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Introduction: Anthracyclines are effective in treating acute myeloid leukemia
(AML) but limited by cardiotoxicity. CPX-351, a liposomal daunorubicin and
cytarabine, may provide therapeutic benefit with less cardiotoxicity. Acute
changes in left ventricular systolic function and cardiac biomarkers were
evaluated after a cycle of CPX-351 in children with relapsed AML treated on
the phase 1/2 Children’s Oncology Group study, AAML1421.
Methods: Subjects received 135 units/m2/dose of CPX-351 on days 1, 3, and 5 as
cycle 1. Echocardiograms were performed and centrally quantitated at baseline and
at the end of cycle 1 (day 29 +/− 1 week). High sensitivity troponin (hs-cTnT) and
N-terminal pro-B-type natriuretic peptide (NT-proBNP) were measured at baseline
and serially through the end of cycle 1 (days 5, 8, 15, 22 and 29). Differences
between baseline and post-CPX-351 echo/biomarker measures were analyzed
using Wilcoxon signed rank tests. Linear regression was used to model post-
CPX-351 left ventricular ejection fraction (LVEF) with cTnT/NT-proBNP at each
time point, controlling for baseline LVEF. Cancer therapy related cardiac
dysfunction (CTRCD) was defined as a decline in LVEF of ≥10%–<50%.
Results: Twenty-five of 38 heavily anthracycline pre-treated (median 348 mg/m2

daunorubicin equivalents) subjects enrolled on AAML1421 were included in the
cardiac analyses. At baseline, centrally quantitated LVEF was <50% in 8 of 25
subjects (32%) with a median LVEF of 53.8% [48.0, 56.9]. Following CPX-351,
LVEF declined significantly (ΔLVEF −3.3% [−7.8, 0]) and 6 of 25 subjects (24%)
experienced CTRCD. Amongst all subjects, hs-cTnT was modestly increased at
end of cycle 1 compared to baseline [baseline hs-cTnT 7.2 (3, 10.6); ΔcTnT
1.80 (0, 6.1), p= 0.03]. NT-proBNP remained stably elevated without
significant change. No significant associations were seen between NT-proBNP
or cTnT levels and post-CPX-351 LVEF.
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Discussion: In this single arm study of anthracycline pre-treated children exposed
to CPX-351, baseline abnormalities in cardiovascular function were prevalent.
Following CPX-351, LVEF decreased, cTnT increased, and NT-proBNP did not
change. Longer follow-up is needed to determine whether these changes result
in clinically meaningful long-term decrements in cardiac function. An ongoing
randomized trial of CPX-351 compared to standard anthracyclines in
anthracycline naïve patients will provide further insight into the cardiac effects
of CPX-351 (ClinicalTrials.gov; NCT04293562).

KEYWORDS

CPX-351, pediatric acute myeloid leukemia (AML), relapse, cardiotoxicity, liposomal

anthracycline, cardiac biomarkers, AAML1421
GRAPHICAL ABSTRACT

Baseline and post-CPX-351 abnormalities in cardiac function & biomarkers in children with relapsed pediatric AML.
1 Introduction

Clinical outcomes of pediatric AML have improved over

time with intensification of therapy, but significant risk for

leukemia relapse and therapy-related morbidity and mortality

remain. High-dose anthracyclines are an integral component

of de novo AML therapy and contribute to a substantial burden

of cardiotoxicity in this patient population. Early cardiotoxicity

manifesting as left ventricular systolic dysfunction is common,

occurring in 12% of patients at the end of therapy and nearly

20% within 3.5 years after completion of therapy (1). Late

cardiomyopathy is also a well-recognized complication of high

dose anthracycline therapy, occurring in up to 27% of

childhood AML survivors who are 15 years from their initial

diagnosis (2). Anthracyclines are an effective component of

relapse therapy; however their use is limited by the high risk for

deterioration in cardiac function, particularly in a heavily

pretreated population with high prior cumulative anthracycline

exposure. Therefore, effective, less cardiotoxic salvage therapies

for relapsed AML, a population at increased risk for

cardiomyopathy and heart failure, are critical.
02
Liposomal encapsulation of anthracyclines is one strategy

employed to reduce cardiotoxicity while also enhancing anti-

leukemic efficacy through prolonged drug half-life and exposure.

Liposomal delivery systems reduce drug distribution through the

tight capillary junctions of the heart and into the cardiac tissue,

thereby limiting drug-induced cardiac injury (3). Adult studies of

liposomal daunorubicin or doxorubicin have demonstrated a

reduction in clinical and subclinical cardiac dysfunction compared

to standard anthracycline formulations (4). CPX-351 is a

liposomal formulation of daunorubicin and cytarabine maintained

at a 1:5 molar ratio that demonstrates prolonged exposures

compared with free drug. This agent has demonstrated safety and

superior efficacy in adult patients with newly diagnosed secondary

AML. While early studies in adults indicate reduced cardiotoxicity

of CPX-351 compared to standard daunorubicin (5, 6), there are

limited pediatric data regarding the cardiotoxic profile of CPX-351.

AAML1421 was a Children’s Oncology Group (COG) phase I/II

study of CPX-351 that sought to determine the phase 2 dose and the

response rate of CPX-351 in children with relapsed AML. The efficacy

and safety of this regimen has been previously reported (7). We now

describe the baseline cardiac status and early changes in centrally
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quantitated imaging and biomarker-based measures of cardiovascular

function, injury and stress after a single cycle of CPX-351 in children

with relapsed AML, a secondary aim of the AAML1421.
2 Methods

2.1 Clinical trial design

AAML1421 (ClinicalTrials.gov; NCT04293562) enrolled children

between 1 and ≤21 years with relapsed or refractory AML in a

dose-finding phase (n = 6) followed by children in first relapse in

the efficacy phase (n = 32). Eligibility was restricted to subjects with

previous receipt of <450 mg/m2 prior daunorubicin equivalents,

calculated using the historic conversion multiplier of 3 daunorubicin

equivalents for mitoxantrone. Additionally, subjects must have

demonstrated adequate cardiac function based on local assessment,

defined as left ventricular (LV) fractional shortening (LVFS) > 27%

and LV ejection fraction (LVEF) > 50%, and corrected QT (QTcB)

interval <500 milliseconds. Children with CNS3 AML involvement

were not eligible due to limited penetration of CPX-351 through the

blood brain barrier. Additionally children with acute promyelocytic

leukemia, bone marrow failure syndromes, Down syndrome, or

Wilson disease were also ineligible.

All subjects received CPX-351 in cycle 1 at a dose of 135 units/

m2/dose over 90 min on days 1, 3, and 5 during both the dose

finding and efficacy phases. Each unit of CPX-351 contains 0.44 mg

of daunorubicin, thus the cumulative daunorubicin dose delivered

during cycle 1 was 178.2 mg/m2. Subjects were recommended to

receive cycle 2 consisting of fludarabine, cytarabine, G-CSF (FLAG).

Subjects then went off protocol therapy to undergo hematopoietic

stem cell transplant (HSCT) or other disease directed therapy at the

discretion of the treating physician (Graphical Abstract). A primary

objective of the trial was to estimate the response rate after 2 cycles

of protocol therapy. Institutional review board approval was

obtained at each participating site. All subjects or their guardians

were required to provide informed consent prior to participation.

Optional consent was provided for participation in the cardiac

correlative studies. CPX-351 was supplied by Jazz Pharmaceuticals.
2.2 Cardiac studies

Transthoracic echocardiograms were required in all

participants at baseline and at end of cycle 1, the CPX-351

containing cycle, approximately 4 weeks from the start of CPX-

351. Optional embedded cardiac studies included submission of

DICOM echocardiogram studies for central quantitation at

baseline and at the end of cycle 1 along with serial plasma

collection for cardiac biomarker analysis.
2.3 Echocardiogram quantitation

Quantitation of echocardiograms was performed by a single

blinded observer at the University of Pennsylvania Center for
Frontiers in Cardiovascular Medicine 03
Quantitative Echocardiography (Philadelphia, PA) using the

TomTec Imaging Systems platform. Left ventricular end-

diastolic and end-systolic volumes were calculated using the

Simpson’s method of discs in the 4-chamber and 2-chamber

apical views and were utilized to derive LVEF. Cancer therapy–

related cardiac dysfunction (CTRCD) was defined as a ≥10%
absolute decline in LVEF and to a value <50% (8). In addition,

longitudinal and circumferential strain were analyzed using

images obtained in the apical four-chamber and two-chamber

views, and parasternal short-axis view (SAX) at the mid-

papillary level. The LV endocardial border was manually traced

at the end-systolic frame of one cardiac cycle. Peak systolic

longitudinal strain was automatically quantified across the

apical (inferior, septal, anterior, and lateral), mid (inferior,

inferoseptal, anterior, and anterolateral) and basal (inferior,

inferoseptal, anterior, and anterolateral) LV segments of the

apical four-chamber and two-chamber views. Peak

circumferential and radial strain were quantified across the mid

(inferior, inferoseptal, inferolateral, anterior, anteroseptal, and

anterolateral) LV segments of the parasternal SAX view.

Reproducibility analyses for the University of Pennsylvania Core

Lab have demonstrated intra-observer coefficients of variation

were 4.9%, 10.9%, and 9.4% for LVEF, longitudinal strain, and

circumferential strain (CS), respectively (8).
2.4 Cardiac biomarker analysis

Peripheral blood was collected in a labeled serum separator

tube at baseline and on days 5 (6 h after the final dose of CPX-

351), 8, 15, 22, and 29 of cycle 1 for analysis of cardiac

biomarkers. High sensitivity troponin (hs-cTnT) was measured

using the fifth-generation Elecsys Troponin T Gen 5 STAT assay

on the Cobas platform (Roche Diagnostics). Abnormal hs-cTnT

was defined by published age and sex based 97.5th percentile

threshold for children below 18 years and for those 18 and older,

using the standard sex-specific adult 99th percentile threshold for

the hs-cTnT assay (>14 ng/L for females and >22 ng/L for males)

(9). NT-proBNP was measured using the Elecsys ProBNP II

STAT Immunoassay on the Cobas platform. Abnormal NT-

proBNP was defined using the published 97th percentile for age

and sex for those younger than 18 years and the established

adult threshold of >125 pg/ml for those 18 years and older (9, 10).
2.5 Statistics

Data were frozen for these analyses as of 31 March 2020. All

subjects had completed protocol treatment by the analysis cutoff

date. The cardiac analyses were restricted to participants with an

analyzable LVEF at baseline and end of CPX-351 cycle. Clinical

characteristics, including age and weight classification at study

entry, prior anthracycline exposure, duration of prior remission,

prior HSCT status, and grade 3 or higher infection status during

CPX-351 cycle, were summarized using proportions for

categorical variables, or medians (ranges) when presented as
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continuous measurements. Weight categories were defined based

on CDC pediatric growth chart data for subjects 1–19 years old

or body mass index percentile for subjects 20 years old or higher

(underweight, <5th percentile; healthy weight, 5th to <85th

percentile; overweight, 85th to <95th percentile; obese, >95th

percentile). NT-proBNP measurements were log base 2

transformed due to high dispersion. Troponin measurements

below the lower limit of detection (<6 ng/L) were assigned a

value of 3 (midpoint between lower limit of detection and zero)

to allow their inclusion in the analyses. Differences in

cardiovascular measures between baseline and post-CPX-351

were analyzed using Wilcoxon signed rank tests. The significance

of observed differences in proportions was tested using Fisher’s

exact test. Linear regression was used to model the association

between post-CPX-351 LVEF with cTnT/NT-proBNP at each

post-CPX-351 timepoint separately, adjusting for baseline LVEF

and the baseline biomarker being analyzed. These analyses were

exploratory and not adjusted for multiple comparisons.
3 Results

Thirty-eight subjects enrolled and received cycle 1 of CPX-351.

All subjects were in first relapse. Of these, 25 (66%) subjects

consented to participate in the cardiac sub-study and provided
TABLE 1 Characteristics of subjects included in and excluded from the cardi

Subjects included

N or median
Total 25

Age at study entry in years 12.5

Gender
Male 14

Female 11

Race
Black or African American 1

White 19

Other or unknown 5

Ethnicity
Hispanic 5

Not hispanic or unknown 20

Duration of first remission
<180 days 4

180–365 days 13

>365 days 8

Prior hematopoietic stem cell transplant 7

Weight category
Underweight 1

Healthy weight 15

Overweight 3

Obese 6

Cumulative anthracycline exposure at enrollment
(mg/m2 in daunorubicin equivalents)

348

Site reported ejection fraction at study entry
Measurement available 22

Median (range) 62%

Grade 3+ infection during cycle 1 13
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echocardiographic images with analyzable LVEF at baseline and

end of cycle 1. Of the 13 subjects excluded from the cardiac

analysis, six failed to provide consent or the site did not submit

DICOM echocardiographic images for central analysis. An

additional 7 subjects were excluded from cardiac correlatives due

to unanalyzable LVEF at baseline or end of cycle 1

(Supplementary Figure S1). Subjects included in the cardiac sub-

study were slightly younger and more frequently male and of

White race than those who were excluded. Included subjects

more commonly experienced grade 3+ sepsis during cycle

1. Otherwise, the two populations were similar (Table 1). Of the

25 subjects included in the cardiac analyses, 11 (44%) were

female, 7 (28%) had undergone a prior HSCT and 17 (68%)

were within one year of first remission. The median prior

anthracycline exposure was 348 mg/m2 of daunorubicin

equivalents (range 105–444).
3.1 Changes in cardiac function, as defined
by echocardiography

Despite the inclusion criteria for this study requiring a locally

measured baseline LVEF of at least 50%, centrally quantitated

LVEF was less than 50% at study entry in 8 of 25 subjects (32%),

with abnormal LVEF ranging from 38.9% to 49.6%. On average,
ac correlative studies on AAML1421.

in cardiac analyses Subjects excluded from cardiac analyses

% or range N or median % or range
13

(1.81–21.5) 8.1 (1.93–21.2)

56% 4 31%

44% 9 69%

5% 3 30%

95% 7 70%

20% 3 23%

20% 2 15%

80% 11 85%

16% 1 8%

52% 6 46%

32% 6 46%

28% 3 23%

4% 0 0%

60% 7 54%

12% 3 23%

24% 3 23%

(105–444) 311 (150–444)

88% 13 100%

(55%–71%) 63% (54%–76%)

52% 4 31%
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FIGURE 1

Baseline and post-CPX-351 cycle LVEF measurements. Individual
patient LVEF measurements plotted with overlying median and
interquartile range for each time point. LVEF declined significantly
from baseline at the end of the CPX-351 cycle [ΔLVEF, −3.3% (IQR:
−7.8, 0%), p < 0.0001].

Leger et al. 10.3389/fcvm.2024.1347547
across the study population, centrally analyzed LVEF declined from

baseline at the end of the CPX-351 cycle {median baseline LVEF,

53.8% [interquartile range (IQR) 48.0, 56.9]; end of CPX-351 cycle,

47.5% [IQR: 43.7, 50.8%], ΔLVEF, −3.3% [IQR: −7.8, 0%],

p < 0.0001; Figure 1}. Cancer therapy–related cardiac dysfunction

(CTRCD), defined as >10% decline to EF < 50%, occurred in 6 of

25 (24%) after CPX-351 (amongst this subset, median baseline

LVEF 57.4% and post-CPX-351 LVEF 43%). Subjects with CTRCD

were primarily female [5 of 6 (83%) with CTRCD vs. 6 of 19

(32%) without CTCRD, p = 0.056] and frequently experienced
FIGURE 2

Cardiac biomarker levels following CPX-351 including high sensitivity cardiac
proBNP). Individual patient biomarker measurements plotted with overlying
time post-CPX-351 and was modestly increased at cycle day 29 compared to
1.80 (IQR: 0, 6.1), p = 0.03]. NT-proBNP did not change significantly follow

Frontiers in Cardiovascular Medicine 05
grade 3+ infection during cycle 1 [5 of 6 (83%) with CTCRD vs. 8

of 19 (42%) without CTCRD, p = 0.16]. There were no reports of

symptomatic left ventricular systolic dysfunction (LVSD) according

to CTCAE in subjects treated on AAML1421.

Additionally, significant declines were seen in CS following

CPX-351 [baseline, −25.1% (IQR: −30.1, −21.9%); end of CPX-

351 cycle −22.8% (IQR: −25.8, −18.9%); ΔCS 2.8% (IQR: 0.5,

5.3%), p = 0.03]. There was a numerical worsening LVFS [ΔLVFS

−1.1% (IQR: −5.9, 1.9), p = 0.29] and global longitudinal strain

[ΔGLS 0.9% (IQR: −1.8, 3%), p = 0.30] following CPX-351,

although these changes were not statistically significant.
3.2 Changes in cardiac biomarkers of injury
and stress

Baseline elevations in cardiac biomarkers were common prior to

initiation of CPX-351 with abnormal hs-cTnT and NT-proBNP in

12 (48%) and 14 (56%) of 25 subjects, respectively. Hs-cTnT

increased over time post-CPX-351 and was modestly increased at

cycle 1 day 29 compared to baseline [Baseline 7.2 (IQR: 3.0, 10.6);

Day 29, 9.6 (IQR: 6.1, 19.7); ΔcTnT 1.80 (IQR: 0, 6.1), p = 0.03,

Figure 2A]. NT-proBNP remained elevated without significant

change following CPX-351 (Figure 2B). No statistically significant

associations were observed between baseline or post-CPX-351

biomarkers and end of CPX-351 cycle LVEF.
4 Discussion

In effort to address the critical need for more effective AML

salvage regimens with lower cardiotoxicity risk, the Children’s
troponin (hs-cTnT) and N-terminal pro-B-type natriuretic peptide (NT-
median and interquartile range for each time point. cTnT increased over
baseline [Baseline 7.2 (IQR: 3.0, 10.6); Day 29, 9.6 (IQR: 6.1, 19.7); ΔcTnT
ing CPX-351.
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Oncology Group carried out this phase I/II study of CPX-351 and

demonstrated one of the highest response rates reported to date in

children and adolescents with relapsed AML with a CR + CRp rate

of 68.3% (90% CI: 52.9%–78.0%) (7). Central echo quantitation in

this heavily anthracycline pre-treated population demonstrated a

high prevalence of subclinical cardiac dysfunction at study entry

with LVEF of less than 50% in 8 of 25 pts (32%) despite trial

inclusion criteria requiring adequate cardiac function based on

LVEF measured by the treating institution. Similarly, nearly half

of these subjects demonstrated elevations in hs-cTnT and/or NT-

proBNP at trial enrollment. Receipt of CPX-351 containing

reinduction resulted in significant short-term declines in LVEF

and increases in hs-cTnT. Six of 25 (24%) analyzable subjects

experienced cancer therapy related cardiac dysfunction (CTCRD)

at the end of reinduction cycle 1 (defined as LVEF decline of

≥10%–<50%). While the limited sample size precluded

identification of clinical predictors of cardiotoxicity, female sex

and occurrence of grade 3+ infection during cycle 1 were more

frequently observed in subjects with CTCRD compared to those

without. These findings are consistent with other studies of

childhood cancer survivors demonstrating a greater cardiotoxicity

risk in female survivors of childhood cancer (11, 12), as well as

higher risk for LVSD in subjects experiencing high grade

infections following chemotherapy (13). Higher cardiotoxicity

risk in females is not fully understood, however may relate in

part to differences in body composition between females and

males. Higher body fat content, more commonly seen in females,

has been associated with reduced anthracycline clearance which

may contribute to greater drug exposure and toxicity (14, 15). In

our cohort, overweight or obese status was more common in

female pediatric participants [5 of 11 (45.5%)] compared make

participants [4 of 14 (28.6%), p = 0.434]. Both duration of

anthracycline exposure (i.e., area under the curve) and peak

anthracycline concentrations have been shown to influence

cardiotoxicity, though their relevance to liposomal encapsulated

anthracyclines with reduced cardiac tissue penetration is not fully

understood (16, 17).

While the high prevalence of abnormal LVEF and cardiac

biomarkers at study entry was surprising, particularly given the

requirement for normal cardiac function for study enrollment,

68% of the study population enrolled within 1 year of first

remission. Thus, these findings are likely to reflect residual cardiac

effects from recent anthracycline, potentially exacerbated by acute

stressors associated with active relapse (i.e., hyperleukocytosis,

sepsis, etc.). Existing data from the two most recent COG studies

in de novo AML demonstrate significant cardiac dysfunction in

approximately 10% of children during the first year of follow-up

after frontline therapy (1, 13). AML relapse and the receipt of

salvage therapy results in even higher rates of cardiotoxicity with

early (during or within one year of salvage therapy) and late

cardiotoxicity (beyond the first year post-treatment) seen in up to

20% and 37% of survivors with relapsed AML, respectively (18).

Unfortunately, data comparing the cardiotoxicity across salvage

regimens for pediatric AML are not available. While cardiotoxicity

risk must be carefully considered when pursuing relapse therapy,

anti-leukemic efficacy and survival is essential. Pediatric studies
Frontiers in Cardiovascular Medicine 06
have demonstrated superior early treatment response with use of

anthracycline based AML salvage regimens compared to similarly

intensive non-anthracycline based regimens (19). Thus,

anthracyclines are commonly utilized during first salvage for

children with relapsed AML.

Liposomal encapsulation of anthracyclines has shown to be an

effective strategy to maintain the efficacy of anthracycline based

regimens with less cardiotoxicity (20, 21). Early findings in adults

with newly diagnosed high-risk or secondary AML indicate lower

rates of cardiotoxicity with CPX-351 compared to standard

anthracyclines (5, 6). Post hoc central quantitation of serial

echocardiograms in 102 of 300 adult participants on this

randomized trial of CPX-351 demonstrated lower rates of

clinically significant reduction in LVEF (8.8% vs. 20%) or GLS

(21% vs. 44%) with CPX-351 vs. daunorubicin/cytarabine at a

median follow up of approximately 6 months (5). AAML1421 is

the first study to describe the cardiotoxic effects of CPX-351 in

children. While evidence of cardiotoxicity was common, this

small, single arm study cannot inform to what degree the

troponin elevations and LVEF reduction were directly related to

CPX-351 vs. pre-existing cardiac dysfunction and/or high-grade

infections/sepsis. Sepsis, which can result in acute cardiac

decompensation even in the absence of anthracyclines, is known

to increase cardiotoxicity risk in de novo pediatric AML cohorts

(13, 22). Absent a comparator population, it is not clear how the

post-CPX-351 trends in cardiac function and biomarkers

observed in this study compare to non-liposomal anthracycline

or non-anthracycline salvage regimens for pediatric AML. To

understand the cardiac effects of CPX-351 compared to standard

anthracyclines in children with AML, the most rigorous design is

to study this in a randomized fashion in anthracycline naïve

children. To this end, the COG is currently conducting a

randomized study of CPX-351 vs. standard daunorubicin-

containing induction given with dexrazoxane, which has emerged

as an effective cardioprotective strategy in pediatric AML (1)

(ClinicalTrials.gov; NCT04293562). Notably, dexrazoxane dosing

strategies have not been studied with liposomal formulations of

anthracycline given its short half-life compared to the prolonged

drug exposure of liposomal encapsulated anthracycline, and thus,

will not be given with CPX-351 (3). Prospective evaluation and

comparison of cardioprotective strategies via detailed core lab

quantitated echocardiography and cardiac biomarkers is an

integral aim of this trial. In addition, pharmacokinetic (PK)

profiling of CPX-351 is being performed and will enhance our

understanding of the role of anthracycline PK parameters (i.e.,

AUC and peak concentration) in cardiotoxicity risk.

Discordance between core lab and clinical site quantitation of

LV function at study entry is well-recognized in the field of

cardiology (23). In our study, core lab quantitated LVEF was

consistently lower than site quantitated LVEF with a median

difference of 11% [IQR: 6.7–13.4%]. Discordance was similar

between baseline and end of cycle 1 time points. Interestingly,

only one patient met criteria for CTRCD based on site

quantitated LVEF (as expected, this patient also met criteria for

CTRCD based on core lab quantitation). Abundant literature

exists supporting the superiority of core lab interpretations for
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reducing variability and enhancing the precision of

echocardiographic measurements, thereby allowing for more

sensitive detection of therapy-induced change over time (23–27).

Further, these data indicate that real time core lab quantitation

of baseline LVEF may be a necessary component of trial

eligibility to ensure adequate cardiac function when studying

potentially cardiotoxic agents in very high risk anthracycline-pre-

treated children.

Notably, the early timing of post-CPX-351 cardiac assessments

and the lack of availability of late echocardiographic images for

analysis limit our ability to understand whether these short-term

indicators of cardiotoxicity predict late cardiovascular morbidity.

While many patients will experience LVEF recovery, particularly

with institution of cardiac supportive care, LVSD during AML

therapy have been associated with increased risk for persistent or

recurrent LVSD in follow-up (13, 28). Hence, late cardiomyopathy

remains a significant concern in this high risk population.
5 Conclusion & future directions

Children with relapsed AML have high rates of subclinical

cardiac dysfunction prior to initiating salvage therapy. The

administration of CPX-351 resulted in short term declines in LV

function and elevations in hs-cTnT indicative of cardiotoxic

effects. However, absent a comparator population, it is not known

how these toxicities compare with alternative salvage regimens for

pediatric AML. To better understand the cardioprotective effect of

CPX-351, COG is currently conducting a phase 3 randomized trial

of CPX-351 in children and adolescents with de novo AML. This

trial aims to elucidate the optimal cardioprotective strategies in the

upfront setting such that in the unfortunate event of relapse,

children are better able to tolerate salvage therapy while

maintaining long-term cardiovascular health.
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