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Introduction: Neural crest cells (NCCs) are multipotent and are attributed to the
combination of complex multimodal gene regulatory mechanisms. Cardiac
neural crest (CNC) cells, originating from the dorsal neural tube, are pivotal
architects of the cardio-neuro-vascular domain, which orchestrates the
embryogenesis of critical cardiac and vascular structures. Remarkably, while
the scientific community compiled a comprehensive inventory of neural crest
derivatives by the early 1980s, our understanding of the CNC’s role in various
cardiovascular disease processes still needs to be explored. This review delves
into the differentiation of NCC, specifically the CNC cells, and explores the
diverse facets of non-syndromic cardiovascular neurocristopathies.
Methods: A systematic review was conducted as per the PRISMA Statement.
Three prominent databases, PubMed, Scopus, and Embase, were searched,
which yielded 1,840 studies. We excluded 1,796 studies, and the final selection
of 44 studies formed the basis of this comprehensive review.
Results: Neurocristopathies are a group of genetic disorders that affect the
development of cells derived from the NC. Cardiovascular neurocristopathy, i.e.,
cardiopathy and vasculopathy, associated with the NCC could occur in the
form of (1) cardiac septation disorders, mainly the aortico-pulmonary septum;
(2) great vessels and vascular disorders; (3) myocardial dysfunction; and (4) a
combination of all three phenotypes. This could result from abnormalities
in NCC migration, differentiation, or proliferation leading to structural
abnormalities and are attributed to genetic, familial, sporadic or acquired causes.
Discussion: Phenotypic characteristics of cardiovascular neurocristopathies, such
as bicuspid aortic valve and thoracic aortic aneurysm, share a common embryonic
origin and are surprisingly prevalent in the general population, necessitating
further research to identify the underlying pathogenic and genetic factors
responsible for these cardiac anomalies. Such discoveries are essential for
enhancing diagnostic screening and refining therapeutic interventions,
ultimately improving the lives of individuals affected by these conditions.
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1 Introduction

The cellular events during embryonic development unveils the

remarkable complexity of life within which a particular group of

cells, known as the neural crest cells (NCC), holds a pivotal role

(1–3). Neurocristopathy a term that encompasses disorders

within these NCC (1, 2, 4).

The cardiac neural crest (CNC) cells are specialized entities

that assume a commanding role in the cardiovascular

development of aortic arch arteries and the cardiac outflow tract

(5, 6). The two interrelated conditions—cardiovascular

neurocristopathy and NC aortopathy, usually manifest as a

bicuspid aortic valve (BAV) (7, 8). BAV is marked by aortic

dilation and/or acute aortic dissection (8–10).

The true magnitude of this aortopathy remains veiled, but

recent revelations hint at its profound impact (11). While the

scientific community once crafted an inventory of NC

derivatives, it was not until the early 1980s that the heart

revealed its secret—within the vagal NC lies a distinct

and dynamic entity, the CNC (12). This population of

cells not only shapes the cardiovascular system but also

orchestrates the birth of the thymus, the thyroid glands, and

the cardiac ganglia (3).

This systematic review is to unravel the intricate differentiation

within NCC, with a specific focus on CNC cells. Our quest

takes us into non-syndromic cardiovascular neurocristopathies,

particularly within the young population, a vulnerable and often

overlooked cohort.
2 We illuminate three crucial facets

1. The non-syndromic cardiovascular neurocristopathy, explores

a myriad of phenotypes, from NC aortopathy to NC BAV

and congenital heart disease (CHD).

2. We inspect the cardiovascular pathologies arising from

disruptions in regulatory factors, and we spotlight the

profound importance of various signalling pathways that

thread through embryonic development.

3. We examine its connections to cerebro-vascular phenomena,

offering insights into the mechanisms underpinning

associated abnormalities. In doing so, we also explore

potential therapeutic advancements.

3 Materials and methods

3.1 Selection strategy

To conduct a comprehensive review, we executed a systematic

literature search with a sharp focus on our study objectives. Three

prominent databases, PubMed, Scopus, and Embase, served as our

sources of information. Our search revolved around the

overarching theme of cardiovascular neurocristopathy and its

various manifestations, using specific keywords such as
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“cardiovascular neurocristopathy,” “neural crest aortopathy,”

“neural crest bicuspid aortic valve,” “neural crest heart disease,”

and “non-syndromic aortopathy or neurocristopathy.” We

restricted our search to articles published in the English language

from the inception of each database until March 2023.

It is crucial to note that cardiovascular neurocristopathy

encompasses both syndromic and non-syndromic cases.

However, for this manuscript, our focus remained solely on non-

syndromic neurocristopathy. This decision led to the exclusion of

articles that discussed acquired causes and multi-organ

involvement associated with syndromic neurocristopathy.
4 Results

4.1 Selection criteria

Our selection criteria adhered to the guidelines set by the

PRISMA Statement (13). The initial search sought to map the

existing literature concerning cardiovascular neurocristopathy,

NC aortopathy, BAV and CHD. Subsequently, our search was

fine-tuned to target the non-syndromic subset and the young-age

population, defined as individuals between the ages of 18 and 65

as per WHO guidelines. The specific focus remained on non-

syndromic NC aortic conditions and associated myocardial

dysfunction, prompting the exclusion of articles dealing with

syndromes, acquired causes, or multiorgan involvement.

Our diligent search yielded a total of 1,840 articles. Following a

meticulous review process, 1,796 research articles were excluded,

taking into account duplications and alignment with our inclusion

criteria. This stringent process culminated in a final selection of 44

articles that form the basis of this comprehensive review.
4.2 Quality assessment and data collection

This review is anchored in original full-text research articles

and review papers. The thoroughness of our approach was

maintained by vigilant scrutiny to eliminate duplications. The

abstracts of these articles underwent rigorous analysis to ensure

their quality and relevance to our study objectives. Subsequently,

each research paper was meticulously evaluated to gauge its

suitability for inclusion in this review.

Following the removal of duplicate records, an additional four

articles were excluded due to a lack of full-text availability.

Ultimately, 40 articles were included in this final review paper,

aligning with our objectives, which is outlined in the given

PRISMA flow diagram (Figure 1).
4.3 Embryological origin of vascular tree

Vascular tree has a variable embryonic origin (Figure 2) (14–16).

Embryonic fate-mapping studies have demonstrated that the aortic

root, ascending aorta and aortic arch are populated by vascular

smooth muscle cells (VSMCs) arising from NC, whereas VSMCs
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FIGURE 1

PRISMA flow diagram. This graph serves as a visual representation of the literature inclusion and exclusion at each stage, in accordance with the
PRISMA Statement, guiding our systematic and methodical approach in conducting this comprehensive review.
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from the paraxial mesoderm or somites populate the descending

aorta (17, 18). Studies have shown that CNS cells also contribute

to the VSMCs found in some of the branchial arch arteries (19).
4.4 Neural crest cells (NCC)

NCC originate from the neuroepithelium, i.e., the exterior layer

or ectoderm, which is responsible for forming the neural tube that

eventually becomes the central nervous system (3, 20). Gastrulation

causes mesodermal structures to develop between the endoderm

and ectoderm. The paraxial mesoderm divides into segmented

groups of cells known as somites, which are found on either side

of the neural tube. Although these somites are only temporary,

they can produce a wide range of tissues and organs (21).
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During the early stages of embryonic development, the NC

exists as a narrow band of cells located between the neural and

non-neural ectoderm (3, 20). The NCCs migrate dorsally and

then delaminate in a rostrocaudal pattern as the neural tube shuts

(Figure 3). The highly multipotent and temporarily migratory NC

is a vertebrate-specific cell population divided into four main

subpopulations based on their migratory path, terminal location,

and differential abilities: cranial, vagal, trunk, and sacral (22).
4.5 Cardiac neural crest (CNC) cells

Studies have indicated that the vagal NC consists of a smaller

specified group of cells termed as the CNC, known to

significantly contribute to cardiovascular development, along
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FIGURE 2

Representation of the difference in embryological origin of the
thoracic and abdominal aorta.

FIGURE 3

The migration and dispersion of cardiac neural crest cells (NCC). This graph d
to the caudal pharynx and then to the outflow tract (OFT). Reprinted with p
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with aiding in the development of the thymus, thyroid glands, and

cardiac ganglia (3, 23). CNC cells develop along the neural tube

from the mid-diencephalon to the embryo’s most caudal

extremity. These crest cells are classified as cranial or trunk

based on their ability to generate ecto-mesenchyme (22).

CNC cells have an impact on heart formation both directly and

indirectly (6, 11) (Table 1). Alignment and outflow septation are two

distinct phases that co-occur simultaneously during cardiac

morphogenesis. In the alignment phase, the cardiac tube aligns

with the developing vasculature, while in the outflow septation

phase, the ventricular outflow tract is divided into the aorta and

pulmonary artery. Also, CNC cells are necessary for correct

looping and extension of the heart tube, including early

myocardial function, and are crucial in the formation of the

outflow septum and arch artery patterning (22, 24).
4.6 Cellular mechanism of NC
differentiation

During gastrulation, CNC cells are induced from the dorsal

region of the neural plate border, orchestrated by various

regulatory pathways such as Bmp, Wnt, Notch, and, more

recently recognized, Hippo (Figure 4) (37).

NC progenitors obtain their migratory potential by undergoing

epithelial-to-mesenchymal transition (EMT) (38). It has been

demonstrated that different signaling pathways, such as BMP,
isplays the migration and dispersion of cardiac NCC from the neural tube
ermission from Kirby et al. (22).
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TABLE 1 Table showing the cardiovascular neural crest cells (NCC)
derivatives.

NCC Derivatives Description
Outflow septation & aortic
arch derivatives (24)

NCC contributes to the formation of pharyngeal
arches and derivatives, along with aortico-
pulmonary outflow septum formation.

Cardiac valves (6, 25, 26) Cardiac neural crest (CNC) cells are associated
with the formation of the semilunar valves (25)
and atrioventricular (AV) valves (26).

Myocardial cells (27–29) CNC cells are associated with cardiomyogenesis
(27), cardiomyocytes and heart regeneration (28)
in Zebrafish, and their loss could lead to adult-
onset hypertrophic cardiomyopathy (29).

Conductive system (30, 31) CNC cells contribute to the formation of the
conduction system in the heart.

Pericytes (32–34) CNC cells lead to the formation of all blood
vessels of the face and forebrain (32), the central
nervous system (34), and vascular smooth muscle
cells of the Brain (33).

Excitation coupling and C2+
handling (35, 36)

CNC cells are associated with L-type calcium
current in the heart with persistent truncus
arteriosus.

Soliman et al. 10.3389/fcvm.2024.1333265
WNT, and retinoic acid, play critical roles in regulating NC EMT

and migration for proper cardiovascular development. However,

more research into the crosstalk between signalling networks is

required. Delamination from the neural tube is regulated via

BMP-dependent Wnt1 activity, with Wnt1 expression turning off

soon after the cells leave the neural tube (39). Many
FIGURE 4

The disruption of various regulatory pathways of cardiac neural crest (CNC) c
defect phenotypes. Reprinted with permission from Erhardt et al. (36).
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transcription factors and signalling molecules have been

implicated in the later migration steps, proliferation, survival, and

differentiation of the CNC.

Studies have also implicated the Notch signalling pathway for

healthy NC development, including cellular proliferation and

specification (40). Mutations in Notch-target genes such as

Notch1 and Notch2, as well as Notch ligands such as Jagged1,

have been demonstrated to produce a range of heart

abnormalities in mice, including VSD and malformations of the

cardiac OFT and great arteries (41–43).

Varadkar and colleagues (43) discovered that Notch2 is

required for proper NC-derived aortic and pulmonary smooth

muscle formation and disrupting Notch2 in post-migratory CNC

cells with the Pax3-Cre driver results in narrowed OFT and OFT

arteries (aorta and pulmonary) in E17.5 mouse embryos,

indicating a cell-autonomous role for Notch2 in CNC cells.

However, there is a lack of studies that look into how Notch

manipulation contributes to CNC-derived heart development (37).
4.7 Multipotency of NCC

NCCs are multipotent, capable of differentiating into various cells

in our bodies (18, 44). The multipotent capacity of the NCC are

attributed to the combination of complex multimodal gene

regulatory mechanism (44). Studies have shown that CNC could be
ells. This figure shows the role of CNC cells in numerous congenital heart
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differentiated into VSMCc, which could be employed for disease

modelling and drug screening in relation to vasculopathies (17, 18).

Furthermore, second heart field (SHF) progenitors are

multipotent cardiac progenitor cells that play an essential role

with the cardiac NCCs in the development of the OFT and

closely interact with each other (37). As such, SHF is responsible

for forming the heart tube, myocardium, smooth muscle, and

endothelial cells.
4.8 Cardiovascular neurocristopathy

Neurocristopathies are a group of genetic disorders that affect

the development of cells derived from the NC. These could be

from abnormalities in NCC migration, differentiation, or

proliferation leading to structural abnormalities (45).

We have used the term cardiovascular neurocristopathy here to

describe cardiopathy, aortopathy, and its related sequelae of the

vascular and cardiac-specific anatomic region related to the CNC

cell migration.

Cardiovascular neurocristopathy occurs in the form of (1) cardiac

septation disorders, mainly the aortico-pulmonary septum; (2) great

vessels and vascular disorders; (3) myocardial dysfunction; and (4) a

combination of all three phenotypes. This could be attributed to

genetic, familial, sporadic or acquired causes (Figure 5) (5). For

ease of understanding, we have divided the cardiovascular

neurocristopathy into cardiac and vascular neurocristopathy.
FIGURE 5

Cardiovascular neurocristopathy aetiologies and mechanisms.
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Ablation studies have shown that NC abnormalities resulted in

excitation-contraction (EC) coupling defects, especially

contractility and L-type calcium current, causing abnormal

myocardial function and death in-utero, resulting from cardiac

failure (35, 36, 46). After CNC ablation, all the embryos showed

abnormal myocardial function, mis-patterning of the arch

arteries and glandular defects. In comparison, persistent truncus

arteriosus was observed in 90%, while the remaining showed

arterial pole misalignment defects, such as double-outlet right

ventricles (5, 20, 35, 36, 46, 47).
4.8.1 Cardiac neurocristopathy
A failure of CNC cells to migrate to the developing heart can

result in cardiac neurocristopathy, including abnormality of

cardiac septation, outflow tract obstruction, myocardial

dysfunction, and heart rhythm abnormality (6).

The abnormal aorto-left ventricular interaction could lead to

altered aortic dilatation and loss of elasticity, which can induce

left ventricular hypertrophy, reduce coronary blood flow, and

eventually cause left ventricular failure (5, 6, 11). However, the

most important clinical phenotype of cardiac neurocristopathy

is the BAV.

BAV, the most common congenital cardiovascular

abnormality, affects 0.9%–2% of the general population (7, 48). It

causes greater morbidity and mortality than all other congenital

cardiovascular abnormalities combined.
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BAV patients’ VSMCs are less differentiated due to a

phenotypic switch failure, which results in considerably decreased

expression of differentiated, contractile VSMC markers such as

smoothelin, calponin, and SM22alpha. Furthermore, lamina A/C,

which is important for VSMC differentiation, is considerably

expressed lower in the BAV population compared to the

tricuspid aortic valves (TAV) population (9).

Furthermore, although many CHDs are considered non-

syndromic, certain hereditary syndromes, like DiGeorge and

CHARGE, entail NC deficits with established cardiac phenotypes

(37). Not only do NC deficits cause cardiac disorders, but they

are also known to contribute to a variety of craniofacial

malformations that are frequent in human cardio-craniofacial

syndromes, including the most common multiple anomaly

syndromes, DiGeorge, Noonan, and Velo-cardio-facial (49, 50).

4.8.2 Vascular neurocristopathy
Defects in NC migration and differentiation can also lead to

abnormalities in the aortic arch and the great vessels of the head

and neck, resulting in conditions such as coarctation of the aorta,

interrupted aortic arch, and abnormalities in the origins of the

brachiocephalic vessels (6, 51). This includes the thoracic aorta,

innominate artery, its branches, left common carotid, left

subclavian and OFT septae.

Aortic diseases involving the NC zone or vascular

neurocristopathies could be categorized as (1) abnormal elasticity

or increased aortic wall stress, (2) dilatation and aneurysm

formation, and (3) dissection and rupture.

Vascular neurocristopathy constitutes aortic arch and carotid

artery disorders, the most common phenotypes being the

thoracic aortic aneurysm (TAA). As NC contributes to smooth

muscle cells (SMCs) of the aortic arch, the innominate, and the

right and left common carotid arteries, carotid artery dissection

is other possible non-syndromic neurocristopathies. Additionally,

defects in pericyte function can lead to weakened blood vessels,

making them more prone to dissection. Pericytes in the aorta

could have different origins, including SHF, neural crest, and

somites (32, 33, 52, 53). Recent studies also suggest that gene

mutations increase the risk of cervical carotid dissection. These

mutations can affect the formation of the arterial wall, making it

more susceptible to tearing (54).

Dilatation of the thoracic aorta could be due to intrinsic,

hemodynamic abnormalities or both. Intrinsic here refers to the

genetic theory, whereby the presence of aortic wall fragility is a

consequence of a common developmental defect involving the

aortic valve and the aortic wall (55, 56). TAA can be either

hereditary or sporadic, the latter of which occurs without any

known family history. It is estimated that genetic factors are

responsible for about 25% of all TAA cases. Of this percentage,

one-fifth are linked to a known genetic disorder, while the

remaining patients with TAA have a family history of aneurysmal

disease, but the specific gene causing it is yet unknown (54, 57).

One such condition is acute aortic syndrome (AAS), coined by

Vilacosta et al. in 1998, which is a group of severe and potentially

fatal aortic conditions, such as acute aortic dissection (AAD),

traumatic aortic transection (TAT), intramural hematoma (IMH),
Frontiers in Cardiovascular Medicine 07
penetrating aortic ulcers (PAU), and TAA post-SAD, all of which

cause significant risk to life (58, 59).

Cervical carotid dissection and aberrant right subclavian artery

are other such phenotypes linked with NCC, however, its exact

cause is not yet fully understood (60). During embryonic

development, the NCC migrate and differentiate into smooth

muscle cells, which form the arterial wall, and pericytes, which

support the developing blood vessels (32). Cardiac fibroblasts are

derived from heterogeneous source, including the hematopoietic

system, endothelium, epicardium, and neural crest (61).

Abnormalities in NCC migration, differentiation, or proliferation

could lead to structural abnormalities in the arterial wall, making

it more susceptible to tearing. Additionally, defects in pericyte

function can lead to weakened blood vessels, making them more

prone to dissection (32).

An aberrant right subclavian artery is also associated with

abnormal NC migration. When the right fourth pharyngeal arch

artery regresses improperly, it causes an aberrant right subclavian

artery. In this situation, the right dorsal aorta remains

abnormally cranial to the seventh intersegmental artery and

creates the retroesophageal section of the right subclavian artery.

This vascular abnormality is strongly linked to CHD affecting the

outflow tract (OFT) (62).

4.8.3 Co-occurrence of cardiac & vascular
neurocristopathy

The semilunar valves’ embryonic genesis is linked to the

formation of the ascending aorta (25). During late gestation, the

NC plays a crucial role in developing the outflow endocardial

cushions, the precursors of the semilunar valves. The NC is

responsible for remodelling and positioning the cushions,

mesenchymal apoptosis, and proper valve architecture (63).

Moreover, it also contributes to forming the smooth muscle layer

wall of the ascending aorta and aortic arch. Therefore, any

defects in the CNC can result in semilunar valve functional

abnormalities and/or aortic arch artery abnormalities.

Abnormalities in the process of NCC condensation at the early

stages of outflow cushion formation may provide a common

mechanism underlying BAV and explain the link between arterial

wall anomalies and outflow malalignment defects. As a result, a

disruption in the early developing pathways might result not

only in a BAV but also in the accompanying aortopathy. Given

this, BAV patients are at a significantly elevated risk of

developing a thoracic aortic aneurysm (Figure 6) (64).

Patients with BAV might have medial abnormalities in the

form of elastic fibre fragmentation and smooth muscle cell loss,

previously termed “cystic medial necrosis”, which is like Marfan

syndrome (65). However, the flow abnormalities associated with

BAV may contribute to the aortopathy and aortic dilatation (9).

TAAs form in roughly 50%–70% of BAV patients, much greater

than the incidence of TAA generation in patients with tricuspid

aortic valves (TAV) (66).

Aortic dilatation occurs early in the BAV person and is often

characterized by mid-ascending dilation. It is still uncertain

whether aneurysms in BAV patients are caused by changed

hemodynamic forces caused by the defective valve or by an
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FIGURE 6

Schematic of variable aortic phenotypes encountered in bicuspid aortic valve (BAV). Figure demonstrates the different aortic dilatation patterns that
may occur in BAV in comparison with a normal aorta (Top left). Although the most common portion to dilate is the tubular ascending aorta (A), the
entire ascending aorta may be affected, including sinuses of Valsalva and tubular aorta with sinotubular junction effacement (B) There is a subgroup of
BAV patients who exhibit dilatation of the sinuses of valsalva preferentially (C) This pattern is associated with type 1 (right-left fusion) BAV and male sex.
Reprinted with permission from Michelena et al. (7). Copyrights 2023 Wolters Kluwer Health, Inc.
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underlying genetic flaw that causes both BAV and TAA (48). The

evaluation of hemodynamic flow in BAV patients reveals major

changes in flow patterns compared to TAV patients (67).

As BAV is a heterogeneous disease with different aortic

phenotypes, any decision to extend a proximal aortic repair into the

arch while repairing the BAV valve must be individualized. Small

subsets of patients may benefit from prophylactic hemiarch resection

during proximal repair. However, it is challenging to identify those

patients who could potentially develop proximal arch disease.

Furthermore, people with BAV have an eight-fold increased

risk of aortic dissection (68). Despite aortic valve replacement to

improve hemodynamics, some BAV patients develop an

ascending aortic aneurysm (69). Using aorta tissue from BAV

patients, researchers discovered possible indications of aortopathy

of the aortic wall, including immature SMCs (9). Aneurysms

frequently include the aortic root, ascending aorta, and aortic

arch, although the descending aorta is rarely compromised in

BAV/TAA (10).

Congenital BAV is the first nonsyndromic CHD where aortic

dissection and dilation are documented (21). Aortic dissection is

nine times more common in BAV patients than in tricuspid aortic

valve patients and presents at a relatively younger age (55 vs. 63

years) (57). In BAV patients, aortic dilatation starts in childhood,

independent of aortic regurgitation or aortic stenosis (70).
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Histopathological studies of non- and dilated ascending aortic

wall samples from BAV and TAV patients have shown several

structural discrepancies in recent years. Larson et al. reported

one of the first studies that revealed variations in the ascending

aorta of BAV and TAV in 1984 (71). Vascular smooth muscle

cells (VSMCs) play an important role in distinguishing BAV

from TAV histology. VSMCs are not only detected in apoptosis,

but they are also physically different in the BAV population (72).
4.9 CNC ablation phenotypes

The significance of CNC cells in heart development and

function has come from research on chick embryos after the pre-

migratory CNC was removed (11). This NC ablation paradigm

was the first reliable animal experimental model of congenital

heart abnormalities and has served as the “gold” standard for

characterizing the aetiology of heart problems in later

experimental models, including transgenic mice (24).

The major component of the CNC ablation phenotype is

myocardial function abnormalities. Myocardial dysfunction, like the

looping defect, is initially noticed in NC-ablated embryos around

the time NCC should migrate into the caudal pharyngeal arches,

many days before the typical entry of NCC into the outflow canal
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(73). CNC ablation also results in altered SHF proliferation and

abnormal myocardial function as secondary effects (25). Following

CNC ablation, abnormal looping is the earliest visible defect

observed, even before CNC cells reach the OFT. Furthermore,

defective looping could also be seen if the OFT myocardium fails to

add to the heart tube from the anterior subpopulation of SHF cells.

Thus, the looping defects observed after CNC ablation suggest that

CNC cells are required for the normal deployment of SHF cells.

Altered looping could also lead to hemodynamic changes,

potentially causing flow related pathologies (74).

These embryos adjust for reduced contractility by dilatation of

the ventricles, allowing them to retain enough cardiac output for

survival (75). These functional compensations during very early

cardiac development are hypothesized to play an etiologic role in

the eventual development of structural heart abnormalities. At

older ages, when septation would ordinarily be complete, these

embryos have a lower ejection percentage and poor contractility

in the myocardium (49). Reduced embryo weight and oedema

also suggest poor cardiac function (76).

CNC ablation also results in altered SHF proliferation and

abnormal myocardial function as secondary effects (77).

Abnormal looping is the earliest defect seen after CNC ablation

and can be observed before the CNC cells reach the OFT.

Defective looping may be caused by the failure of the addition of

the OFT myocardium to the heart tube from the anterior

subpopulation of SHF cells. Thus, the looping defects observed

after CNC ablation suggest that CNC cells are required for the

normal deployment of SHF cells (78).
4.10 Scrutiny of the systematic review for
40 articles

While this systematic review has endeavoured to shed light on

the complex realm of neurocristopathy, it is important to

acknowledge its inherent limitations. The vast heterogeneity

observed in the 40 manuscripts analyzed underscores the

intricate and multifaceted nature of this field, revealing that the

science surrounding neurocristopathy is still in its infancy. Here,

we outline the key limitations of this review:
4.11 Heterogeneity of data

The foremost limitation arises from the remarkable heterogeneity

observed within the selected manuscripts. The diversity in study

design, patient populations, and research methodologies across the

included articles made it challenging to conduct a uniform

analysis. This heterogeneity emphasizes the need for standardized

approaches in future investigations in neurocristopathies.
4.12 Limited sample size

Many of the manuscripts under review presented data from

relatively small sample sizes. This limitation raises questions
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about the generalizability of the findings and underscores the

need for larger and more comprehensive studies to draw

definitive conclusions.
4.13 Heterogeneity in definitions and
diagnostic criteria

The lack of universally accepted definitions and diagnostic

criteria for neurocristopathy-related conditions posed a

significant challenge. This variability in terminology and

classification across studies hinders efforts to consolidate and

compare data accurately.
4.14 Data quality and reporting

The overall quality of data and reporting in some of the included

manuscripts was variable. Incomplete data, vague reporting of

methods, and limited statistical analyses in certain articles

hindered our ability to perform a robust and consistent review.
4.15 Publication bias

Systematic reviews are inherently susceptible to publication

bias, where positive findings are more likely to be published than

negative or inconclusive ones. This bias may have influenced the

selection of studies included in this review, potentially skewing

the overall findings.
4.16 Inherent challenges of a nascent field

The review’s limitations are compounded by the fact that the

field of neurocristopathy is still in its infancy. The limited body

of research and the evolving understanding of the subject matter

pose inherent challenges in conducting a comprehensive review.
4.17 Lack of longitudinal data

Many of the manuscripts presented cross-sectional data,

lacking longitudinal follow-up of patients. Long-term outcomes

and the natural history of neurocristopathy-related conditions

remain areas of uncertainty.
4.18 Language and geographic bias

The restriction to articles published in the English language

may introduce language bias, potentially omitting relevant

research published in other languages.

As the science surrounding neurocristopathy is still evolving

and much work remains to be done, addressing these limitations

requires collaborative efforts from the scientific community to
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standardize definitions, conduct larger and more comprehensive

studies, and foster a global and multidisciplinary approach to

advancing our understanding. Despite the challenges, this

systematic review represents a critical step in the ongoing

journey to unravel the mysteries of neurocristopathy and pave

the way for more effective diagnosis and treatment in the future.
5 Discussion

The traditional perspective on atherosclerosis as a leading

player in the development of aortic aneurysms and dissections

has been challenged by emerging research. While the well-

established link between atherosclerosis and these conditions

cannot be denied, recent studies have introduced complexity to

this narrative. These studies raise questions about the

multifactorial nature of aortopathy, suggesting that the causes

might extend beyond atherosclerosis (79).

Herein, we contemplate the role of CNC cells and other factors,

such as the gut microbiome and intrinsic inflammatory processes, in

shaping the landscape of aortopathy. This evolving understanding

urges us to explore the intricate web of interconnected factors that

contribute to the pathogenesis of aortopathy (80).

Of paramount importance is the role played by CNC cells in

the genesis of CHDs. As our ability to screen and detect CHDs

in childhood has improved, we have witnessed a rise in the

recognition of CNC deficit phenotypes associated with CHDs.

This observation underscores the interplay between aortopathy

and cardiac abnormalities and prompts the need for further

research to identify the underlying pathogenic factors and genetic

deficits responsible for these cardiac anomalies. Such discoveries

are essential for enhancing diagnostic screening and refining

therapeutic interventions, ultimately improving the lives of

individuals affected by these conditions (57, 81).

Phenotypes characteristic of cardiovascular neurocristopathy,

such as BAV and TAA, share a common embryonic origin in

CNC cells and are surprisingly prevalent in the general

population. BAV, with or without associated aortopathy, affects

around 2% of the population, while TAA is observed in 1% of

individuals. Within this realm, TAA encompasses hereditary and

sporadic cases, with an estimated 25% of all TAA cases having a

genetic component (7, 48).

About one-fifth of TAA cases are linked to known genetic

disorders, while the remaining cases have a positive family

history of the condition, albeit with an unknown causative gene

(70). This complex landscape emphasizes the need for a deeper

understanding of thoracic aorta development and both normal

and defective aortic valves (6). In particular, it is critical, given

the lack of available medications to prevent TAA in BAV patients.

The development of aortopathies, including aneurysms and

dissections, is a potentially life-threatening process, fraught with

the lifelong risk of catastrophic aortic events. Detecting thoracic

aortic aneurysms early and preventing acute aortic syndromes is

a formidable challenge.

Historically, formal screening of aortic diameter has been the

primary method for identifying these conditions and preventing
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life-threatening complications. However, the increasing incidence

of potentially fatal aortopathies, such as acute aortic syndromes,

demands a more profound understanding of aortic pathologies at

the cellular level and their genetic underpinnings. This

knowledge is essential for anticipating the likelihood of aortic

complications in specific patients and tailoring early preventive

and therapeutic interventions to reduce cardiovascular morbidity

and mortality (57).

In essence, a better grasp of cardiovascular neurocristopathies

paves the way for a deeper understanding of disease

pathophysiology, enabling the formulation of precision

management strategies for these potentially fatal cardiovascular

conditions. This journey towards precision medicine is one that

holds the promise of better outcomes for those grappling with

aortopathies and related cardiac anomalies.
5.1 Future perspective

It is imperative to gain a precise understanding of the ultimate

phenotype of central cardiovascular structures. This understanding

will pave the way for the separation of processes contributing to this

final phenotype. By defining novel models of cardiovascular

dysmorphogenesis, we can explore interactions of structure and

function, a dynamic relationship that ultimately shapes the

phenotype. This journey will enable us to comprehend the

involvement of specific genes in the early stages of dysmorphogenesis

and the factors influencing cardiovascular patterning.

Molecular research in cardiovascular neurocristopathy represents

a pivotal moment in our understanding of cardiovascular health,

offering the promise of insights into the intricate mechanisms

guiding the formation of the heart.

Genetic abnormalities associated with aortopathies underscore

the critical role played by smooth muscle cells and the extracellular

matrix in shaping the destiny of cardiovascular neurocristopathies.

These revelations provide a glimpse into cardiovascular

system, shedding light on the genetic underpinnings of

these conditions.

Furthermore, the highly heritable nature of aortic size and

elasticity points to the potential role of multiomics and polygenic

risk scores in the early detection of sporadic cases of

cardiovascular neurocristopathies. This promising avenue could

revolutionize our approach to screening and diagnosis, enabling

early intervention and personalized management strategies.

Molecular insights, genetic revelations, and advanced screening

techniques converge to offer a brighter and healthier future for

those who contend with these intricate cardiovascular conditions.

This exciting period in heart development promises to reshape

the landscape of cardiovascular medicine and enhance our ability

to prevent, diagnose, and treat these challenging disorders.
6 Conclusion

Cardiovascular neurocristopathy emerges as a possible

instigator of a spectrum of cardiac and vascular aortopathies,
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calling into question the very foundations of our understanding of

these conditions. To navigate this uncharted territory and pave the

way for a brighter, healthier future for those who grapple with these

intricate cardiovascular anomalies, we advocate for a concerted

effort in preclinical and clinical research.

In the realm of cardiovascular health, the enigmatic world of

neurocristopathies unfolds as a potential harbinger of thoracic

aneurysms, dissections, and the catastrophic rupture of life’s vital

conduits. It beckons us to explore the uncharted territories of the

heart and vascular system, revealing a panorama of pathologies

that remain largely unaddressed by conventional disease

paradigms. By delving into the differentiation of CNC cells, we

can unlock the mysteries of cardiac neurocristopathies. This

knowledge holds the potential to reshape our approach to

diagnosis, treatment, and prevention, offering a lifeline to those

at risk of these devastating cardiovascular events.

The cardiovascular community is poised to rewrite the

narrative of aortic pathologies and cardiac dysmorphogenesis.

The quest for a deeper understanding of CNC cells and their role

in cardiac neurocristopathies represents a beacon of hope,

promising to illuminate the path toward better cardiovascular

health and a future where these potentially life-threatening

conditions are conquered.
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