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The molecular mechanism of
thrombospondin family members
in cardiovascular diseases
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and Jing Ye1,2,3*
1Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China, 2Cardiovascular
Research Institute, Wuhan University, Wuhan, China, 3Hubei Key Laboratory of Cardiology, Wuhan, China
Cardiovascular diseases have been identified as vital factors in global morbidity
and mortality in recent years. The available evidence suggests that various
cytokines and pathological proteins participate in these complicated and
changeable diseases. The thrombospondin (TSP) family is a series of conserved,
multidomain calcium-binding glycoproteins that cause cell-matrix and cell-cell
effects via interactions with other extracellular matrix components and cell
surface receptors. The TSP family has five members that can be divided into
two groups (Group A and Group B) based on their different structures. TSP-1,
TSP-2, and TSP-4 are the most studied proteins. Among recent studies and
findings, we investigated the functions of several family members, especially
TSP-5. We review the basic concepts of TSPs and summarize the relevant
molecular mechanisms and cell interactions in the cardiovascular system.
Targeting TSPs in CVD and other diseases has a remarkable therapeutic benefit.
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1 Introduction

Currently, cardiovascular disease (CVD) is a vital cause of human disability and death

in both underdeveloped and developed regions (1). In addition to the large cost of

treatment during disease onset, the expense of complications and recovery poses a

severe burden to families and communities. Although many effective drugs and

advanced technologies have been used in clinical practice in recent years, CVD

incidence still correlates with poor overall survival and prognosis.

Thrombospondin (TSP) is a matricellular protein that can be secreted by many cell

types and is widely distributed in various organs and tissues (2). The TSP family

includes five extracellular, conserved matricellular proteins in mammals. The TSP

family is divided into two subgroups (Group A and Group B) based on their structure.

Group A includes TSP-1 and TSP-2, which are trimers. Group B is composed of TSP-3,

TSP-4, and TSP-5, which are pentameric proteins (3). The expression of TSP is low

under normal physiological conditions but increases in response to damage, and TSP is

subsequently involved in tissue repair or deterioration (4). TSP has a multimeric

structure that allows it to bind calcium, cell-surface proteins, bioactive effectors, and

other extracellular matrix (ECM) proteins. TSP has many complex and variable

functions, such as regulating wound healing, angiogenesis, and tissue remodeling. In the

cardiovascular system, TSP participates in regulating vasomotor function, adjusting cell

apoptosis and growth, reacting to cardiovascular injuries, and affecting the structural

integrity of the heart and blood vessels (5). Many studies have revealed a close link
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between TSP and CVD. Group A TSPs and TSP-4 from group B

are the most thoroughly studied TSPs. We subsequently

summarize the functions of TSPs, especially TSP-5, in

cardiovascular pathological processes and update the role of

group B TSPs in CVD treatment.

CVD and cancer are considered two mutually independent

diseases. Along with the increase in cancer survivors and the

application of new therapeutic strategies for distinct cancers,

patients who suffer from cancer often have a greater risk of

cardiovascular complications than individuals in general. Thus, a

new discipline called cardio-oncology (6) has gained attention

from clinicians and cardiologists. However, the latent links

between CVD occurrence and consequential carcinoma have

been less investigated. Studies have shown that people with

cardiovascular disorders have a greater risk of cancer than does

the general public, which is called “reverse cardio-oncology

(7, 8)”. This argument is based on the shared risk factors and

pathogenic mechanisms involved in these two diseases (9). For

example, alcoholism, obesity, and diabetes mellitus are the same

causes of CVD and cancer (7, 10). The TSP family also plays a

role in shared pathogenic mechanisms and pathways. TSP-4 is

involved in CVD and regulates several different cancers, such as

colon cancer and prostate cancer, and the effects of TSP-4 on

cancer cells are complex and opposite. Overexpression of TSP-4

inhibited the tumor growth of colorectal cancers, but a lack of

TSP-4 in prostate cancer cells reduced their invasion and

migration (11, 12). In addition, the clinical application of TSPs is

closely related to cancer treatment. In this review, we focused on

the role of TSPs in the cardiovascular system in two subgroups

based on the pathological mechanism, as well as other closely

linked diseases and clinical treatment strategies.
2 The structure of the TSP family

The structure of representative TSP polypeptides is shown in

Figure 1. TSP subunits have a highly conserved carboxy terminus
FIGURE 1

Architecture and oligomerization status of group A and group B TSP. TSP-1 an
B) assemble into pentamers. TSP, thrombospondin; NTD, N-terminal dom
thrombospondin type 1 domains; Type II, epidermal growth factor-like doma

Frontiers in Cardiovascular Medicine 02
that binds to many epidermal growth factor (EGF)-like repeats,

which are called TSP type 2 and are linked to seven TSP type 3

repeats and a globular C-terminal domain (CTD). The CTD

shares common extracellular, calcium-binding, and cell

membrane-binding properties (13). In addition to an N-terminal

domain (NTD), a procollagen homology domain (PC), and an

oligomerization sequence, group A TSPs also have type 1

domains (TSRs), which are composed of three properdin-like

repeats called antiangiogenic regions that are involved in

modulating antiangiogenic functions and accelerating cell

attachment (3). In contrast, group B has no TSRs, and the

procollagen homology domain contains four (group A is three)

type 2 repeats instead. Inter-subunit disulfide bonds are formed

between cysteine residues adjacent to the carboxyl end of the

heptad fold repeat sequence in trimer TSP or between the

carboxyl end of the pentamer TSP to stabilize the low

polymerization of TSP. Because of the variable region, group B

has different effects on different tissues (14).

Due to the availability of each domain, TSPs can interact with

diverse surface receptors and proteins. For example, the C-terminal

domain contains a CD47-binding site, EGF-like domains can bind

to integrins and Ca2+, TSRs are necessary for binding transforming

growth factor (TGF)-β and CD36, and heparin and other integrins

bind to the N-terminal domain (15). We analyzed the role of TSP

in CVDs according to different receptors, signaling pathways, and

immune cells involved.
3 Group A TSPs

3.1 Interacting receptors

As stated above, different domains of the TSP can interact

with corresponding receptors, including integrins, CD36 and

CD47. Integrins are a class of glycosylated, heterodimeric

transmembrane receptors that consist of α and β subunits.

The interaction of cardiac ECM with specific cell surface
d TSP-2 (Group A) assemble into trimeric structure. TSP-3, 4 and 5 (Group
ain; SS, disulfide bonds; PC, homologous procollagen region, Type I,
ins; Type III, thrombospondin type 3 repeats; CTD, C-terminal domain.
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integrins is the foundation of cardiomyocyte maturation

and remodeling (16).

Moreover, the interaction between TSPs and integrins

participates in vascular remodeling and pathology. TSP-1 and

TSP-2 are regarded as potent endogenous antiangiogenic proteins

that directly affect CD36, CD47, and integrins. Vascular cells

express various integrins that bind to TSP-1, including αIibβ3,

αvβ3, and α5β1 (17). The N-termini of TSP-1 and TSP-2 can be

recognized by α3β1, α4β1, and α6β1 to mediate the adhesion of

vascular ECs (18). The binding of integrin α3β1 to TSP-1

promotes EC migration, cell motility, and antiangiogenic effects

(19). In another study, TSP-1 was shown to bind to αvβ1 and

regulate the nuclear shuttling of Yes-associated protein in

response to mechanical stress-induced vascular injury, leading to

dynamic remodeling of the aorta in mice (20).
3.2 Transforming growth factor-β (TGF-β)

The TGF-β superfamily has a significant role in inducing tissue

fibrosis and inflammation. Type I repeats of TSP can interact with

latent TGF-β. For instance, TGF-β signaling enables the ERK1/2

pathway to activate fibroblasts and induce interstitial fibrosis in

the aging course (21). The TGF-β family is mainly classified into

the TGF-β1, -2, and -3 subfamilies. One of the downstream

mediators of TGF-β1, connective tissue growth factor (CTGF),

also plays an important role in fibrosis.

TSP-1 is a major mediator of TGF-β activation, increasing

CTGF and collagen levels and the accumulation of extracellular

matrix proteins (22). All of these factors stimulate and are

hallmarks of tissue fibrosis. Increased TSP-1 in intermittent

hypoxia (IH) patients and mice, which activates the TGF-β

pathway via JAK2/STAT3/TSP-1 signaling, has a significant effect

on IH-induced fibroblast activation and cardiac fibrosis (23).

A TSP-1 antagonist that blocks TGF-β activation can reverse

myocardial fibrosis and ensure left ventricular function in

hypertensive diabetic rats (24). TSP-1 acted as a protective factor

by maintaining fibroblast function and matrix metabolism in

pressure-overloaded myocardium. TSP-1 is also downstream of

the TGF-β signaling pathway and has been identified as a

regulator of microtube formation in glioblastoma (25). In

addition to the heart, as a result of TSP-1/TGF-β pathway

upregulation, collagen deposition and extensive fibrosis in the

arterial wall led to arteriosclerosis, while in TSP-1 knockout

(KO) mice or mice treated with TSP-1 antagonist, arterial

collagen, CTGF, and arterial stiffness were decreased (26). Ying

Xia et al. reported that deletion of TSP-1 disrupted TGF-β

signaling, leading to impaired myofibroblast differentiation and

decreased collagen expression (27).

TSP-2 can bind to latent TGF-β but cannot activate the TGF-β

signal and is regarded as a competitive binding factor to TSP-1 in

CVD. However, in the cancer microenvironment, a high level of

TSP-2 produced by cancer-associated fibroblasts is activated via

the TGF-β1/Smad2/3 pathway, binds to integrin αvβ3/CD36 and

activates the MAPK pathway in cancer cells to promote tumor

growth and adhesion (28).
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Regarding injury to other organs, TSP-1 is highly expressed in

patients with sepsis-induced acute kidney injury (AKI). The

transcription factor USF2 activates TSP-1 to activate the TGF-β/

NLRP3/Caspase-1 signaling pathway, resulting in promotion of

the oxidative stress response and stimulation of pyroptosis in

sepsis-induced AKI (29). TSP-1 deficiency protects mice against

sepsis-induced AKI by decreasing the expression of inflammatory

and apoptosis-promoting cytokines, such as the NLRP3

inflammasome, caspase-1, IL-1β, and IL-18, which increase cell

viability and partially reverse cell pyroptosis. TSP-1 deletion

reduces TGF-β signaling and protects against renal fibrosis in a

high-fat diet mouse model (30). In another study, interstitial

macrophages secreted TSP-1 after hypoxia exposure, and

pathological TSP-1 promoted TGF-β activation and Rho-kinase-

mediated vasoconstriction in mice, resulting in pulmonary

hypertension (31).
3.3 Endoplasmic reticulum stress

The endoplasmic reticulum (ER) is a large protein processing

and transporting region. Mistaken ER protein folding leads to

the accumulation of unfolded and misfolded proteins. This

disturbance of ER homeostasis initiates the protective stress

response and is known as the unfolded protein response (UPR)

or ER stress (32). Protein kinase R-like ER kinase (PERK),

activating transcription factor 6α (ATF6α), and inositol requiring

enzyme 1 alpha (IRE1α) are three primary sensors that

strengthen protein folding under ER stress (33). ER stress is a

double-edged sword that can restore cell homeostasis and may

lead to cell defects (32). In TSP-1-overexpressing transgenic

mice, TSP-1 binds to PERK and induces the downstream factor

ATF4, thus activating ER stress and inducing autophagy-

mediated lethal cardiac atrophy (34).

However, for the other member of group A, TSP-2, further

research is needed to reveal the possible links between TSP-2 and

ER stress.
3.4 Nitric oxide (NO) signaling

Nitric oxide (NO) is a vital physiological regulator of

vasomotion and blood flow. TSP-1 affects the proliferation,

migration, and angiogenesis of SMCs, ECs, and platelets (PLTs)

by regulating NO signaling (22, 35). TSP-1 binds to the cell

surface proteins CD47 and CD36 and subsequently participates

in the activity of endothelial nitric oxide synthase (eNOS) (36,

37). Moreover, the combination of TSP-1 with CD47 or CD36

can inhibit the SMC cyclic guanosine monophosphate pathway

in the presence of a low dose of NO (NO/cGMP) (38), exerting

antiangiogenic effects and activating apoptosis in microvascular

ECs, which leads to failed endothelial tubule formation and

directly affects other antiangiogenic activities. Studies have shown

that, compared with CD36, CD47 has a greater affinity for TSP-1

and inhibits NO signaling (39). Through binding to CD47, TSP-
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1 inhibits eNOS activation and arterial relaxation, manifesting as a

blood pressure booster agent (40).

TSP-1 engages the receptor CD47 of ECs to mediate cell

phenotypic transformation, and the activation of CD47 inhibits

the bioavailability of VEGF (41, 42), as observed in lymphatic

endothelial cells, resulting in AKT-eNOS signaling activation

and NO reduction (43). Thus, silencing CD47 blocks

lymphangiogenesis and atherosclerotic lesion formation (43).

Deletion of TSP-1 protects against inflammatory lesion

development and vascular smooth muscle cell (VSMC)

phenotypic transition in leptin-induced atherogenesis (44). TSP-1

can also suppress the NO signaling pathway by interacting with

integrin to regulate platelet aggregation (39).

TSP-2 seems to be an NO target, and suppressing TSP-2 relieves

the eNOS-knockout phenotype without restoring NO signaling in

mice with injury- and ischemia-induced angiogenesis (45).
3.5 Matrix metalloproteinase

Matrix metalloproteinases, such as matrix metallopeptidase

(MMP)-2, MMP-3, and MMP-9, participate in tissue remodeling

by binding to TSP type I repeats (27).

TSP-1 deficiency increases myocardial MMP-3 and MMP-9

activation under pressure overload, resulting in early cardiac

hypertrophy and late dilation. During remodeling of the diabetic

heart, TSP-1 deletion increases MMP-2 and MMP-9 activation to

degrade collagen and inhibit fibroblast function (46).

TSP-2 acts as a key regulator of cardiac matrix integrity, is

required for the myocardium to respond to pressure overload,

and plays a role in regulating MMP activity (47). TSP-2 plays a

protective role in age-related cardiomyopathy by activating the

Src/Akt survival pathway, decreasing inflammation and MMP-2

activity, and maintaining collagen crosslinking (48). High levels of

MMP-2 (49) and MMP-9 (50) may cause local disruption of the

myocardial matrix, leading to cardiac rupture and dilatation after

Ang II infusion in TSP-2-deficient mice (47). Enhanced matrix

destruction is shown in the heart of doxorubicin (DOX)-induced

TSP-2 KO mice and is accompanied by increased levels of MMP-

2 (51). A lack of TSP-2 increases the levels of MMPs in the

extracellular matrix and helps with the degradation of fibrillar

collagen, thus reducing fibrosis around cardiac cell grafts (52).

MMPs also take part in vascular physiology. TSP-1 can be

hydrolyzed into proteolytic fragments, and the different

fragments exert pro- or antiangiogenic effects by activating the

MAPK pathway to mediate the MMP/tissue inhibitor of

metalloproteinase (TIMP) balance (53). TSP-2 inhibits

angiogenesis by regulating EC function and modulating MMP-2

and MMP-9 (54).
3.6 Reactive oxygen species

Reactive oxygen species (ROS) are associated with senility and

injury, regulating myocardial metabolism and contributing to

vascular dystonia (55). The family of nicotinamide adenine
Frontiers in Cardiovascular Medicine 04
dinucleotide phosphate (NADPH) oxidase (Nox) isozymes is the

main source of ROS. Nox-4-based NADPH oxidases are the

main source of ROS in the vasculature, and downregulation of

Nox4 in SMCs inhibits neointimal hyperplasia by decreasing

TSP-1 and suppressing SMC proliferation (56). Hypoxia-

responsive TSP-1 mediates the critical event in pulmonary

hypertension. The level of TSP-1 was increased in hypoxia-

induced human pulmonary artery SMCs, and TSP-1-stimulated

Nox4 expression was enhanced, causing SMC proliferation and

high blood pressure (57). O2
− is the first product induced by Nox

and rapidly changes into stable H2O2. Moreover, excess

accumulation of O2
− disrupts the balance of O2

−/H2O2, resulting

in the impairment of coronary arteriolar vasodilation and heart

ischemia (58, 59).

In diabetic conditions, TSP-1 binds to the cell-surface receptor

CD47 and significantly increases Nox1-mediated ROS and O2
−

production, causing endothelial senescence and vascular

dysfunction (60–62), while TSP-2 plays an antiangiogenic role.

Increasing NADPH oxidase activity and oxidative stress induce

the production of TSP-2, which induces bone marrow-derived

angiogenic cell dysfunction and vascular impairment (63). The

TSP-1/CD47 axis also activates signal-regulatory protein-α,

another kind of cell-surface receptor of inflammatory cells,

increasing O2
− production and promoting renal ischemia‒

reperfusion injury (64). H2O2 can induce vasodilation through

the release of prostaglandin E2 and calcium-activated potassium

channel-related SMC hyperpolarization.
3.7 Plasmin/plasminogen system

Activation of the plasmin/plasminogen system is necessary for

regulating angiogenesis in a variety of diseases (65). A study

indicated that plasminogen decreases the expression of TSP-1

and TSP-2, thereby enhancing angiogenesis in damaged brain

tissue to help cells resume after ischemic stroke (66). However,

no additional studies have evaluated the relationship between

TSP-2 and the plasmin/plasminogen system.

The absence of plasminogen suppresses EC migration and

decreases cerebrovascular density. Platelet activation releases

stored TSP-1 in platelet α-granules; thus, plasma TSP-1 is

significantly increased during the acute stage in ST-segment

elevation myocardial infarction (STEMI) patients and decreases

1–3 days and 3 months after percutaneous coronary intervention

(PCI), which might be associated with major adverse cardiac

events (67).

In addition, both plasmin and TSP-1 can activate TGF-β1

signaling in the fibrotic process (68, 69). However, TGF-β1

activation is bistable: the plasmin-mediated mode is characterized

by low activation, and the TSP-1-mediated mode is characterized

by high activation. Interestingly, when both plasmin and TSP-1

are present, increasing plasmin can disrupt the TSP-1/TGF-β1

feedback loop and thus cause proteolytic cleavage of TSP-1 and

inactivation of TGF-β1 signaling (70). This phenomenon

corroborates that the activation of plasmin inhibits the

expression of TSP-1.
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3.8 Immune cells

Activation of the TSP-1/CD47 pathway plays a crucial role in

the excitation and migration of T regulatory cells (Tregs) to

inhibit inflammation in atherosclerosis and abdominal aortic

aneurysm (AAA) (71, 72). TSP-1 and TSP-2 also interact with

CD47 on the surface of T cells, which triggers T-cell apoptosis to

block inflammation. In CD47-knockout mice, TSP-1- or TSP-2-

knockout mice, prolonged inflammation occurs along with

defects in T-cell apoptosis (73). TSP-2 is also an important

regulator of T-lymphocyte migration and differentiation through

its interaction with CD47 (71) in humans and mice (74). TSP-2

deficiency results in the generation of fewer Tregs and lower IL-

10 and IL-10 receptor levels, thereby leading to an imbalance in

the immune response and cardiac damage in Coxsackievirus

group B type 3 (CVB3) virus-induced myocarditis (74, 75).

MMPs are necessary for macrophages to persist and migrate

into the ECM to induce an inflammatory response in AAA (76).

TSP-1 deficiency upregulates the tissue inhibitor MMP-1, which

suppresses extracellular gelatinase activity and inhibits MMP

activation, thus alleviating AAA development (77). TSP-1

deficiency also enhances atherosclerotic plaque maturation by

accelerating inflammation, and macrophage-induced MMP-9

contributes to elastin degradation (78). TSP-1 can bind to CD47

in macrophages to enhance the inflammasome-dependent

maturation of IL-1β, which promotes inflammation in response

to lipopolysaccharide (LPS) (79). TSP-1 may promote

proinflammatory macrophage differentiation to aggravate human

aortic dissection (AD) (80). Another study showed that the

overexpression of TSP-2 promotes the polarization of

macrophages toward an anti-inflammatory phenotype by

activating the PI3K pathway in vitro and attenuating LPS-

induced pulmonary inflammation (70).

TSP-1 serves as a master regulator of cancer invasion (81, 82).

A study showed that the expression of TSP-1 and CD47 is

increased in human malignant melanoma tumor tissue, and

targeting the TSP-1/CD47 pathway may preserve CD8+ T-cell

activation, proliferation, and bioenergetics to alleviate the tumor

burden (83). By the way, downregulating TSP-1 levels in skin

dendritic cells effectively promoted antitumor reactions through

increasing tumor-infiltrating CD4+ and CD8+ T cells. Moreover,

TSP-1-knockout bone marrow-derived DCs retarded tumor

growth, while targeting TSP-2 did not have the same effect (84).

This finding was opposite to the antitumor angiogenesis response

of TSP-1/2, indicating that systemic antitumor treatment with

TSP-1 could be a double-edged sword.
4 Group B TSPs

4.1 Integrin and related signaling pathways

Group B TSPs binds to integrin to regulate physiological and

pathological processes. Overexpression of TSP-3 in the mouse

heart significantly damages cardiomyocyte integrity due to
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reduced sarcolemmal residence of integrins, such as α7β1D and β1
(85). Studies have shown that the expression of TSP-5 is

decreased in the hearts of DCM patients and that a lack of TSP-

5 in mice spontaneously results in DCM at a young age (86).

TSP-5 interacts with cardiomyocyte integrin β1 to maintain

cardiomyocyte homeostasis, and TSP-5 or integrin β1 deficiency

results in similar F-actin dissolution, connexin-43 defects, and

spontaneous apoptosis (86).

The interaction of TSP-4 and αMβ2 and β3 integrins in

macrophages activates p38-MAPK signaling (87). The p38-

MAPK pathway plays a pivotal role in the production of

proinflammatory mediators and cytokines, as well as in

endothelial-leukocyte interactions, resulting in vascular

inflammation and arteriosclerosis (87–89). TSP-4 also modulates

the proliferation of SMCs and ECs, thereby exerting atherogenic

effects (90). Thus, TSP-4 serves as a proangiogenic factor in

wound healing. TSP-4 regulates the adhesion, migration, and

proliferation of EC cells by interacting with integrin α2 and

gabapentin receptor α2δ-1 (91), resulting in a strong

proangiogenic effect in vivo and in vitro.

Bone marrow-derived TSP-5 mediates atherosclerotic

calcification, and a lack of TSP-5 induces the atherogenic and

osteogenic phenotype in macrophages via integrin β3 (92). TSP-5

is involved in the chemotaxis and attachment of VSMCs and

inhibits osteochondrogenic phenotypic switching in VSMCs,

thereby inhibiting vascular calcification (93, 94). Increased TSP-5

levels during injury or other pathological processes exert

protective effects by maintaining the contractile phenotype of

VSMCs through interactions with the integrin α7β1 (93, 94). In

addition, the C-terminus of TSP-5 binds directly to integrin α5,

blocking aberrant activation of ECs in mice and hence reducing

vascular inflammation and atherosclerosis (95).
4.2 TGF-β signal

TSP-4 and TSP-5 regulate atherosclerosis, aortic aneurysm, and

other vascular tissue remodeling processes through the TGF-β

signal pathway (96). Activated TGF-β1 stimulates the Smad3

pathway to upregulate endothelial TSP-4, leading to EC

adhesion, migration, and proliferation (97). This strong

proangiogenic function can be blocked in TSP-4 KO mice.

Smad3 activation in ECs also upregulates TSP-4 expression and

angiogenesis via TGF-β during tumor growth (97).

TSP-5, also known as cartilage oligomeric matrix protein

(COMP), participates in the differentiation of stem cells and

passaged chondrocytes and is dependent on TGF-β signaling

(98). TGF-β1 binds to the C-terminal domain of TSP-5, and an

additional binding site is the 3-repeat TSP in the presence of

manganese. This combination increases TGF-β1-dependent

transcription and enhances its bioactivity (98). Along with the

activation of the TGF-β signal, the levels of TSP-5 are also

elevated, which plays a critical role in skin fibrosis by promoting

collagen deposition and modifying fibroblast functions (99, 100).

Bone morphogenetic protein (BMP)-2 is a member of the TGF-β

superfamily. Yaoyao Du et al. suggested that TSP-5 binds to
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BMP-2 via the C-terminus to prevent its interaction with the BMP-

2 receptor, inhibit the osteochondrogenic transition of VSMCs, and

improve vascular calcification (101).
4.3 ER stress

All three members of group B can active ER stress to regulate

tissue development. TSP-4 is expressed in the heart and skeletal

muscle during injury and damage, and it contributes to

sarcolemmal stability and cardioprotection through binding to

ATF6α-activated ER stress (102–104). TSP-4 is prominently

localized within intracellular vesicles and the ER or its

compartments in myocardial cells, with minor accumulation in

the extracellular space (102). As a result of ER stress, TSP-4 KO

mice infused with Ang II have exaggerated hypertrophic hearts

and a high incidence of aneurysm but a protective role in

endothelium-dependent relaxation in resistant arteries (105).

TSP-3 is highly similar in structure to TSP-4 and is upregulated

during cardiac disease. Although TSP-3 also activates ER stress

by binding to ATF6α, TSP-3 oppositely enhances cardiac

pathological conditions by inhibiting intracellular integrin and

destroying myocardial membrane stability (85). The familial

mutation in type 3 repeats of TSP-5 induces

pseudoachondroplasia and multiple epiphyseal dysplasia resulting

from pathological accumulation of mutated TSP-5 in the rough

ER and apoptosis of the cells (106). Thus, mutated TSP-5

induces ER stress to regulate cartilage development.
4.4 NO signaling

TSP-4 promotes endothelial dysfunction and contributes to the

process of hypertension by impairing NO bioavailability and

blocking vascular vasodilation in Ang II-infused mice (105).

TSP-5 plays a protective role in BP control by improving

endothelium-dependent relaxation through CaKMII/eNO

signaling. It binds to the C-terminus of Piezo1, which promotes

intracellular Ca2+ influx, eNOS activation, and NO generation

resulting from activation of endogenous Piezo1 currents (107).

TSP-3 has not been found to regulate CVDs through NO signaling.
4.5 Immune cells

It is unknown whether TSP-3 acts on immune cells to affect the

cardiovascular system. TSP-4 expression directly supports

macrophage functions and switching of the proinflammatory

phenotype during atherogenesis (108). Inflammation stimulates

the expression of TSP-4 in macrophages, while increased TSP-4

promotes the accumulation and proinflammatory phenotypic

differentiation of macrophages in LPS-induced peritonitis (108).

In vascular inflammation, recombinant TSP-4 contributes to

injury-induced restenosis by accelerating macrophage adhesion to

VSMCs and increasing VSMC proliferation and migration (109).

TSP-5 is also critical for inducing the beneficial phenotype of
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VSMCs and macrophages to help maintain vascular integrity and

function (110, 111). The deletion of TSP-5 promotes VSMC

migration and exacerbates VSMC calcification and atherosclerosis

(111); moreover, this deletion results in a phenotypic shift of

macrophages to atherogenic and osteogenic characteristics (112).
5 Conclusions and perspective

With long-term investigation, we gain a comprehensive

understanding of TSP and its effective role in the cardiovascular

system. Changes in circulating TSP production also affect the

development and prognosis of clinical diseases. For instance, in

group A, studies indicate that high circulating TSP-1 is

associated with diabetic nephropathy, diabetic cardiovascular

disease (113), and pulmonary hypertension (114). Elevated

circulating TSP-2 is involved in coronary artery disease (CAD)-

induced chronic heart failure (CHF) and increases patient

mortality and risk of recurrent hospitalization (115). The group

B members also participate in clinical diseases, but the related

research is less than group A. Above all, we summarize the role

of circulating TSP in clinical cardiovascular diseases (Table 1)

and map the relative mechanisms of two TSP subgroups in the

physiological and pathological processes of CVD (Figures 2, 3).

TSP-1 and TSP-2 have significant antiangiogenic effects

because of type I repeats (135). ABT-510 is a nonpeptide analog

of the type I repeat and is constructed with a single D-amino

acid substitution that results in 1,000-fold antiangiogenic activity

(136). ABT-510 inhibited VEGF-induced microvascular EC

migration and exerted strong antiangiogenic effects to prevent

graft arteriosclerosis in rats (137); moreover, ABT-510 induced

inflammation in mice with inflammatory bowel disease (138). In

humans, the use of ABT-510 alone or in combination with other

therapies for the treatment of advanced parenchymal or epithelial

carcinoma has been tested in phase I and II clinical trials (139–

141). Several studies have shown that ABT-510 is safe and

efficient at restraining tumor growth and inhibiting tumor

neovascularization, and combination therapy increases the

efficiency of anticancer therapy (142–144).

The TSP/CD47 axis plays a vital role in many pathological

processes in the cardiovascular system. Preclinical trials of

blocking CD47 with monoclonal antibodies in animal ischemia

models have shown improved angiogenesis and a significant

increase in tissue survival (39, 145). The CD47 antibody (CC-

90002) has been tested for biosafety/tolerability in phase I clinical

trials and beneficial effects for neoplastic hematologic disorders,

while another humanized anti-CD47 monoclonal antibody

(Hu5F9-G4) may be beneficial for acute myeloid leukemia and

advanced solid malignancy (146). The activated TGF-β pathway

has strong profibrotic activity, the activation sequence (LSKL) in

TSP-1 was mapped, and an LSKL peptide was developed for

competitive binding (22). The LSKL peptide blocks TGF-β

release and inhibits fibrosis in various animal models, such as

diabetic nephropathy (147), liver fibrosis (148), and skin scarring

(149). However, in Ang II-infused apolipoprotein E-deficient

mice, decreased activity of the TGF-β pathway promotes AAA
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TABLE 1 Role of the TSP family members in clinical CVDs.

Diseases TSP-1 TSP-2 TSP-3 TSP-4 TSP-5
CAV Increase (35) - - - -

HF Decrease Increase (116) - - -

Increase in obese HfpEF (117)

High risk of HF in type 2 diabetes (118)

Increase in CAD induced CHF (115)

Virus myocarditis - Increase (74) - - -

PH Increase (114) - - - -

DCM - - - - Decrease (86)

MI Increase - Decrease (119) - -

High risk of AA in AMI (120)

Biomarker of thrombosis in STEMI (121)

Protective role of MACE risk in post-STEMI (67)

AD Increase (80) Increase (122) - - -

PAD Increase (123) - - Increase (124) -

CHD Increase (125) - - - Increase (126)

AS Not change Increase (127) Not change Not change -

Atherosclerosis - Decrease (128) - - -

AAA Decrease (129) Increase (130) - - -

Diabetic complications Increase in DM (131) Increase in DKD (132) - - -

Independent risk factor of CAD in diabetes (133)

Anemia - Increase (134) - - -

CAV, cardiac allograft vasculopathy; HF, heart failure; HfpEF, heart failure with preserved ejection fraction; CAD, coronary artery disease; CHF, chronic heart failure; PH,

pulmonary hypertension; DCM, dilated cardiomyopathy; MI, myocardial infarction; AA, atrial arrhythmias; AMI, acute myocardial infarction; STEMI, ST-segment

elevation myocardial infarction; MACE, major adverse cardiac events; AD, aortic dissection; PAD, peripheral arterial disease; CHD, coronary heart disease; AS, aortic

valve stenosis; AAA, abdominal aortic aneurysm; DM, diabetic myocardium; DKD, diabetic kidney disease.

FIGURE 2

The role of subgroup A of the TSP family and relevant pathological mechanisms in the cardiovascular system. Red arrows define stimulatory effects,
and blue arrows define inhibitory effects.
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and atherosclerosis (150). Thus, antifibrotic therapy has dual effects

on different pathological conditions, concentrating on preventing

advanced parenchymal organ fibrosis or local treatment, which

may be potential therapeutic directions.

Numerous studies have shown that patients with CVD have a

greater cancer risk than do healthy individuals. There are

connections between cancer and atherosclerotic cardiovascular

disease (ASCVD) (151), myocardial infarction (152) and heart

failure (153). Thus, a new discipline called “reverse cardio-

oncology” was established, and studies need to identify the
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shared mechanisms and pathways between these 2 diseases (9).

We summarize the shared mechanisms and pathways of the TSP

proteins in cardiovascular disease and cancer in Table 2.

Thrombospondins strongly regulate angiogenesis, tissue fibrosis

and inflammation via effects on the cardiovascular system and

tumor microenvironment. TSP-1 is involved in myocardial

fibrosis and tumor growth by activating the TGF-β pathway (22,

160). TSP-4 mediates inflammatory macrophage infiltration,

which not only exacerbates atherogenesis in the vasculature but

also induces breast cancer cell growth in mice (89, 161).
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FIGURE 3

The role and relevant pathological mechanism of subgroup B of the TSP family in cardiovascular pathology. Red arrows define stimulatory effects, and
blue arrows define inhibitory effects.

TABLE 2 Common mechanisms of TSP in CVD and cancer.

TSPs CVD Cancer Common mechanism
Group A Promotes myocardial fibrosis Promotes tumor growth TSP1-TGF-β

Promotes endothelial dysfunction Promotes tumor-initiating stem cells in hepatocellular carcinoma (154) TSP1-CD47-(SIRPα)

Anti-angiogenesis Inhibit tumor-associated angiogenesis (155, 156) TSP1/2-CD47/CD36/integrin

TSP1-NO signal (157)

Group B Aggravates atherogenesis Promotes breast cancer cell growth TSP4-Macrophage

Pro-angiogenesis Promotes gallbladder cancer growth (158) TSP4-integrin α2

Pro-angiogenesis Promotes breast cancer growth TSP4-TGF-β1

Reduce blood pressure Anti-apoptosis of prostate cancer (159) TSP5-Ca2+

Anti-atherogenic effect Promotes prostate cancer progression TSP5-integrin

Pan et al. 10.3389/fcvm.2024.1337586
ABT-510, a type I repeat of TSP-1/TSP-2, can prevent graft

arteriosclerosis in animal models (137) while inhibiting tumor

neovascularization as an antineoplastic drug (139). Although

there is no direct evidence that TSPs participate in the crosstalk

between CVD and cancer, we reasonably hypothesize that

this occurs.

TSP-5 has been shown to play a protective role in the

cardiovascular system and affects conditions, including

hypertension, atherosclerosis, and AAA. TSP-5 helps sustain the

contractile phenotypes of VSMCs. It has been demonstrated that

TSP-5 deficiency induces VSMC migration while aggravating

VSMC calcification and atherosclerosis (111); moreover, the

angiotensin II type 1 receptor/β-arrestin-2 signaling pathway is

also activated by the absence of TSP-5, resulting in a high risk of

AAA (162). TSP-5 supplementation is a potentially effective

therapy for CVD treatment. However, TSP-5 also plays a critical

role in the migration and invasion of various cancer cells and is

a potential target for cancer treatment (163). Cancer patients
Frontiers in Cardiovascular Medicine 08
may benefit from systematic administration of anti-TSP-5

therapy while under the threat of CVD. In conclusion, local

targeted therapy or treatment that focuses on interactions with

TSPs and signaling pathways may be meaningful (112).
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