWV for the

visit. The Arteriograph measurements were always performed

before the SphygmoCor measurements.

On a population level, age and BP can be used to provide an

estimated PWV (ePWV) (23, 24). For further evaluation of the

current study results, ePWV was calculated by the equation for the

normal population without cardiovascular risk factors using mean

BP according to diastolic BP + 0.4 (systolic BP− diastolic BP) (23, 24).
2.4 Photoplethysmography, ECG, and finger
blood pressure

An infrared (950 nm) reflectance PPG sensor clip

(ADInstruments, Dunedin, New Zealand) was placed on the

right index finger pulp, and three ECG electrodes were placed on

the upper body to obtain a single-lead ECG (lead I). Continuous

BP measurements using the volume-clamp method (Ohmeda

2300, Finapres, Englewood, CO, USA) were acquired from the

right middle finger. All signals were integrated simultaneously via

PowerLab (ADInstruments, Dunedin, New Zealand) at 1,000 Hz.

Data were recorded during 6–7 min of supine rest.
2.5 Signal analysis and feature extraction

2.5.1 Signal processing
A 20-s sequence was used, where all consecutive beats were of

good quality, as defined by Orphanidou et al. (25), at a pulse rate

variability between 5% and 10%, indicating a stable subject. This

sequence length was a compromise between allowing for natural

respiratory variations and avoiding artefacts. The signals were

processed following procedures described by Elgendi (26) and

Mejía-Mejía et al. (27), which included bandpass filtering (0.35–

20 Hz), beat identification by the onset of the systolic upslope for

the PPG and BP signals and by the R-wave for the ECG, beat

length normalization, and averaging.

2.5.2 Extraction of established features
The present state-of-the-art PPG fiducial points, as described

by Elgendi (26) and Charlton et al. (7), were identified

(Figure 1). The process was automated but with added manual

supervision and generated 136 established features that were used

in the baseline feature set (Figure 2).

2.5.3 Understanding the pulse wave morphology
The local pressure in an artery can be decomposed into

incident (from the cardiac systolic ejection) and reflected (mainly

from vascular bifurcations) travelling waves whose phase speed is

the local pulse wave velocity. At a peripheral measurement site
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such as the finger, the wave impedance is close to the

characteristic impedance (28); that is, the reflection coefficient is

low. Hence, the signal comprises a succession of “incident waves”

arriving at time delays given by their respective travel paths and

PWVs throughout the circulation.

2.5.4 Interpretation of the photoplethysmogram
The PPG signal is merely a proxy for the actual BP/volume

velocity of interest that lacks explainable transfer functions and

also varies significantly between sites (29). Still, to evaluate the

relationship between PPG and pressure, the participants were

divided into four PPG waveform classes (10). Subgroups

identified repeatedly for Class 1 and Class 3 were labelled with a

prime (′). Class 1′ typically represented young, tall participants,

and the common Class 3′, by Millasseau et al. (10), denoted

“3bis,” is characterized by an anacrotic notch (an inflection point

on the systolic upslope). The PPG classes were compared to

simultaneous finger BP signals (Figure 3). An observation was

the “inertia” in the PPG signal, where filling and emptying of the

vascular beds had a different dynamic behaviour from the

arterial pressure wave dynamics, which obscure details in the PPG.

2.5.5 Engineering new features
As expected, the fiducial points for the derivatives were less

obscured by the variations between the classes than the signals

themselves (Figure 1). The pressure signal behaved as a single

linear oscillator up to and around the first peak, where the first

derivative displayed a linear gradient with a zero crossing at the

first peak in the signal. For the PPG signal, however, the first

derivative initially demonstrated a linear downslope after its first

peak, but the delay in the signal caused a shift in the zero-crossing.

Therefore, a new method for identifying the first peak, “p1,” in

the PPG signal was developed: by drawing a tangent from the

initial linear part of the downslope of the first derivative after the

fiducial point “w.” The zero-crossing of this tangent indicates the

time stamp of “p1.” For Classes 1 and 1′, this point often coincided

with “S” and in other classes, sometimes, with the anacrotic notch,

as previously proposed in procedures to identify early and late

systole (7, 30). Fiducial point “x” was defined at this timestamp as

well, while “y” was chosen at the first local minimum after “x.”

This method proved to work for all participants and all six classes.

For the updated feature set (Figure 2), 17 new features were

constructed, of which 13 used the new “p1” as fiducial point.

Assuming that the best coupling of the PPG signal to the arterial

wall mechanics is found in the early part of the signal,

resembling a single oscillator, one would expect the best result

using fiducial points “a,” “b,” “w,” “x,” and “p1” (Figure 1). All

features were also grouped by type and phase in the pulse

waveform (Supplementary Table S1).
2.6 Statistical analysis

Descriptive data are presented as mean values ± standard

deviations, median values with interquartile ranges, and

proportions, as appropriate, unless stated otherwise. A two-sided
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FIGURE 1

Normalized finger PPG and finger blood pressure signals with their first and second derivatives for class 3′. Fiducial points are given for the PPG signals
and our proposal for the position of the first systolic peak “p1”. The red line on the first derivative is the tangent used for estimating the time stamp of
“p1”. For PPG features, see Supplementary Table S1 for details.
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probability (P) < 0.05 was considered significant. Coefficients of

variation (CV) and within-subject coefficients of variation (WSCV,

by the root-mean-square error (RMSE) method) were calculated.

Bivariate correlations were studied using Pearson correlation

analysis. Reference equipment agreements and prediction model

performance were evaluated using root-mean-square error (RMSE),

coefficients of determination (R2), and Bland–Altman analysis.
2.7 Machine learning

2.7.1 Pre-processing and feature sets
All values were averaged between the two visits to generate

independent observations (for values missing for either visit, the

existing value was used as the average). Features with zero
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variance were excluded, and all features were divided by HR to

adjust for possible HR effects (15, 31) in relation to aortic

stiffness and included in each feature set. To ensure feature

quality in terms of repeatability, features were also filtered on

WSCV < 20%, which represented approximately the tertile with

the best repeatability for each feature set. Extreme outliers were

defined as values 3 × interquartile range greater than the third

quartile or 3 × interquartile range less than the first quartile. All

features were also centered and scaled. An overview of feature

sets and machine learning methods is presented in Figure 2.
2.7.2 Data split, resampling, and algorithms
The dataset was randomly split using 80% of the participants in

the training set and 20% of the participants in the testing set. Due
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FIGURE 3

Examples of finger blood pressure and finger PPG signals of different classes found in the dataset. The signals are normalized, and the PPG signals are
plotted with their relative time delay to the pressure signal, which in the onset is between 20 and 30 ms in all classes. P, pressure.

FIGURE 2

Signal analysis, feature sets, and machine learning.
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to the small sample size, we used 10-fold cross-validation, repeated

50 times, as the resampling method on the training set (32).

The established least absolute shrinkage and selection operator

(LASSO) and random forest algorithms were used since they both

have built-in variable importance scoring and variable selection

and can handle multicollinearity, which is suitable for this high-

dimensional dataset (33, 34). Simple and multiple linear

regression were also performed with a subset of the features.
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2.8 Software

The sensor signals were processed using MATLAB, version

2020b (The MathWorks Inc., MA, USA). Statistical analyses were

performed using R software, version 4.3.1 (R Foundation for

Statistical Computing, Vienna, Austria), and ML was conducted

using the R packages glmnet, version 4.1.8, for modelling with

LASSO, and ranger, version ranger 0.15.1, for modelling with
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random forest, both integrated into the R package tidymodels,

version 1.1.0.
3 Results

3.1 Clinical characteristics

The clinical characteristics of the study participants are presented

in Table 1. The participants represent a generally healthy population

with normal values of aortic stiffness and no history of vascular

disease. The body mass index ranged from 19 to 34 kg/m2.
3.2 Missingness, feature sets, and feature
repeatability

There were seven PPG feature values and one aoPWV value

missing (none for both visits for the same subject) where the

existing value was used as the average. There were three PPG

features with zero variance, which were excluded. After filtering

on repeatability, the baseline feature set and the updated feature

set consisted of 107 and 125 features, respectively. None of these

included any extreme outliers.

A summary of all PPG-ECG features is presented in

Supplementary Table S1. Feature types and feature phases

according to repeatability (WSVC) are presented in Figure 4.

Amplitude ratios, time spans, and time span ratios from the early

or mixed phases had the lowest median WSCV (good repeatability).
3.3 Machine learning with the baseline
feature set

When performing ML with the baseline feature set, the

acceleration ratio “b/a” appeared as an important feature in all
TABLE 1 Clinical characteristics of the study cohort.

n 33

Age, years 44 (21–66)

Male sex 19 (58%)

Height, cm 176 ± 10

Weight, kg 78 ± 11

Body mass index, kg/m2 25.0 ± 3.6

History of hypertension 6 (18%)

History of vascular disease 0 (0%)

Previous smoking 5 (15%)

SBP, mmHg 119 ± 12

DBP, mmHg 71 ± 8

MAP, mmHg 87 ± 9

HR, bpm 60 ± 8

cfPWV, m/s 6.8 ± 1.1

aoPWV, m/s 7.6 ± 1.6

SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial

pressure.

Values are presented as mean ± standard deviation, median (range) or n (%). There

were no current smokers. Blood pressures, HR, and pulse wave velocities are the

mean values of visits 1 and 2 (SBP, DBP, MAP, HR, and aoPWV from the

Arteriograph, and cfPWV using SphygmoCor).
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four ML cases but was considered most important only when

using LASSO to predict cfPWV (Supplementary Figure S1). It

showed moderate correlations with cfPWV and aoPWV (r = 0.54,

P = 0.001 and r = 0.63, P < 0.001, respectively; Table 2). Feature

“ms HR” was considered the most important when predicting

aoPWV with both LASSO and random forest (Supplementary

Figure S1), and it showed relatively strong correlations with

cfPWV and aoPWV (r =−0.71 and r =−0.67, respectively, both
P < 0.001; Table 2).

Random forest had slightly better performance to predict both

cfPWV and aoPWV, as compared to LASSO, in terms of test

RMSE (Supplementary Table S2). For aoPWV, there were

significantly higher RMSE values for training, as compared to

testing. After removal of one extreme outlier for aoPWV (aoPWV

= 13.0 m/s), resampling RMSE decreased, however test RMSE

increased, compared to the initial modelling with all participants,

which likely is due to overfitting (Supplementary Table S3).

Linear regression using only “b/a” exhibited good test performance

for aoPWV but not for cfPWV (Supplementary Table S2).
3.4 Machine learning with the updated
feature set

When performing ML with the updated feature set, the

amplitude ratio “Am b/Am p1” appeared as the most important
FIGURE 4

PPG feature type and phase in the waveform, according to
repeatability (WSCV). Data were taken from the updated feature
set. A total of 131 features with WSCV <150 are present in the
figure. Definitions of phases are given in Supplementary Table S1.
Box plots where vertical lines indicate the median, the lower and
upper edges indicate the first and third quartiles, whiskers extend
to the highest/lowest value within ±1.5 × interquartile range, and
dots represent outliers. Ra, ratio; Ar, area; E, early; L, late; M,
mixed; VPG, velocity plethysmogram; APG, acceleration
plethysmogram.
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TABLE 2 Top PPG features and NPAT in relation to indices suggestive of vascular ageing.

cfPWV aoPWV SBP PP Age

r P r P r P r P r P
Tm ND HR −0.63 <0.001 −0.51 0.003 −0.53 0.002 −0.30 0.088 −0.60 <0.001

b/a 0.54 0.001 0.63 <0.001 0.20 0.26 0.21 0.24 0.63 <0.001

Tm SD/Tm ss −0.52 0.002 −0.49 0.004 −0.41 0.019 −0.06 0.74 −0.59 <0.001

Am b/Am S −0.70 <0.001 −0.63 <0.001 −0.41 0.017 −0.20 0.27 −0.70 <0.001

Am b/Am S HR −0.74 <0.001 −0.61 <0.001 −0.41 0.017 −0.21 0.24 −0.66 <0.001

ms −0.54 0.001 −0.61 <0.001 −0.34 0.051 −0.21 0.24 −0.78 <0.001

ms HR −0.71 <0.001 −0.67 <0.001 −0.41 0.018 −0.24 0.17 −0.81 <0.001

(b− e)/a 0.44 0.010 0.55 <0.001 0.21 0.25 0.28 0.11 0.44 0.010

Tm x/Tm ss 0.45 0.008 0.50 0.003 0.15 0.41 0.20 0.26 0.54 0.001

Am b/Am p1 −0.81 <0.001 −0.75 <0.001 −0.42 0.015 −0.29 0.10 −0.80 <0.001

Am b/Am p1 HR −0.76 <0.001 −0.62 <0.001 −0.38 0.030 −0.25 0.16 −0.65 <0.001

Am c/Am p1 0.49 0.004 0.35 0.044 0.34 0.055 0.04 0.84 0.51 0.003

k v2 −0.59 <0.001 −0.57 <0.001 −0.32 0.072 −0.17 0.35 −0.62 <0.001

NPAT −0.59 <0.001 −0.39 0.026 −0.61 <0.001 −0.40 0.021 −0.57 <0.001

SBP, systolic blood pressure; PP, pulse pressure; P, significance; HR, adjusted for heart rate.

Top PPG features from machine learning using the updated feature set, NPAT, and their linear correlations with indices suggestive of vascular ageing. The mean values of

visits 1 and 2 were used. For PPG-ECG features, see Supplementary Table S1 for details.
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feature in both LASSO and random forest when predicting cfPWV

and the most important for LASSO when predicting aoPWV

(Figure 5). “Am b/Am p1” showed strong linear correlations with

cfPWV and aoPWV (r =−0.81 and r =−0.75, respectively, both
P < 0.001; Figure 6).

LASSO performed better than random forest in predicting

cfPWV, but random forest was better at predicting aoPWV in

terms of test RMSE (Table 3). Modelling with only “Am b/Am

p1” in linear regression exhibited comparable test performance

for cfPWV to the more complex models and showed the best

test performance for aoPWV. Although the addition of the

height-normalized PAT (NPAT) only marginally improved the

test performance when added to “Am b/Am p1,” it did not

improve other modelling cases (Table 3). The modelling

performance between PAT and NPAT was compared using the

updated feature set. NPAT showed slightly better performance

for LASSO and linear regression in predicting cfPWV (data not

shown), which is why NPAT was chosen instead of PAT.

The agreements of the best PPG-based prediction models, with

the reference equipment, are found in Figure 7.

As when modelling aoPWV with the baseline feature set, there

were also higher RMSE values for resampling as compared to

testing (Table 3), and the behaviour with increased test RMSE

was similar when removing the same extreme aoPWV outlier

(Supplementary Table S4).
3.5 Top features, repeatability, and relations
to indices suggestive of vascular ageing

The top five features from each modelling with LASSO

and random forest using the updated feature set were aggregated,

together with NPAT, and evaluated according to repeatability

and associations with indices suggestive of vascular ageing.
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In terms of repeatability, three out of four PPG features with

the lowest WSCV were amplitude ratios derived from the early

part of the PPG wave. NPAT had a lower WSCV compared to

reference equipment, which in turn all had lower WSCV values

than almost all PPG features (Table 4).

In relation to different indices suggestive of vascular ageing,

“Am b/Am p1” showed the highest associations with both

cfPWV and aoPWV, NPAT with both systolic BP and pulse

pressure, and “ms HR” with age (Table 2).
3.6 ePWV estimated by baseline risk factors
to predict actual PWV

The calculated ePWV showed similar correlations with PWV

(cfPWV r = 0.79, and aoPWV r =−0.71, both P < 0.001;

Supplementary Figure S2) as the PPG feature “Am b/Am p1”

(cfPWV r =−0.81, and aoPWV r =−0.75, both P < 0.001; Figure 6).
3.7 Reference equipment, repeatability, and
agreement

WSCV values for reference equipment are listed in Table 4.

To also illustrate repeatability, cfPWV and aoPWV were

evaluated with coefficients of determination, which were similar

between the two, and by Bland–Altman analysis, which was

superior for cfPWV (Supplementary Figures S3A–D). The

agreement between cfPWV and aoPWV showed a lower

coefficient of determination and a Bland–Altman plot with

more spread and four values outside the limits of agreement.

cfPWV values were generally slightly lower than aoPWV values

(Supplementary Figures S3E,F).
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FIGURE 5

Variable importance scores from modelling with the updated feature set. (A) LASSO and (B) random forest to predict cfPWV, and (C) LASSO and (D)
random forest to predict aoPWV. The scores use relative scales, and up to 10 features are shown per model. For PPG features, see Supplementary
Table S1 for details. HR, adjusted for heart rate.

FIGURE 6

New PPG feature “Am b/Am p1” in relation to (A) cfPWV and (B) aoPWV. The mean values of visits 1 and 2 were used. Pearson correlation analysis with
the r coefficient and P-value for each scatter plot. The lines represent simple linear regression lines. “Am b/Am p1”, a new amplitude ratio, see
Supplementary Table S1 for details.
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TABLE 3 Performance of prediction models, based on the updated feature set.

Outcome Algorithm Features

Training, resampling performance Testing, prediction performance

RMSE R2 RMSE R2

cfPWV LASSO Updated 0.69 0.87 0.70 0.74

cfPWV LASSO Updated + NPAT 0.66 0.86 0.70 0.72

cfPWV Random forest Updated 0.76 0.80 0.80 0.71

cfPWV Random forest Updated + NPAT 0.76 0.80 0.80 0.73

cfPWV Linear regression Am b/Am p1 0.60 0.91 0.76 0.71

cfPWV Linear regression Am b/Am p1 + NPAT 0.56 0.90 0.72 0.68

aoPWV LASSO Updated 1.16 0.84 0.76 0.92

aoPWV LASSO Updated + NPAT 1.16 0.84 0.76 0.92

aoPWV Random forest Updated 1.13 0.84 0.64 0.78

aoPWV Random forest Updated + NPAT 1.13 0.84 0.66 0.76

aoPWV Linear regression Am b/Am p1 1.00 0.90 0.52 0.92

aoPWV Linear regression Am b/Am p1 + NPAT 1.07 0.89 0.52 0.92

“Am b/Am p1”, a new amplitude ratio.

Prediction models for estimation of cfPWV or aoPWV using different machine learning algorithms and features. See Supplementary Table S1 for details on “Am b/Am p1”

and NPAT.

FIGURE 7

Model prediction of cfPWV and aoPWV in the test set using the best PPG-based models. (A) A LASSO model with the (B) corresponding Bland–Altman
plot and (C) a linear regression model using only “Am b/Am p1” with the (D) corresponding Bland–Altman plot. For scatterplots, the solid line
represents a simple linear regression line. For Bland–Altman plots, the solid line represents the bias (mean error) and the dashed lines represent
the limits of agreement, which is ±1.96 times the standard deviation of the errors. “Am b/Am p1”, a new amplitude ratio, see Supplementary
Table S1 for details.
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TABLE 4 Measures of dispersion and repeatability for top PPG features, NPAT, and reference equipment.

Visit 1 Visit 2 Visit 1 vs. visit 2

Mean SD CV Mean SD CV r P WSCV
Tm ND HR 0.001 0.001 42.8 0.001 0.001 39.0 0.87 <0.001 17.2

b/a −0.602 0.129 −21.4 −0.642 0.147 −23.0 0.71 <0.001 13.6

Tm SD/Tm ss 0.188 0.066 34.9 0.194 0.067 34.3 0.81 <0.001 13.6

Am b/Am S 0.682 0.174 25.5 0.679 0.165 24.2 0.77 <0.001 14.5

Am b/Am S HR 0.012 0.004 31.1 0.012 0.004 31.5 0.82 <0.001 14.8

ms 10.1 2.31 22.9 9.88 2.09 21.2 0.63 <0.001 14.0

ms HR 0.170 0.043 25.4 0.167 0.042 25.3 0.68 <0.001 14.3

(b− e)/a −0.806 0.151 −18.7 −0.861 0.185 −21.5 0.53 0.001 15.0

Tm x/Tm ss 0.154 0.030 19.8 0.160 0.032 20.2 0.66 <0.001 10.9

Am b/Am p1 0.769 0.109 14.2 0.762 0.109 14.4 0.67 <0.001 9.72

Am b/Am p1 HR 0.013 0.003 21.9 0.013 0.003 22.3 0.83 <0.001 10.0

Am c/Am p1 1.02 0.077 7.58 1.01 0.097 9.51 0.55 <0.001 5.95

k v2 1.58 0.189 11.9 1.62 0.216 13.3 0.76 <0.001 6.15

NPAT 117 9.61 8.21 118 9.63 8.18 0.86 <0.001 3.06

cfPWV, m/s 6.74 1.17 17.3 6.80 1.18 17.4 0.88 <0.001 6.07

aoPWV, m/s 7.66 1.80 23.4 7.55 1.52 20.2 0.90 <0.001 5.80

SBP, mmHg 119 12.3 10.3 119 12.7 10.7 0.86 <0.001 3.79

DBP, mmHg 71.5 9.12 12.8 70.5 8.20 11.6 0.85 <0.001 4.72

HR, bpm 59.7 7.51 12.6 59.7 9.16 15.4 0.76 <0.001 6.46

P, significance; HR, adjusted for heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure.

Measures of dispersion and repeatability between visits 1 and 2 with values for top PPG features from machine learning using the updated feature set, NPAT, and

measurements from reference equipment (cfPWV using SphygmoCor; aoPWV, SBP, DBP, and HR using Arteriograph). For PPG-ECG features, see Supplementary

Table S1 for details.

Hellqvist et al. 10.3389/fcvm.2024.1350726
4 Discussion

This proof-of-concept study is the first to report on finger-

PPG-based estimation of aortic stiffness against well-validated

non-invasive methods while using improved features and ML

methods. We provide four main findings. First, finger-PPG using

advanced signal analysis and ML models can be used to estimate

aortic stiffness without the need for additional information on

age, anthropometry, or BP. Second, the ECG-based NPAT did

not significantly improve model performance. Third, high feature

quality can be ensured by improved fiducial point selection and

assessing repeatability. Fourth, a new amplitude ratio “Am b/Am

p1,” developed from an integral physiological understanding of

the PPG wave, was identified as the most important feature for

estimating aortic stiffness.
4.1 PPG-based prediction models

We developed several prediction models that predicted the two

different estimates of aortic stiffness well. The best performance

was obtained using the updated feature set, which utilized an

improved identification of the first systolic peak. Simple models

performed well; in fact, using only one of the new features in

simple linear regression. LASSO and linear regression models are

easily interpreted and shared with others, as encouraged for

medical artificial intelligence and ML, although also more complex

algorithms are prone to play a role in the future (12, 35). Our best

models showed similar performance regarding repeatability and

agreement to the reference equipment. Of note, both the
Frontiers in Cardiovascular Medicine 10
SphygmoCor and Arteriograph devices have been validated

invasively (18, 21) and can predict future cardiovascular events

and mortality (3, 36, 37). This notwithstanding, our results

highlight previously shown discrepancies between the methods,

which have included both wide limits of agreement and weak

correlation in their estimation of PWV (38, 39). This may be

related to their different technical approaches.

It is not possible to directly compare our prediction model results

with other studies since no other study has used the same setup with

only the finger PPG waveform, real subjects, and prediction of PWV

as continuous outcome variable. However, our best cfPWV model

generated better results (e.g., RMSE 0.70 m/s) than other studies

with more complex sensors and continuous cfPWV as an outcome.

Thus, Tavallali et al. developed a prediction model from the carotid

artery pressure waveform to predict cfPWV (RMSE 1.12 m/s), and

Jin et al. predicted cfPWV from the radial pressure waveform with

an RMSE of 1.82 m/s (40, 41).

The addition of the ECG-based NPAT did not significantly

improve the performance of any of the models, indicating that

the information regarding aortic stiffness is already sufficiently

represented in the PPG signal. Thus, our results show that

prediction models based on PPG alone can estimate aortic

stiffness with good performance.
4.2 High-quality features

After a comprehensive study of the interaction between PPG

and the simultaneous pressure curve, we constructed new

features where the identification of the first systolic peak, “p1”,
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was enhanced. By using the new “p1”, features with better coupling

to the BP curve, and likely also to arterial wall mechanics, were

developed. To our knowledge, continuous peripheral BP has not

provided guidance in previous studies regarding the development

of PPG fiducial points, as in our study. Another way to ensure

high feature quality was to filter features by WSCV, a measure of

repeatability, before ML. There were large differences among the

different feature types and waveform phases, with the best

repeatability for amplitude ratios, time spans, and time span

ratios from the early or mixed phases of the PPG waveform.

Using only features with high repeatability should result in

prediction models with improved performance in this aspect.

Previous work studying repeatability also reported differences

between features (31, 42, 43), but our study is more exhaustive

and also investigates feature phases, which has not been

published before. In summary, we ensured high feature quality

by studying the BP curve and used only features with good

repeatability for ML in a novel manner.
4.3 New essential amplitude ratio

ML identified the amplitude ratio “Am b/Am p1” as the most

important feature. “Am b/Am p1” also showed strong linear

correlations with both cfPWV and aoPWV (r =−0.81 and

r =−0.75, respectively), which are stronger than what has

been reported before; for the “spring constant” with cfPWV

(r =−0.72) (44), the ageing index “(b− c− d− e)/a” with cfPWV

(r = 0.65) (31), and for the stiffness index with central PWV

(r = 0.65, r = 0.58 and r = 0.66) (45–47). Amplitudes “Am b” and

“Am p1,” which together construct the ratio, are both located in

the early phase of the PPG wave, and the ratio has good

repeatability. “Am b” is defined as the PPG amplitude for

acceleration “b,” and the “Am p1” is the amplitude of “p1,” the

direct systolic peak, updated with our method for identification.

The amplitude ratio decreases with higher PWV; that is, the

amplitude, “Am p1,” becomes relatively larger and the amplitude

before, “Am b,” becomes relatively smaller. Physiologically, this

feature may represent a resistance in the aorta, which develops at

the end of early systole. It is similar to the previously studied

“spring constant” (44) and “slope of the rising front” (48), but

these features did not perform equally well in our study. Of note,

“Am b/Am p1” also showed stronger relations to central PWV

compared to “b/a” (r = 0.54 to cfPWV, and r = 0.63 to aoPWV)

and “ms HR” (r =−0.71 to cfPWV, and r =−0.67 to aoPWV)—

features that were important using the baseline feature set. “Am

b/Am p1” also showed the highest correlations with the reference

equipment, which, although using different techniques, share

much information.

Taken together, the new essential amplitude ratio “Am b/Am

p1” was identified as a strong predictor of aortic stiffness that is

also physiologically explainable. This should lead to more focus

on this particular area of the PPG waveform when estimating

aortic stiffness instead of indices that rely on, for instance, the

timing between peaks “S” and “D,” like the stiffness index, or the

uninterpretable ageing index “(b− c− d− e)/a,” or the “spring
Frontiers in Cardiovascular Medicine 11
constant” that relies on the total systolic amplitude “Am S”,

which does not correctly represent the true first systolic peak in

all PPG classes.
4.4 Limitations

There are several shortcomings to this proof-of-concept study.

First, results from studies based on a small sample size must always

be interpreted with caution, and the small dataset prevented us

from having an ideal modelling workflow, which should have

included a training set, a validation set, and an external

validation set. Second, the limited range for PWV in these

generally healthy participants may affect the generalizability of

the results. Third, there are potential confounding factors such as

skin tone and obesity, which may influence PPG signals (49).

However, utilizing finger PPG with a reflectance sensor on the

finger pulp, the signal should be less influenced by skin tone

since the skin in the palm and finger pulp generally contains

little melanin. Obesity may affect the PPG signal due to

differences in capillary density and skin thickness. However,

obesity has not been shown to specifically affect the PPG signal

using the finger pulp (49), and the participants in the current

study were mostly of average weight. Fourth, the supervised

process we used to identify fiducial points needs to be fully

automated and programmed, which warrants further studies on

its feasibility.
4.5 Clinical significance

Aortic stiffness is an important marker of cardiovascular risk

but is seldom used in clinical practice as it is considered

cumbersome to assess and requires specialized and expensive

equipment. A simple method based on PPG could bridge several

of these gaps due to low cost, high availability, and ease of use.

This could also facilitate future studies on clinical applications of

aortic stiffness in existing healthcare settings, but also using

consumer devices like smartwatches, fitness trackers, and smart

rings. Whether improved PPG-based estimates of aortic stiffness

add clinically relevant independent information regarding future

cardiovascular outcomes remains however to be evaluated in

future properly designed studies.
4.6 Conclusion

This proof-of-concept study presents an improved method to

estimate aortic stiffness by finger PPG alone through enhanced

features and ML methods. The results were on par with non-

invasive, well-validated methods for PWV regarding

repeatability and agreement. Assessing aortic stiffness with this

simple PPG method, which is already present in various

consumer wearables, may facilitate cardiovascular risk

evaluation and expedite broader studies of the added clinical

value of arterial stiffness assessments.
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