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Artificial intelligence (AI) has made significant progress in the medical field in the
last decade. The AI-powered analysis methods of medical images and clinical
records can now match the abilities of clinical physicians. Due to the
challenges posed by the unique group of fetuses and the dynamic organ of
the heart, research into the application of AI in the prenatal diagnosis of
congenital heart disease (CHD) is particularly active. In this review, we discuss
the clinical questions and research methods involved in using AI to address
prenatal diagnosis of CHD, including imaging, genetic diagnosis, and risk
prediction. Representative examples are provided for each method discussed.
Finally, we discuss the current limitations of AI in prenatal diagnosis of
CHD, namely Volatility, Insufficiency and Independence (VII), and propose
possible solutions.
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1 Introduction

Congenital heart disease (CHD) is a common and serious congenital anomaly

worldwide, representing the primary contributor to infant mortality associated with

birth defects (1–3). Globally, the prevalence of CHD at birth currently is 9.4‰ (2),

translating to approximately one new case every three minutes. Therefore, achieving a

timely and precise prenatal diagnosis of CHD is imperative, laying the foundation for

informed perinatal decision-making and significantly impacting rates of morbidity and

mortality (4, 5). Furthermore, prenatal genetic diagnosis of CHD holds profound

implications for clinical management, prognosis, genetic counseling, and preventive

measures for subsequent pregnancies.

Despite the considerable advances in prenatal diagnostics and management strategies

for CHD, it remains the leading cause of neonatal mortality (6, 7). The existing gap in

prenatal diagnosis can be attributed to two primary factors. Firstly, the accuracy of

prenatal ultrasound diagnostics varies considerably, owing to challenges in obtaining

standardized fetal cardiac ultrasound images and interpreting results effectively (8–10).
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Secondly, the multidimensional nature of prenatal data poses

challenges in achieving a comprehensive diagnosis (11, 12).

Obtaining standard views for the prenatal diagnosis of CHD is

a complex and uncertain task. This is due to the small size, the fast

beating of the fetal heart, the fetus rotating in utero, and the

maturity of its structure with gestational age (13). To achieve

accurate diagnostic views, the operator must thoroughly

understand cardiac anatomy. Additionally, they need a strong

spatial imagination and must adjust spatial relationships based

on fetal position and gestational age. Therefore, this task poses a

challenge for most prenatal screening physicians.

Moreover, diagnosing CHD involves processing highly

complex multidimensional information, including organ

structure, gene ontology, maternal disease, and clinical pathways.

These pieces of information are related to each other, affect each

other, and jointly impact prognosis. The weight of each

information on prognosis is also different. Furthermore, there are

more than 200 sub-types of CHD with significant differences in

outcomes and more than 400 known causative genes for CHD

(14). At the same time, many potential causative genes and

many kinds of maternal diseases are related to fetal cardiac

defects, such as autoimmune diseases, gestational diabetes, and

infectious diseases. Changes in any variable can lead to changes

in clinical decision-making. For example, if a fetus presents with

a straightforward ventricular septal defect (VSD), and without

additional anomalies, the prognosis tends to be favorable.

Contrastingly, when a VSD coincides with chromosomal

abnormalities, like the deletion of chromosome 5’s short arm

leading to “cat’s cry syndrome,” the prognosis becomes grim. In

fact, only a minority of these children survive into adulthood,

often exhibiting evident intellectual disabilities (15).

The application of AI in aiding medical diagnosis is growing as

it offers fast processing, improved accessibility, and enhanced work

efficiency. This has led to a greater demand for AI in clinical

settings. Recent advancements in AI techniques have led to

numerous studies on CHD, aimed at optimizing the scanning

process, improving image quality, and enhancing screening and

diagnostic capabilities (16–18). There are many data sources and

clinical decision-making processes in these applications.

Moreover, numerous AI-based methods have been proposed for

analysis specific to different data types. Although several review

articles have been written on the application of AI in CHD, these

articles focused on either the whole field of cardiology (19–22) or

on other single-imaging modalities such as ultrasound images

(23, 24). Also some specific tasks like image segmentation have

been summarized (25), there is a lack of overall review analysis

of AI for CHD. This article addresses the absence of a

comprehensive review analysis of AI for CHD by reviewing

existing AI-powered applications. It aims to assist beginners and

non-specialists in gaining a better understanding of this relatively

new technique while also promoting further investigations and

applications in the field.

In this review, we introduce the data sources and clinical

decision-making processes in CHD that can be addressed with

AI methods and discuss the different applications of AI for

CHD. We start by presenting AI concepts and illustrating the
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prenatal diagnosis of CHD in imaging that AI algorithms can

currently perform. Then, we present how CHD genetic prenatal

diagnosis knowledge can be introduced into AI applications

through analytical modeling. Next, we demonstrate the AI

applications of underlying factors associated with the

development of CHD. Finally, we discuss the remaining

challenges to the widespread use of AI in CHD.
2 AI concepts

For over two decades, AI has been integral to advancements in

the medical field, playing a significant role in developing

computer-aided diagnosis, treatment, and decision-making that

assist clinical physicians (26). Machine learning is a branch of

artificial intelligence that gradually improves statistical methods

with increased data to obtain the best model and predict

unknown conditions. The basis of machine learning lies in big

data, and its abundant resources come from a vast database

accumulated in routine clinical practice. Machine learning

algorithms require training data to acquire knowledge of the

parameters involved in a particular task. Additionally, validation

data is often used to optimize these parameters. The accuracy of

the task is then assessed using test data that was not previously

seen during the learning process. Three types of machine

learning methods exist: supervised, unsupervised, and semi/

weakly-supervised learning (27). Labeled training data establish

the relationship between input and output in supervised

learning. For example, the input often consists of images or

videos, clinical information (such as maternal factors including

age, occupation, medication exposure and mental stress), and

gene data. Human annotations can determine the ground truth

for supervision, CHD fetal autopsy or postnatal validation,

and clinical CHD phenotype. In unsupervised learning, the

algorithm clusters unlabeled data to find inherent similarities,

and only input data is used without additional annotations.

Therefore, a larger amount of data is typically required. Semi/

weakly learning aims to achieve the same results as supervised

learning while using the minimum amount of labeled data

possible. Human annotation is usually a challenging and time-

consuming task that can also be influenced by observer

dependence. Hence, minimizing the need for annotation can

reduce annotation costs and improve the model’s potential

for generalization.

Since 2015, AI-powered prenatal diagnosis of CHD has

witnessed substantial growth, with a focus on improving data

acquisition and assisting tools to enhance screening and

diagnostic capabilities. Unlike static organs and adult hearts,

prenatal diagnosis of CHD presents specific challenges such as

data collection through the maternal uterus, rapid pulsation,

small size, and organ maturation during gestational age. The

application of AI technologies provides clinicians with

convenient tools. For instance, semantic segmentation aids in

identifying cardiac structural anomalies, facilitating easier

diagnosis for medical professionals. Image classification helps

doctors quickly locate the desired fetal cardiac views, while
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FIGURE 1

Pipeline of supervised, semi/weakly-supervised and unsupervised learning applications in congenital heart disease.

Liu et al. 10.3389/fcvm.2024.1345761
key-point detection assists in obtaining more accurate structural

measurement data.

The primary tasks involved in AI-based prenatal CHD

diagnosis encompass CHD imaging diagnosis, CHD-related

genetic diagnosis, and analysis of prenatal risk factors associated

with CHD (Figure 1). In the following, we will review the major

progress made in these areas.
3 AI-based prenatal diagnosis of CHD
in imaging

AI methods necessitate four research tasks for prenatal diagnosis

of CHD in imaging: acquisition and reconstruction, quality control,

assisted analysis tools, and screening and diagnosis. Figure 2

illustrates the interrelationship among these tasks.
3.1 Acquisition and reconstruction

AI in fetal heart image acquisitionand reconstruction tasks aims to

improve the quality of collected images and decrease the time required

to obtain different medical images. For example, Yoo et al. (28)

introduced unsupervised networks to reconstruct the continuous

variation in dynamic MRI sequences with high spatial resolution.

Roy et al. (29) combined compressed sensing and a metric-

optimized gating network to accelerate imaging of the fetal heart.

Uus et al. (30) proposed a deformable reconstruction method for
Frontiers in Cardiovascular Medicine 03
nonrigid motion correction on fetal MRI that can be used for high-

resolution reconstruction of the fetal heart. Furthermore, van

Amerom et al. (31) proposed a fetal MRI acquisition and

reconstruction strategy to improve the quality of reconstructed

images and increase the visibility of the small and dynamic

anatomical structure of the fetal heart. Due to limitations on

radiation exposure during pregnancy, invasive examinations such as

CT scans cannot be performed. To achieve three-dimensional

imaging of the fetal heart, Yang et al. (32) proposed a workflow that

combines post-mortem fetal heart and cardiovascular casting with

CT scanning and fetal echocardiography. The process includes

obtaining standard views for alignment and then performing a

three-dimensional reconstruction.
3.2 Quality control

Quality control of fetal cardiac images is crucial for an accurate

diagnosis of CHD in the clinic. However, manual quality

assessment relies on operator experience and is prone to various

limitations, such as labor intensiveness, inconsistencies between

observers, and non-standard plane acquisition. Hence, automatic

quality assessment plays a vital role in CHD diagnosis. Currently,

quality control for fetal echocardiography mostly focuses on

selecting standard planes, including defining the integrity of

structures and image clarity. For example, Chen et al. (33)

initiated the AI analysis of prenatal ultrasound images that

employed domain-transferred deep convolutional neural
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FIGURE 2

AI-supported algorithms and clinical tasks of prenatal diagnosis of CHD in imaging.
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networks to identify the fetal abdominal plane in prenatal

ultrasound images precisely. Dong et al. (34) proposed an

automatic quality control framework to achieve a standard four-

chamber view for fetal cardiac ultrasound, improving the

efficiency of CHD diagnosis. Baumgartner et al. (35) also

proposed a method to detect standard views of fetuses using 2D

US data and critical key anatomical structures on the plane.

Chen et al. (36) explored a composite neural network to detect

standard planes from fetal heart US scan videos; they also

introduced a multitask learning framework to share knowledge

across three detection tasks to address the issue of insufficient

training datasets.
3.3 Assisted analysis tools for CHD

Recently, many studies have focused on tools to assist with

CHD, such as segmentation of the fetal heart structure,

extraction of the fetal heart rate, and valve motion recognition.

Xu et al. (37) a cascaded convolutional neural network was

proposed to segment seven anatomical structures and identify

useful clinical indicators for prenatal sonographic examination.

Wang et al. (38) presented an automated cardiac time interval

measurement method for modified myocardial performance

index calculation and achieved good results compared with those

of expert sonographers. Fernando et al. (39) presented a solution

for measuring heart rate variability using Doppler US images.

More specifically, a multiple signal characterization algorithm has

been applied to estimate the frequency and amplitude of the

signal and the variance in the noise component of the signal.

However, major limitations exist; the training data in these

studies were all from healthy fetal hearts and cannot be applied

to cardiac anatomical structures due to CHD.
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3.4 Screening and diagnosis of CHD

The screening and diagnostic tasks for CHD primarily focus on

AI analysis of fetal echocardiography, which can be broadly

categorized into classification problems and segmentation of key

markers. Gong et al. (40) initially incorporated abnormal data

into the AI analysis task, suggesting the application of DGACNN

for CHD recognition, utilizing unlabeled video slices to share

network weights and achieving favorable classification outcomes.

Arnaout et al. (12) conducted multicenter research proposing

ensemble classification models to screen for CHD using fetal

echocardiograms. The research utilized 1,326 retrospective fetal

scans to train ensemble networks, distinguishing normal hearts

from those with CHD, and achieved high accuracy and

sensitivity for both internal datasets and external imaging. Wang

et al. (41) achieved automatic diagnosis of fetal total anomalous

pulmonary venous connection by measuring key parameters by

segmenting various structures in fetal echocardiography.
4 AI-based related genetic diagnosis of
CHD

Nearly 20% of fetal cardiovascular diseases are associated with

chromosomal abnormalities (42–44). Clarifying the genetic causes

has a significant impact on genetic counselling and fertility

guidance for the affected couples. Nonetheless, research on the

genetic pathogenesis of CHD is limited by the number of family

samples and the depth of genetic testing. According to the

PubMed database, fewer than 20 non-case reports on whole-

exome sequencing for CHD were published before December

2022, with a total sample size of fewer than 1,000 cases. Only 9

studies had a sample size greater than 30; the maximum sample
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size was only 235 cases (45, 46). Only a few studies using AI-based

tasks with CHD genetic test data have been found. Radhakrishna

et al. (47) employed logistic regression analysis to select candidate

markers for VSD prediction and explored the mechanism of

CHD. Sun et al. (48) evaluated the association of maternal genes

with the risk of CHD with 569 eligible cases, but due to the

limited sample size, the specific subtypes could not be examined.

Li et al. (49) suggested the possibility of discerning the nonlinear

relationship between genes and diseases from graph convolutional

neural networks by considering both the network topology and

multiple sources of information on diseases and genes.
5 AI-based risk prediction for CHD

A strong association exists between the incidence of CHD and

exposure to risk factors, such as maternal illness, medication intake,

and mental stress during early pregnancy (50–52). Nevertheless,

the underlying mechanism of CHD appears to be multifactorial.

Therefore, identifying potential risk factors for CHD through AI

is crucial to reduce its incidence. Yang et al. (53) investigated the

association between maternal exposure to air pollution and CHD.

They used a logistic regression model and demonstrated that

maternal exposure to any air pollutants during the first trimester

is associated with increased odds of CHD. Wern et al. (54)

calculated odds ratios (ORs) by comparing the live birth rates of

babies born to mothers with and without diabetes. It also shows

the risk of CHD for the fetuses of pregnant women with diabetes

was five times greater than the fetuses of pregnant women

without diabetes. According to Wurst et al. (55), the use of

paroxetine and other psychotropic drugs during pregnancy

increases the risk of CHD in population studies and clinical

randomized trials. Karatza et al. (56) collected data on the

maternal and infant characteristics of fetuses diagnosed with

CHD and found that the risk of CHD increased by 2.7 times

when pregnant women were exposed to smoking during

pregnancy and that the risk increased with increasing smoking

dose. However, more than 300 parameters can be considered

fetal factors, and the teratogenic factor prioritization problem in

CHD remains elusive due to the large search space and

insufficient training datasets.
6 Remaining AI challenges in prenatal
diagnosis of CHD

Prenatal Diagnosis of CHD with AI faces challenges similar to

other medical AI applications. Its opaque decision-making process

raises interpretability concerns crucial for clinical decision-making.

Addressing ethical and legal issues, such as privacy and

discrimination, requires clear guidelines. Implementing AI

systems demands significant resources and may exacerbate

healthcare disparities. Continuous adaptation is essential to align

AI models with evolving medical knowledge. Collaborative efforts

among healthcare providers, researchers, policymakers, and
Frontiers in Cardiovascular Medicine 05
ethicists are crucial for responsible and ethical AI use in

enhancing prenatal care and CHD diagnosis.

Additionally, current AI studies in CHD primarily replicate

existing methodologies, such as classification, segmentation, and

detection, relying heavily on expert annotations. They lack

exploration and optimization of decision-making pathways.

These studies can be summarized into three main issues:

volatility, insufficiency, and independence (VII).
6.1 Volatility

Subjective cognition of prenatal diagnosis of CHD varies

greatly, resulting in high volatility among AI models (12, 35).

Therefore, forming large-scale and high-quality sample data is

the cornerstone of AI training on CHD. Converting task-driven

data into data-driven data, particularly by extracting insightful

metadata, including deep features, using AI methodologies,

enhances the clarity and richness of data acquisition. This

increases the likelihood of uncovering deeper associations among

the same disease. Additionally, adopting inductive learning

approaches from repetitive data paves the way for promising

research avenues.
6.2 Insufficiency

The data used for AI training in CHD are inadequate for

several reasons. Firstly, there is data loss, including genetic and

maternal data loss. Additionally, there is a lack of research data

standards for CHD. Moreover, due to the unique nature of

pregnancy, radioactive scans cannot be conducted without a

definitive gold standard for three-dimensional relationship

data of the fetal heart. Furthermore, studies on CHD are

predominantly one-dimensional, which limits the ability to

achieve a comprehensive disease diagnosis and accurate evaluation

of maternal and fetal prognoses. Consequently, pursuing

multidimensional data fusion, such as the fusion of multi-

sectional images of fetal heart, and multi-modal data fusion

including ultrasound data and structured data. Additionally,

developing inference models based on partial default data shows

promise as a fruitful avenue for research.
6.3 Independence

More research is needed on the continuity of decision-making.

Current solutions focus on single-point solutions, where each piece

is an independent problem. Moving forward, this requires viewing

it as a cohesive whole, where each piece is interconnected, and the

resolution of one piece affects subsequent solutions. Treating the

entire process as a system is essential to optimize the decision-

making process further. For instance, in acquiring fetal standard

ultrasonic sections, factors such as the fetal condition, current

probe position, existing sections, and areas of interest need to be

considered. AI can optimize the path, guiding operators in the
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next movement of the probe, ultimately achieving the optimal path

for acquiring standard ultrasound sections. Therefore, addressing

the optimization of the clinical decision-making process for CHD

is a promising research direction.
7 Conclusion

CHD has a high incidence and includes a wide spectrum of

diseases, as well as a wide range of outcomes. This involves

multi-source and multidimensional diagnostic information,

introducing both challenges and opportunities to AI analysis of

CHD. Current AI research for prenatal CHD diagnosis implies

that it can improve the workflow of CHD screening and

diagnosis. It can also increase the confidence of prenatal

ultrasound diagnosticians and improve the effectiveness of

prenatal CHD screening. However, the previous AI paradigm

cannot meet the current clinical needs of CHD due to VII problems.

Addressing the challenges in prenatal CHD diagnosis, AI

techniques can be utilized to extract deeper-level data features

and integrate them into data annotations to improve data re-

usability. Additional dimensions, such as sensor location and

physician attention data, can be incorporated to enrich the

dataset. Furthermore, optimizing clinical decision-making with

AI algorithms can enhance efficiency and accuracy. As a result,

AI and CHD form a bidirectional interaction cycle, requiring

efforts on both the clinical and AI sides. AI drives clinical

development in CHD, and CHD drives AI.
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