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Backgrounds: Cuprotosis is a newly discovered programmed cell death by
modulating tricarboxylic acid cycle. Emerging evidence showed that
cuprotosis-related genes (CRGs) are implicated in the occurrence and
progression of multiple diseases. However, the mechanism of cuprotosis in
heart failure (HF) has not been investigated yet.
Methods: The HF microarray datasets GSE16499, GSE26887, GSE42955,
GSE57338, GSE76701, and GSE79962 were downloaded from the Gene
Expression Omnibus (GEO) database to identify differentially expressed CRGs
between HF patients and nonfailing donors (NFDs). Four machine learning
models were used to identify key CRGs features for HF diagnosis. The
expression profiles of key CRGs were further validated in a merged GEO
external validation dataset and human samples through quantitative reverse-
transcription polymerase chain reaction (qRT-PCR). In addition, Gene
Ontology (GO) function enrichment, Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment, and immune infiltration analysis were
used to investigate potential biological functions of key CRGs.
Results: We discovered nine differentially expressed CRGs in heart tissues from
HF patients and NFDs. With the aid of four machine learning algorithms, we
identified three indicators of cuprotosis (DLAT, SLC31A1, and DLST) in HF,
which showed good diagnostic properties. In addition, their differential
expression between HF patients and NFDs was confirmed through qRT-PCR.
Moreover, the results of enrichment analyses and immune infiltration exhibited
that these diagnostic markers of CRGs were strongly correlated to energy
metabolism and immune activity.
Abbreviations

TCA, tricarboxylic acid; CRGs, cuprotosis-related genes; HF, heart failure; GEO, gene expression omnibus;
NFDs, nonfailing donors; GO, gene ontology; KEGG, kyoto encyclopedia of genes and genomes; CAR,
chimeric antigen receptor; LASSO, least absolute shrinkage and selection operator; EN, elastic net; RMSE,
root mean squared error; RF, random forest; XGBoost, eXtreme gradient boosting; ROC, receiver
operating characteristic; scRNA-seq, single-cell RNA sequencing; qRT-PCR, quantitative reverse-
transcription polymerase chain reaction; ssGSEA, single-sample gene-set enrichment analysis; PPI,
protein-protein interaction; ROS, reactive oxygen species; PDC, pyruvate dehydrogenase complex.
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Conclusions: Our study discovered that cuprotosis was strongly related to the
pathogenesis of HF, probably by regulating energy metabolism-associated and
immune-associated signaling pathways.
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Introduction

Heart failure (HF) is the common endpoint of various

cardiovascular diseases, such as coronary heart disease, cardiac

rhythm disorders, congenital heart disease, valvular heart disease,

cardiomyopathy, and heart infections (1). Despite great advances

in understanding its molecular pathogenesis, the treatment of HF

remains a significant global medical burden, leading to high rates

of hospitalization and mortality. Although the etiology of HF is

complex and multifactorial, there is a growing recognition of the

role that chronic inflammation plays in the progression of HF

(2). A study by Revelo et al. demonstrated that macrophage-

mediated stimulation of angiogenesis and inhibition of fibrosis

early after cardiac pressure overload can delay the progression of

HF (3). In addition, the adoptive transfer of chimeric antigen

receptor (CAR)-expressing T cells can result in a significant

reduction in cardiac fibrosis and restoration of function after

cardiac injury in mice (4). These findings emphasize the

potential of immunotherapy as a promising therapeutic approach

for HF.

Copper is an essential micronutrient required in many

biological processes. It serves as a structural and catalytic

cofactor for cuproenzymes, playing important roles in

physiological functions like immunity, cell division, and protein

synthesis (5). Copper dyshomeostasis, which refers to an

imbalance in copper levels, has been implicated in the onset and

progression of neurodegenerative diseases such as Alzheimer’s

disease, Parkinson’s disease, and Amyotrophic lateral sclerosis

(6–8). Additionally, it has been associated with several types of

cancer, including triple-negative breast cancer (9), colorectal

cancer (10), and lung cancer (11). The metabolism of copper is

also known to be enhanced during the acute phase response in

inflammatory diseases (12). Lately, an entirely new mode of

copper-dependent cell death, termed cuprotosis, was described.

Unlike other known cell death mechanisms, cuprotosis is

characterized by copper binding directly to the lipoylated

components of the tricarboxylic acid (TCA) cycle, which induces

proteotoxic stress and leads to cell death ultimately (13). The

TCA cycle is involved in the communication between

mitochondria and the nucleus, which is critical for maintaining

cardiomyocyte homeostasis. Growing evidence suggests that the

disturbance in the TCA cycle is inextricably linked with cardiac

dysfunction (14, 15). Some genes involved in the process of

cuprotosis have been identified, providing an opportunity for the

identification of crucial cuprotosis-related genes (CRGs) involved

in the pathological development of HF.

Recently, the advancement of high-throughput genomic

technologies, such as microarray, genome sequencing, and
02
transcriptome sequencing, has generated enormous amounts of

biological data (16). These techniques have offered new insights

into the pathogenesis and potential therapeutic modality for

various diseases, including HF (17). However, sequence data is

characterized by high dimensionality and redundancy, making it

challenging to extract meaningful information from the extensive

datasets. In this context, machine learning, a powerful approach

for handing complex multi-dimensional datasets, has been

successfully applied to genomic data (18). Moreover, the joint

analysis of different machine learning algorithms has been

demonstrated to improve prediction accuracy and sensitivity over

a single approach (19, 20). Currently, there are no reports on the

cross-combination of machine learning in cuprotosis-related

bioinformatics analysis of HF, and the role of cuprotosis in HF

remains unclear.

In this study, we systematically analyzed six HF microarray

datasets obtained from the Gene Expression Omnibus (GEO)

database (GSE16499, GSE26887, GSE42955, GSE57338, GSE76701,

and GSE79962). We identified nine cuprotosis-related differential

genes and used four machine learning algorithms, namely best

subset regression, regularization techniques, random forest (RF),

and eXtreme Gradient Boosting (XGBoost), to develop a 3-gene

diagnostic signature of CRGs. This diagnostic model could

distinguish HF patients from nonfailing donors (NFDs) with an

excellent degree of discrimination and calibration in both the

training and validation datasets. Besides, Significant correlations

were observed between CRGs and immune signature, including

immune cell types and immune-related functions. Moreover,

the results of enrichment analyses and immune infiltration

revealed that the indicators of cuprotosis (DLAT, SLC31A1,

and DLST) in HF had a strong association with energy

metabolism and immune activity. These findings suggest that

cuprotosis may play a crucial regulatory role in the immune

microenvironment of HF.
Materials and methods

HF data acquisition and preprocessing

Procedure of study flowchart is shown in Figure 1. The mRNA

expression profiles of heart tissues in HF patients and NFDs were

downloaded from the GEO repository (https://www.ncbi.nlm.nih.

gov/geo). The following criteria were used to screen datasets: (i)

the search term was set as “Heart failure”, and tissue microarrays

were obtained from left ventricle of human; (ii) each dataset

should contain at least four samples of HF patients and NFDs;

(iii) expression information should be available within the
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FIGURE 1

Procedure of study flowchart. HF, heart failure; GEO, gene expression omnibus; NFDs, nonfailing donors; DEG, differentially expressed gene; CRGs,
cuprotosis-related genes; GO, gene ontology; KEGG, kyoto encyclopedia of genes and genomes; ROC, receiver operating characteristic.
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dataset. Six datasets which met the inclusion criteria were included:

GSE16499 (21) (15 HF patients, 15 NFDs), GSE26887 (22) (7 HF

patients, 5 NFDs), GSE42955 (23) (24 HF patients, 5 NFDs),

GSE57338 (24) (54 HF patients, 95 NFDs), GSE76701 (25)

(4 HF patients, 4 NFDs), and GSE79962 (26) (20 HF patients,

11 NFDs). The raw data of these datasets were downloaded and

the probe IDs were converted into gene symbols. Subsequently,

the gene expression matrix was normalized and corrected by the

R package “limma” (27). The six gene expression matrices were

then merged, and the inter-batch effect was removed using the

“sva” package (28). The batch effect, with and without

adjustment, was visualized as Principal Component Analysis

(PCA) plots (Supplementary Figure S1). The final merged dataset

consisted of 259 samples including 124 HF patients and 135

NFDs. Additionally, GSE116250 (29) (50 HF patients, 14 NFDs),

GSE71613 (30) (4 HF patients, 4 NFDs), and GSE48166 (15 HF

patients, 15 NFDs) were used as independent external validation

RNA-sequencing (RNA-seq) datasets. Batch effects of these three
Frontiers in Cardiovascular Medicine 03
RNA-seq datasets were adjusted using the R package “RUVSeq”,

which uses a generalized linear model to regress out the

variation estimated from the expression of the housekeeping

gene (31). Then the three RNA-seq datasets were merged as

external validation dataset (Supplementary Figure S2). The

characteristics of these nine datasets are listed in Supplementary

Tables S1, S2.
Identification of differentially expressed
CRGs

13 CRGs were identified from previous study (13)

(Supplementary Table S3). Then expression differences of CRGs

between HF and NFDs samples were identified using limma.

Besides, the expression relationship among differentially

expressed CRGs was evaluated by Spearman correlation analysis

in HF samples.
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Screen for potential diagnostic biomarkers
of CRGs by machine learning

To further screen for potential biomarkers for the diagnosis of

HF, machine learning was conducted on differentially expressed

CRGs. Four feature selection approaches of machine learning were

employed. The main steps of feature selection are described below.

Firstly, HF patients and NFDs of the merged dataset were

randomly assigned to a training set and an internal validation set

in a 7 : 3 ratio using the R package “caret”. Ten-fold cross-

validation was conducted to minimize the overfitting risk.

Secondly, Subset selection in regression was applied to choose the

best combination of CRGs using the sequential replacement

algorithm in R package “leaps”. Then three regularised linear

methods, including least absolute shrinkage and selection operator

(LASSO) regression, RIDGE regression, and elastic net (EN)

regression were applied to identify potential diagnostic biomarkers

by the “glmnet” package, and model performance was assessed by

root mean squared error (RMSE). Besides, a RF model was

implemented using the “randomForest” R package. Furthermore, the

R package “xgboost” was used to perform feature selection in CRGs.

Eventually, potential diagnostic biomarkers were defined as the genes

present in the intersection of best subset regression, RF, XGBoost and

the best performing model of regularised linear methods.
Construction and verification of a
diagnostic model in HF

After the feature selection step, multivariable logistic regression

models were built with the intersected CRGs, and the results were

visualized by forest plot (forestplot package, R) and nomogram

(rms package, R). The ability of this diagnostic model to

discriminate HF patients was assessed by receiver operating

characteristic (ROC) curve, and model calibration was assessed by

using calibration plots. This evaluation process was conducted in

the final merged dataset and external validation dataset, respectively.

Additionally, the normalized expression of potential diagnostic

biomarkers was extracted from the Heart Cell Atlas global heart

dataset (www.heartcellatlas.org). The database is publicly available

and is part of the Human Cell Atlas project, specifically focusing on

Single-cell RNA sequencing (scRNA-seq) cardiac cell data.
Validation of cuprotosis-related biomarkers
in human samples using molecular biology
experiments

To further validate the reliability of the cuprotosis-

related biomarkers generated through bioinformatics analysis,

quantitative reverse-transcription polymerase chain reaction

(qRT-PCR) experiments were conducted using heart tissues and

plasma samples from both HF patients and NFDs. A total of

5 ml of whole blood samples were collected from six HF

patients and six NFDs into sterile sample tubes supplemented

with ethylenediaminetetraacetic acid (EDTA) by experienced
Frontiers in Cardiovascular Medicine 04
venipuncture nurses through the cubital vein. Following collection,

the blood-containing tubes were immediately centrifuged at

1,500 g at 4°C for 10 min. After the first centrifugation step, the

upper plasma phase was carefully transferred to a new tube

without disturbing the intermediate buffy coat layer, which

contains white blood cells and platelets. The plasma samples were

then subjected to a second centrifugation step at 12,000 g and 4°C

for 10 min to completely remove additional cellular nucleic acids

attached to cell debris. The resulting supernatant, designated as

plasma, was promptly transferred into clean polypropylene tubes

after centrifugation and stored at −80°C until further use.

Additionally, heart tissues from six HF patients undergoing heart

transplantation were collected, along with control heart tissues

from six NFDs. These heart tissues were obtained from the

Specimen Bank of the Cardiovascular Surgery Laboratory and

Department of Pathology at the Changhai Hospital, Shanghai,

China. Written informed consent was obtained from each

individual patient or their legal family members. This study was

conducted in accordance with the principles of the Declaration of

Helsinki and approved by the ethics committee of the Changhai

Hospital. Total RNAs from heart tissues or plasma samples were

isolated using Trizol reagent (TrizolTM Reagent, Invitrogen) or

miRNeasy Serum/Plasma Kit (Qiagen, Cat. No. 217184),

separately. Then the RNAs were reverse-transcribed into cDNAs

using ReverTra Ace qPCR RT kit (TOYOBO, Japan), and cDNA

was subjected to qRT-PCR quantitation using SYBR Green kit

(TOYOBO, Japan). The primer sequences are listed as follows:

DLAT forward, 5′-TTGAGAGCCTGGAGGAGTGT-3′ and

reverse, 5′-GCCTGAGCAGAAGGTGTAGG′; SLC31A1 forward,

5′-CTGTTTTCCGGTTTGGTGAT-3′ and reverse, 5′-GGTGA
GGAAAGCTCAGCATC-3′; DLST forward, 5′-GGAGATGTCA
GGTGGGAGAA-3′ and reverse, 5′-GACCTTGACCACCAGGA
GAA-3′. The expression levels of mRNAs relative to

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or external

reference were detected using the 2–ΔΔCt method.
Correlation analysis between CRGs and
immune infiltration

To evaluate the correlation between CRGs and immune activities

involved in HF, single-sample gene-set enrichment analysis (ssGSEA),

a method of quantifying immune infiltration levels, was adopted to

analysis the merged expression data and calculate immune

enrichment scores of 16 immune cell types and 13 immune-related

functions. The results were displayed using correlation heatmaps.
Enrichment analysis in diagnostic
biomarkers of CRGs

In the external validation dataset of HF patients in GSE116250,

potential biological functions of diagnostic biomarkers of CRGs were

investigated. First, correlation analyses were conducted between

diagnostic biomarkers of CRGs and other genes, and genes with

the absolute value of correlation coefficient >0.5 and p-value <0.05
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were defined as CRGs-related genes. Gene Ontology (GO) function

enrichment analysis and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis was conducted on

these CRGs-related genes using ClusterProfiler package (32).
Statistical analyses

For comparisons between two groups, data that were normally

distributed and had equal variance were analyzed using Student’s

t-test. If the normality or variance assumptions were not met, the

analysis was performed with the Wilcoxon rank sum test.

Correlations were performed by Pearson correlation (normally

distributed data) or Spearman correlation (non-normally

distributed data). p < 0.05 and correlation coefficients >0.3 were

considered to be meaningful correlation (33). All statistical tests
FIGURE 2

Normalizing gene expression matrices. (A–F) Relative mRNAs expression leve
plots, after normalization. (A) GSE16499. (B) GSE26887. (C) GSE42955. (D) G
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were two-sided and p < 0.05 indicated statistical significance.

R software (version 4.1.2) and its relevant packages are utilized

to process, analyze and present the data.
Results

Datasets normalization and combination

The expression matrices of GSE16499, GSE26887, GSE42955,

GSE57338, GSE76701, and GSE79962 were normalized, and the

distribution trends of the box plots were basically straight lines

(Figure 2). After datasets combination and batch effects

adjustment, we ended up with a merged dataset containing 124

HF patients and 135 NFDs. Besides, the merged external validation

RNA-seq dataset consisted of 69 HF patients and 33 NFDs.
ls of six HF microarray datasets. Upper plots, before normalization; lower
SE57338. (E) GSE76701. (F) GSE79962. HF, heart failure.
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Landscape of CRGs between HF and
NFDs samples

Figure 3A reflected the location of 13 CRGs on

chromosomes, and the protein-protein interaction (PPI)

network acquired from the STRING database (https://string-db.

org/) revealed a tight link among these CRGs, indicating they

may function as a complex (Figure 3B). Then we observed

expression patterns of 13 CRGs in heart tissues of HF patients

and NFDs, and there was a significant difference in the

expression of 9 CRGs. The expression levels of LIPT1, LIAS,

DLD, DLST, and ATP7B were markedly higher in HF patients

than NFDs, while the opposite performance of FDX1, DLAT,

PDHA1, and SLC31A1was observed (Figure 3C). Figure 3D

demonstrated that principal component analysis of 9 differently

expressed CRGs could be used to differentiate HF patients

from NFDs. The transcriptome relationships of 9 differentially

expressed CRGs in HF were investigated, and we found there

are close positive correlations among these CRGs. DLST-DLD

was the most correlated pair, indicating that they may function

together (Figure 3E).
Screening diagnostic markers of CRGs by
feature selection

In our study, four feature selection method were applied to

determine diagnostic markers of CRGs in HF. The result of best

subset regression indicated the BIC was lowest (BIC =

−100.73603) for the model with seven CRGs (FDX1, DLD,

DLST, DLAT, PDHA1, SLC31A1, and ATP7B) (Figures 4A–B).

As for three regularised linear methods, the coefficient profile

plot of LASSO, RIDGE and EN was shown in Figures 4C–E. As

shown in Figure 4F, RIDGE is the optimum model which

produced the minimum RMSE in the internal validation dataset.

Moreover, significant features of CRGs were identified by a

random forest model, which displayed an accuracy rate of 85.9%

with 29 trees and 3 mtry (Figures 4G–H). The contribution of a

CRG to the random forest model was evaluated with the mean

GINI index decrease. Gini decrease value indicated that DLAT,

DLST, and SLC31A1 are important features for the risk

evaluation of HF (Figure 4I). Besides, by the supervised

integrated learning algorithm of XGBoost, the 4 top-ranked

CRGs (DLAT, SLC31A1, LIAS, and DLST) were selected for

further analysis (Figure 4J). Taking the intersection of CRGs

from best subset regression, ridge regression, RF and XGBoost

algorithm, DLAT, DLST, and SLC31A1 were diagnostic markers

of CRGs in HF (Figure 4K).
Development and verification of a CRGs
diagnostic signature for HF diagnosis

After identifying three diagnostic markers of CRGs in HF, we

used logistic regression analysis to estimate the association
Frontiers in Cardiovascular Medicine 06
between the expression of these diagnostic markers and HF.

multivariate logistic regression analysis demonstrated that these

three CRGs were independently associated with HF (Figure 5A),

and a nomogram was constructed on the basis of the

multivariate logistic regression (Figure 5B). In the merged

dataset, the nomogram yielded an AUC of 0.880 (95% CI, 0.837–

0.922), while in the external validation dataset, the AUC value of

this prediction nomogram was 0.776 (95% CI, 0.678–0.874)

(Figures 5C,D). The results revealed that this diagnostic signature

possessed an excellent prediction performance in classifying HF

patients and NFDs, indicating CRGs indeed play a crucial role in

HF development. Additionally, the 95% CI region of GiViTI

calibration belt did not cross the 45-degree diagonal bisector line

in the merged dataset and external validation dataset (p = 0.217

and p = 0.538; respectively) (Figures 5E,F), implying good

consistency between the nomogram-predicted probability of HF

and the actual HF status in both datasets. Meanwhile, differential

expression of DLAT and DLST were observed in the external

validation dataset, further demonstrating their promising

diagnostic efficiency (Figure 5G). In addition to external

validation of RNA-seq datasets, we performed qRT-PCR

experiments to further validate the expression of cuprotosis-

related biomarkers using heart tissues and plasma samples from

HF patients and NFDs. As shown in Figures 5H,I, DLAT and

SLC31A1 were significantly downregulated in the heart tissues or

plasma samples of HF patients compared with NFDs (p < 0.05),

while DLST was significantly upregulated. This finding was

consistent with the results of the prior bioinformatics analysis.

Overall, the three cuprotosis-related biomarkers demonstrated

excellent diagnostic performance for HF. In addition,

Supplementary Figure S3 shows DLAT and DLST expression

primarily in human ventricular cardiomyocyte, while SLC31A1

expression primarily in atrial cardiomyocyte.
Correction analysis of diagnostic markers
and immune infiltration

To elucidate association between CRGs and immune infiltration,

the correlations between CRGs and 29 immune signatures were

explored. We can see that many immune signatures, such as

TIL, Treg, CCR, Check-point, Parainflammation, and T cell co

inhibition were associated with multiple CRGs (Figures 6A,B).

This correlation result indicated that immune dysregulation in

HF may be affected by CRGs. Furthermore, we focused on the

relationship between three diagnostic markers of CRGs (DLAT,

DLST, and SLC31A1) and immune signatures. For immune

cells, DLAT was negatively correlated with TIL (r = −0.53),
Treg (r =−0.49), Neutrophils (r =−0.43), CD8+ T cells (r =−0.40),
pDCs (r = −0.38), as well as T helper cells (r =−0.33); DLST
was negatively correlated with Treg (r = −0.65), TIL (r = −0.47),
and Neutrophils (r = −0.39); SLC31A1 was positively

correlated with Treg (r = 0.53) and Macrophages (r = 0.31)

(Figures 6C–E). In terms of immune-related functions, DLAT

showed negative correlation with CCR (r = −0.63), Check-

point (r = −0.61), Parainflammation (r = −0.52), T cell co
frontiersin.org
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FIGURE 3

Landscape of CRGs in HF. (A) Circus plot showing chromosome distributions of 13 CRGs. (B) PPI network composed of the 13 CRGs. (C) The box plot
demonstrating the expression profiles of CRGs between HF patients and NFDs. ns = not significant, *p < 0.05, **p < 0.01, and ***p < 0.001 vs. the NFDs
group. (D) Principal component analysis of 9 differently expressed CRGs in HF patients from NFDs. (E) Correlation analysis among 9 differently
expressed CRGs in HF patients. ☒ stands for non-significant at p < 0.05. The scatter-plot demonstrated the most correlated two CRGs: DLST and
DLD. CRGs, cuprotosis-related genes; HF, heart failure; PPI, protein-protein interaction; NFDs, nonfailing donors.

Tu et al. 10.3389/fcvm.2024.1349363
stimulation (r = −0.46), APC co stimulation (r = −0.42), T cell

co-inhibition (r = −0.38), Inflammation-promoting (r = −0.33),
and HLA (r = −0.30); DLST showed negative correlation

with T cell co inhibition (r = −0.58), Check-point (r = −0.54),
Frontiers in Cardiovascular Medicine 07
CCR (r = −0.52), APC co inhibition (r = −0.45), and

Parainflammation (r = −0.37); SLC31A1 showed positive

correlation with T cell co inhibition (r = 0.47) and APC co

inhibition (r = 0.42) (Figures 6F–H).
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FIGURE 4

Screening diagnostic markers of CRGs by three feature selection algorithms. (A) Bayesian information criterion score by feature inclusion. (B) Plot of
model performance based on different feature subsets. (C) identification of diagnostic markers by LASSO regression algorithm. (D) Identification of
diagnostic markers by RIDGE regression algorithm. (E) Identification of diagnostic markers by EN regression algorithm. (F) RMSE of three
regularization technique models in the internal validation dataset. (G) The influence of the number of decision trees on the OOB error rate. The
x-axis represents the number of decision trees, and the y-axis indicates the OOB error rate. (H) Search for the optimal value (with respect to OOB
error estimate) of mtry for RF model. (I) Results of the Gini coefficient method in RF classifier. The features are ranked by the mean decrease in
classification accuracy when they are permuted. The more the Gini coefficient decreases on average, the more important the variable is. (J)
Results of the supervised integrated learning algorithm of XGBoost. (K) Venn diagram showing the intersected genes of four feature selection
algorithms. CRGs, cuprotosis-related genes; LASSO, least absolute shrinkage and selection operator; EN, elastic net; RMSE, root mean squared
error; OOB, out-of-bag; RF, random forest; XGBoost, eXtreme gradient boosting.
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Enrichment analysis revealing the potential
biological functions of diagnostic markers
of CRGs in HF

To reveal the underlying mechanism of three diagnostic

markers of CRGs (DLAT, SLC31A1, and DLST) involved in HF,

GO and KEGG enrichment analysis was conducted on these

CRGs-related genes. DLAT-related genes and DLST-related genes

were preferentially involved in biological process related to

energy metabolism, while SLC31A1-related genes were

significantly enriched in immune-related biological processes

(Figures 7A–C). Additionally, GSEA enrichment plot showed

that the pathways involved in three CRGs-related genes were

immune-related pathways (Figures 7D–F). Together these results

demonstrated an important role for these three diagnostic

markers of CRGs participating in the regulation of energy

metabolism and immune response in HF.
Discussion

Copper, one of the most abundant transition metals, is essential

for survival in the human body (34). It plays a crucial role in many

fundamental physiological processes in organisms, including

energy metabolism and cellular respiration, collagen and

neurotransmitter synthesis, maintenance of blood vessel integrity,

and functioning as a redox enzyme involved in the redox

regulation (35–37). Precise homeostatic control of copper is vital

to the body, and current studies suggest that both excessive

copper levels and copper deficiency may lead to pathological

conditions including inflammation, neurodegeneration, and

cancer (38–40). A recent study conducted by Todd Golub’s team

provides a novel perspective on the key role of copper in cellular

activities, which is termed as “cuprotosis” (13). Cuprotosis is

dependent on mitochondrial stress and is induced by direct

binding of copper to lipoylated components of the TCA cycle. As

a unique form of cell death, cuprotosis is expected to shed light

on various diseases, including HF. In our research, we

investigated the expression profiles of 13 CRGs in heart tissues of

HF patients and NFDs. By employing machine learning methods,

we successfully constructed a CRGs diagnostic signature that

exhibited powerful predictive capabilities in HF. Furthermore,

results from enrichment analyses and immune infiltration

showed that the three diagnostic markers of CRGs (DLAT,

SLC31A1, and DLST) were associated with energy metabolism

and immune activity. This suggests that cuprotosis may be

involved in the onset and development of HF through pathways

related to energy metabolism and immune regulation.

HF is a chronic disease associated with high mortality and poor

prognosis. The pathogenesis of HF is multifactorial and caused by

complex mechanisms. Previous studies have found that

microelements play a crucial role in the development and

progression of HF (41–43). Peculiarly, copper is strongly

implicated in the pathological process of cardiac hypertrophy.

Copper has the ability to scavenge reactive oxygen species (ROS)

and protect cardiomyocytes from ROS-induced damage by
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binding to zinc (44). Zheng et al. summarized the mechanism of

copper supplementation-induced regression of cardiac

hypertrophy. These mechanisms include the recovery of

cytochrome c oxidase activity and other critical cellular events,

the activation of the hypoxia-inducible factor 1 transcriptional

complex to inhibit myocardial remodeling through oxygen

metabolism pathways, the activation of vascular endothelial

growth factor receptor-1-dependent regression signaling pathway

in cardiomyocytes, and the inhibition of vascular endothelial

growth factor receptor-2 through post-translational regulation in

the hypertrophic cardiomyocytes (45). This finding indicated that

copper supplementation could be a feasible approach for clinical

intervention in HF.

In this study, we used integrated bioinformatics analysis and

four feature selection methods to identify cuprotosis-related

diagnostic biomarkers in HF. As an active and fruitful research

field in machine learning, feature selection algorithm can select

the most significant features from the feature space. This not

only reduces the classification errors but also shrink the feature

space (46). The innovative combination of feature selection

approaches highlighted the novelty of our research and improved

the predictive ability of our diagnostic model of CRGs in HF.

The first method we employed, best subset regression, produces a

series of models with an increasing number of predictors. It aims

to find out the best-fit model among all possible subsets (47).

The second method, regularised regression, is designed to

mitigate model overfitting by shrinking coefficient estimates

towards zero (48). Third, as an ensemble algorithm, RF has

proven to be highly accurate in disease diagnosis and risk

prediction (49). Lastly, XGBoost is an integrated machine-

learning algorithm based on a decision tree, which is suitable for

classification, regression, sorting, and other problems. Utilizing

these four feature selection methods, we identified three CRGs

(DLAT, DLST, and SLC31A1) as potential diagnostic markers in

HF. Internally and externally validated results demonstrated that

the model featuring three CRGs exhibited good discrimination

and calibration for predicting HF. DLAT encodes component E2

of the multi-enzyme pyruvate dehydrogenase complex (PDC),

responsible for the oxidative decarboxylation of pyruvate,

producing acetyl-CoA and CO2. The phytochemical hyperforin

can trigger thermogenesis in adipose tissue and increase energy

expenditure via a DLAT-AMPK signaling pathway, making it a

promising approach for obesity therapy (50). DLST is a key

component of the α-ketoglutarate dehydrogenase complex which

participates in the process of oxidative decarboxylation in TCA

cycle. Inhibition of microRNA-146a and overexpression of its

target DLST have been shown to alleviate pressure overload-

induced cardiac hypertrophy and dysfunction (51). SLC31A1 acts

as a high affinity copper uptake transporter, which is responsible

for facilitating the uptake of approximately 80% of copper into

cells (52). Angiogenesis is a complex process regulated by

multiple factors, among which VEGF plays a vital role in

crucial process (53). Oxidation of SLC31A1 at its cytosolic

Cys189 residue can enhance VEGFR2 internalization and

signaling, consequently promoting angiogenesis (54). These

results suggest that these cuprotosis-related biomarkers may be
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FIGURE 5

Construction and validation of the CRGs-based diagnostic model. (A) A forest plot of the predictive values of three diagnostic markers of CRGs in a
multivariate logistic regression analysis. (B) Nomogram for predicting probability of HF. (C,D) The discrimination capacity of the CRGs signature in the
merged dataset (C) and external validation dataset (D). (E,F) The calibration ability of the CRGs signature in the merged dataset (E) and external
validation dataset (F). (G) The expression profiles of three CRGs between HF patients and NFDs in the external validation dataset. (H) The
expression profiles of three CRGs in human heart tissues from HF patients and NFDs. (I) The expression profiles of three CRGs in human plasma
samples from HF patients and NFDs. ns = not significant, *p < 0.05, **p < 0.01, and ***p < 0.001 vs. the NFD group. CRGs, cuprotosis-related
genes; HF, heart failure; NFDs, nonfailing donors.
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FIGURE 6

Correlation between CRGs expression and immune characteristics in HF. (A) Heatmap of the correlations between 12 CRGs and 16 immune cells.
(B) Heatmap of the correlations between 12 CRGs and 13 immune-related functions. (C–E) Correction between DLAT (C), DLST (D), SLC31A1 (E) and
immune cells. (F–H) Correction between DLAT (F), DLST (G), SLC31A1 (H) and immune-related functions. CRGs, cuprotosis-related genes; HF, heart failure.
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FIGURE 7

Enrichment analysis of DLAT, DLST, and SLC31A1 in the external validation dataset. (A–C) GO function enrichment analysis of DLAT-related genes (A),
DLST-related genes (B), and SLC31A1-related genes (C) (D–F) KEGG pathway enrichment analysis of DLAT-related genes (D), DLST-related genes (E),
and SLC31A1-related genes (F) GO, gene ontology; KEGG, kyoto encyclopedia of genes and genomes.
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involved in the development of HF through regulating in aerobic

respiration of cardiomyocytes.

Immune-mediated mechanisms are believed to play a critical

role in the pathogenesis of HF. Multiple studies have

demonstrated the detrimental effects of immune cells in

myocardial remodeling, but also their potential role as essential

mediators of cardiac repair (55–57). In order to further explore

the role of immune infiltration in HF, we utilized ssGSEA to

evaluate the correlations between CRGs and immune

characteristics of HF. Our findings revealed meaningful

correlations between Treg cells and multiple CRGs. Specifically, it

showed that Treg cells had a negative correlation with DLAT and

DLST, as well as a positive correlation with SLC31A1. Treg cells

have the ability to suppress a variety of immune responses, thus

contributing to immune homeostasis (58). Through exerting

proinflammatory and antiangiogenic effects, Treg cells can

promote immune activation and pathological left ventricular

remodeling in the progression of chronic ischemic HF. Restoring

normal Treg cell function may therefore represent a promising

target for therapeutic immunomodulation in HF (59).

Additionally, T cell co-inhibition was significantly associated with

three cuprotosis-related biomarkers. T cell response is modulated

by inflammatory signals and contribute to the onset and

progression of cardiovascular disease. Previous study has

highlighted the importance of regulatory mechanisms of T cell

co-inhibition pathways for controlling the T cell response and

treating cardiovascular disease (60). In addition, KEGG pathway

analyses revealed notable enrichment of immune response-related

pathways in relation to the three cuprotosis-related biomarkers in

HF. The role of inflammation and immune dysfunction in HF is

widely recognized. Immune cells, particularly T cells, are

influenced by inflammatory signals and contribute to the

development and progression of HF. Based on our correlation

and enrichment findings, we speculate that the three cuprotosis-

related biomarkers may participate in the occurrence and

progress of HF through modulation of T cell-related pathways.

Yet our study has presented some deficiencies. Firstly, limited

by accessing human heart tissues, although as many qualified

GEO database of HF samples as possible were included in our

study, the sample size was still small. More HF datasets are

needed to validate our diagnostic model of CRGs and improve it.

Especially, human heart single-cell sequencing datasets are

needed to verify the expression of CRGs in different populations

of cells in the heart. Secondly, the lack of detailed clinical

information in the GEO datasets prevents the analysis of the

correlation between cuprotosis-related biomarkers and the

clinical characteristics of HF patients. Thirdly, the subject of our

study is human heart rather than serum sample. It is necessary

to explore whether these indicators of cuprotosis in serum can be

used as diagnostic biomarkers for HF. Fourthly, there are many

causes of HF, including hypertension, ischemic cardiomyopathy,

dilated cardiomyopathy, valvular and congenital heart disease,

arrhythmias and degenerative cardiomyopathies. Considering the

heterogenous aetiology of HF, further molecular biology

experiments are required to investigate the function and

regulation mechanism of cuprotosis biomarkers in different
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aetiologies of HF. Additionally, it is important to note

that the conclusions drawn from our paper are primarily

based on bioinformatics analysis. Consequently, further

experiments are necessary to gain a deeper understanding of

the mechanisms underlying cuprotosis and the role of CRGs in

the progression of HF.
Conclusions

In conclusion, this study is the first comprehensive exploration

into the role of cuprotosis regulators in HF. Using the combination

of four machine learning algorithms, we developed a diagnostic

model incorporating three CRGs, which exhibited excellent

diagnostic performance in HF. Besides, the results of immune

infiltration and enrichment analysis further revealed that

cuprotosis and CRGs is associated with multiple immune

signatures and pathways. Therefore, it may be used to develop a

novel strategy for the immunotherapy of HF.
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