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Automatic assessment of
atherosclerotic plaque features
by intracoronary imaging:
a scoping review
Flavio Giuseppe Biccirè, Dominik Mannhart, Ryota Kakizaki,
Stephan Windecker, Lorenz Räber and George C. M. Siontis*

Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
Background: The diagnostic performance and clinical validity of automatic
intracoronary imaging (ICI) tools for atherosclerotic plaque assessment have
not been systematically investigated so far.
Methods: We performed a scoping review including studies on automatic tools
for automatic plaque components assessment by means of optical coherence
tomography (OCT) or intravascular imaging (IVUS). We summarized study
characteristics and reported the specifics and diagnostic performance of
developed tools.
Results: Overall, 42 OCT and 26 IVUS studies fulfilling the eligibility criteria
were found, with the majority published in the last 5 years (86% of the OCT
and 73% of the IVUS studies). A convolutional neural network deep-learning
method was applied in 71% of OCT- and 34% of IVUS-studies. Calcium was
the most frequent plaque feature analyzed (26/42 of OCT and 12/26 of IVUS
studies), and both modalities showed high discriminatory performance in
testing sets [range of area under the curve (AUC): 0.91–0.99 for OCT and
0.89–0.98 for IVUS]. Lipid component was investigated only in OCT studies
(n = 26, AUC: 0.82–0.86). Fibrous cap thickness or thin-cap fibroatheroma
were mainly investigated in OCT studies (n = 8, AUC: 0.82–0.94). Plaque
burden was mainly assessed in IVUS studies (n = 15, testing set AUC reported
in one study: 0.70).
Conclusion: A limited number of automatic machine learning-derived tools
for ICI analysis is currently available. The majority have been developed for
calcium detection for either OCT or IVUS images. The reporting of the
development and validation process of automated intracoronary imaging
analyses is heterogeneous and lacks critical information.

Systematic Review Registration: Open Science Framework (OSF), https://osf.io/
nps2b/.
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GRAPHICAL ABSTRACT

Central Illustration.
Introduction

Since its advent in the early 1990s, intracoronary imaging (ICI) has

become a mainstay clinical and research tool able to expand luminal

information derived from conventional invasive coronary

angiography to the description of the vascular wall components (1,

2). The two most commonly used ICI modalities, namely

intravascular ultrasound (IVUS) and optical coherence tomography

(OCT), are able to provide detailed intracoronary images, allowing

adequate characterization of plaque components, which has been

shown to be critical in percutaneous coronary interventions (2–6).

Accordingly, the most recent international guidelines have upgraded

their endorsement for ICI use during clinical practice (7), especially

in specific settings such as left main disease and bifurcations (8, 9).

The use of ICI has also been applied to identify coronary

lesions with high-risk plaque features related to future coronary

events: a large plaque burden, an extensive lipid component and

a thin fibrous cap (10–12).

Past studies conducted in a core laboratory setting have shown

a high inter- and intra-observer reproducibility for IVUS and OCT

image assessment (13–17). However, the interpretation of coronary

plaque features by means of ICI in routine clinical practice remains

challenging, and the use of a central core laboratory analysis has

been suggested to achieve more reproducible ICI evaluation

(2, 18–20). To overcome these limitations, substantial efforts

have been made to develop innovative ICI build-in software able

to provide an automatic assessment of coronary plaque features
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and guide clinical decisions. The application of automatic IC

imaging analysis tools is constantly increasing (21–23). However,

a lot of uncertainties persist, and, to date, the availability and

diagnostic performance of these novel technologies has not been

systematically investigated. Against this background, we

systematically summarized the available tools for automatic

evaluation of ICI modalities, compared the diagnostic accuracy,

and mapped the development and validation process of those tools.
Methods

This study is reported according to the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (PRISMA) Extension for

Scoping Reviews (PRISMA-ScR) (24) and synthesis without meta-

analysis (SWiM) (25) statements. Patients and the public were not

involved in the design, conduct, reporting, or dissemination plans

of this study. Ethical approval was not required for this scoping

review as primary data were not collected. The study was

conducted based on a prespecified protocol, and was registered in

the Open Science Framework (OSF) (https://osf.io/nps2b/).
Diagnostic imaging modalities of interest

We included studies reporting automatic OCT or IVUS

assessment as these are the most broadly used ICI modalities in
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https://osf.io/nps2b/
https://doi.org/10.3389/fcvm.2024.1332925
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Biccirè et al. 10.3389/fcvm.2024.1332925
daily clinical practice. The OCT technique is increasingly used and,

thanks to its 10–20 microns axial resolution, enables precise

visualization of the coronary wall and atherosclerotic plaque

components such as calcium burden, lipid accumulation, fibrous

tissue and macrophage accumulation (2). The IVUS technique

offers grayscale images with an axial resolution of 80–120 μm

and a penetration depth of 4–8 mm. Deep penetration allows the

acquisition of tomographic images of the entire coronary vessel

wall, especially plaque burden (the percentage of plaque area

within the entire vessel area) and calcification (2).
Literature search strategies

We conducted a systematic review of the literature searching

MEDLINE via PubMed and Embase database using a combination

of the following keywords: “optical coherence tomography”,

“intravascular ultrasound”, “artificial”, “intelligence”, “machine”,

“learning”, “neural network”, “deep”, “learning”, “lipid*”, “calci*”,

“fibrot*” or “hierarchical”. Detailed search algorithms are provided

in the Supplementary Appendix Section 1. As very recent topic

with most of the automatic tools only developed in the last few

years, the research strategy, performed according to PRISMA

guidelines, included only recent literature on the topic and limited

inclusion to studies published after January 1, 2010.
Study selection process

The study selection was performed in sequential phases. In

the first phase, relevant studies in title and abstract level were

obtained by combined searches of electronic databases using

the above-mentioned keywords. In the second phase,

potentially eligible studies were reviewed to assess the

appropriateness with the study question in full text. In

February 2023, two investigators (FGB and DM) independently

screened titles and abstracts of identified manuscripts through

the online database searches for eligibility. The same reviewers

reviewed the potentially eligible studies for appropriateness and

completeness in full text. The reviewers scrutinized the eligible

manuscripts and extracted the required data independently.

Disagreements were resolved in consensus with a third

investigator (GCMS).
Inclusion and exclusion criteria in
study level

We included studies reporting development or validation of an

automatic tool assessment of IVUS or OCT images. We considered

eligible studies that recruited patients with coronary artery disease

undergoing coronary artery wall/plaque evaluation by means of

OCT or IVUS of native coronaries arteries. We included in-vivo

and ex-vivo studies reporting validation and clinical application

of OCT/IVUS software able to obtain an automatic assessment of

native coronary wall tissue and plaque components. We included
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studies of any design, prospective/retrospective diagnostic studies

and post-hoc analysis reporting validation of automatic ICI

software compared to manual assessment, core laboratory

evaluation or pathological findings (specimen). We did not

consider studies that evaluated the diagnostic performance of

automatic tools on stent evaluation. We also excluded studies of

non-original design and experimental studies.
Imaging features of interest

Imaging features of interest were defined as coronary wall and

plaque components considered relevant in clinical practice and

research. Appropriate recognition and evaluation of such features

in ICI images is mandatory to succeed precision and appropriate

guide the treatment strategy in patient level (2). More specific,

we focused on the following features: calcium, lipid, fibrotic

tissue, plaque burden, fibrous cap thickness, pathological intimal

thickening, neovascularization, macrophage infiltration, calcified

nodules, cholesterol crystals and microchannels. Automatic

evaluation of coronary lesion with the proposed automatic tools

may result in reproducible and faster ICI assessment.
Data extraction and charting

From the main report and any accompanied material of each

eligible study, we extracted the following information: first

author, year of publication, recruitment period, study design

(retrospective vs. prospective), funding source(s), previously

published study protocol, dataset (ad hoc enrollment or sub-

analysis of previous datasets), clinical setting, sample size,

number of coronary segments evaluated), the specific imaging

methods with details on imaging acquirement (OCT: domain

[time vs. frequency], manufacturer, pullback speed; IVUS:

imaging system, manufacturer, transducer frequency [MHz],

pullback speed, applied technique to assess wall composition [i.e.,

grey scale or virtual histology)], applied machine learning

methods for automated tool development (training), testing/

validation methods (testing/external), imaging features considered

(calcium, lipid, fibrotic tissue, plaque burden, fibrous cap

thickness, pathological intimal thickening, neovascularization,

macrophage infiltration, calcified nodules, cholesterol crystals

and microchannels), FDA/EC/EMA approval of the automatic

tool. We captured how the definition/diagnosis of the imaging

feature(s) of interest was justified (i.e., independent evaluators).

The following quantitative discriminatory metrics were extracted:

sensitivity, specificity, and diagnostic accuracy (AUC).
Data analysis and qualitative synthesis

We summarized descriptive characteristics of the studies in

separate for IVUS and OCT automatic tools. We provided an

overview of the available automatic tools, their characteristics and

reported diagnostic performance for identification of the ICI
frontiersin.org
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features of interest. We evaluated the changes in diagnostic

performance between the development (training and testing data

set) and validation process of the automatic tools, when

available. Values were considered to refer to the testing set only

if clearly specified.
Results

Study selection process

The study selection flow-chart is provided in Figure 1. The

literature search resulted in 9,649 citations. After screening in

title and abstract level, we identified 318 potentially eligible

reports, which were further evaluated in full text. Seventy-five

study reports were deemed eligible. Of those, 7 reports were

further excluded because of overlapping cohort populations.

Finally, 68 reports were included in the scoping review (42 and

26 reports on OCT and IVUS automatic tools respectively)

(Supplementary Appendix Section 2 and 3).
Study and automatic ICI tools
characteristics

Table 1 summarizes study level characteristics of studies

reporting automatic evaluation of images acquired by either

OCT or IVUS. Detailed characteristics for each study are

provided in the Supplementary Appendix Section 2

(Supplementary Tables 1, 2).

OCT studies
Among the 42 OCT studies, the majority were published

during the period 2017 to 2022 (36 studies), with only 7

studies published between 2010 and 2016 (Table 1,

Supplementary Table S1). The distribution of corresponding

publications over time is illustrated in the Central Illustration.

All but one study had a retrospective design, and a total of

3,959 subjects (median [IQR] of 42 [18–68]) were examined

(total number of coronary segments 4,662 [49 (28–83)].

Thirty-six studies reported non-industry funding. Study

protocols were available in one third of the studies. None of

the automatic algorithms was accepted for clinical use at the

time of the study publication. Eight studies used pathological

validation to develop the automated tool. The most common

machine learning method to develop the imaging analysis

algorithms was the CCN method (71%). A testing dataset was

available in 38 out of 42 studies.

IVUS studies
Of the 26 IVUS studies, 19 were published during the period

2017 to 2022 (Table 1, Central Illustration). Study level

characteristics are reported in Supplementary Table S2. All had

a retrospective design. Information on approval for clinical use

was not provided for any of the newly developed tools. Only

one study used histology as the reference method for
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validation, and approval for clinical use was not reported in

any manuscript. A study protocol was missing for the vast

majority of the studies. The median (IQR) study sample size

was 18 (10–42), with median (IQR) number of assessed

coronary segments of 350 (132–557). Among IVUS studies, the

preferred machine learning method for developing the

automatic imaging tool was other than CNN. Only in 34% of

the studies, CNN was primarily applied for algorithm

development. The algorithm was evaluated in a testing set in

24 out of 26 studies.

Imaging characteristics assessed with
automated ICI tools

As summarized in Table 2, calcium was the most commonly

studied plaque feature (26 out of 42 OCT studies and 12 out of

26 IVUS studies). The other three plaque features examined

by both OCT and IVUS modalities were plaque burden

(4 and 15, respectively), fibrotic tissue (13 and 1, respectively)

and fibrous cap thickness/thin cap fibroatheroma (TCFA) (7 and

2, respectively). OCT studies also reported automated tools for

the assessment of lipid components (26 studies), pathologic

intimal thickening (4 studies), neovascularization (3 studies),

macrophages (3 studies), calcified nodules (1 study), cholesterol

crystals (1 study), and microchannels (1 study).
Diagnostic performance of the automatic
ICI tools

The diagnostic performance in training and testing datasets

of the automated ICI tools to detect plaque components is

shown in Supplementary Tables S3, S4 for OCT and

IVUS, respectively.

Calcium
Among 26 OCT studies investigating automated calcium

analysis, 10 (38%) reported diagnostic accuracy in the training

set and 5 (19%) in the testing set. The discriminatory accuracy

was consistently high in both sets, ranging from 0.72 to 0.98 in

the training set and 0.91–0.99 in the testing set. Similarly,

diagnostic accuracy in the training set (ranging from 0.90 to

0.91, 2 studies) and diagnostic accuracy in the testing set

(ranging from 0.89 to 0.98, 3 studies) were consistently high in

IVUS studies, although fewer studies described accuracy values.

In both OCT and IVUS studies the specificity of automatic tools

for automated calcium detection was higher than sensitivity

(Supplementary Tables S3, S4, respectively).

Lipids
Of 26 studies investigating automatic tools to detect lipid

content on OCT images, 9 reported the diagnostic accuracy in

the training set (ranging from 0.79 to 0.99) and only 2 described

the diagnostic accuracy in the testing set (0.82 and 0.86)

(Supplementary Table S3). IVUS studies reporting automatic

tools for lipid evaluation were not found.
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FIGURE 1

Study selection flow-chart.
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Fibrotic tissue
Overall, 5 out of 13 OCT studies investigating automatic

fibrotic tissue detection reported the diagnostic accuracy in the

training set (ranging from 0.85 to 0.96), and one with testing

set (0.96). Only one IVUS study explored automatic fibrotic

tissue detection, without reporting the accuracy achieved by

the method.
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Plaque burden
Plaque burden was investigated in 4 OCT studies. Among

them, only one reported diagnostic accuracy in the training set

(0.92), and no one in the testing set. The number of IVUS

studies describing automatic tools for plaque burden was higher

(n = 15). However, the diagnostic accuracy was reported only in

one study (testing set 0.70).
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TABLE 1 Study level characteristics of studies reporting on tools of
automatic evaluation of images acquired by OCT or IVUS.

OCT studies
(n = 42)

IVUS studies
(n = 26)

Study characteristics
Year of publication, n (%)

2010–2016 6 (14) 7 (27)

2017–2023 36 (86) 19 (73)

Study design, n (%)

Prospective 1 (2) 0 (0)

Retrospective 41 (98) 26 (100)

Funding source, n (%)

Industry related 0 (0) 0 (0)

Non-industry related 36 (86) 19 (73)

Both 2 (5) 0 (0)

Not available 4 (9) 7 (27)

Approval for clinical usea, n (%)

FDA approval 0 0

CE/EMA approval 0 0

Not available 42 (100) 26 (100)

Study protocol available, n (%)

Yes 15 (36) 4 (15)

No 27 (64) 22 (85)

Reference method, n (%)

Manual 34 (81) 26 (100)

Histology 6 (14) 1 (4)

Both Manual and Histology 2 (5) 0

Clinical setting, n (%)

CAD 34 (81) 25 (96)

Type of CAD not reported 15 (36) 14 (54)

CCS 8 (19) 7 (27)

Both ACS/CCS syndromes 8 (19) 4 (15)

Specimen (Cadaver) 6 (14) 1 (4)

Both in-vivo and specimen 2 (5) 0 (0)

Number of patients

Totalb 3,959 1,711

Median (IQR) 42 (18–68) 18 (10–42)

Number of coronary segments

Totalc 4,662 3,316

Median (IQR) 49 (28–83) 350 (132–557)

Artificial intelligence method, n (%)

CNN 30 (71) 9 (35)

Other 12 (29) 17 (65)

Development & validation process, n (%)

Training dataset 42 (100) 26 (100)

Testing dataset 38 (91) 24 (92)

ACS, acute coronary syndrome; CAD, coronary artery disease; CNN, convolutional

neural network; IQR, interquartile range; CCS, chronic coronary syndromes.
aBased on what is reported in the corresponding paper.
bNumber of individuals not available in 9 OCT studies and 2 IVUS studies.
cNumber of coronary segments not available in 6 OCT studies and 19 IVUS studies.

TABLE 2 Intracoronary imaging features evaluated in individual studies.

OCT studies
(n = 42)

IVUS studies
(n = 26)

Intracoronary imaging features, n (%)
Calcium 26 (62) 12 (46)

Lipids 26 (62) –

Fibrotic tissue 13 (31) 1 (4)

Fibrous cap thickness/TCFA 7 (17) 2 (8)

Plaque burden (EEM + lumen border) 4 (10) 15 (58)

Pathological intimal thickening 4 (10) –

Neovascularitation 3 (7) –

Macrophages 3 (7) –

Calcified nodules 1 (2) –

Cholesterol crystals 1 (2) –

Microchannels 1 (2) –

EEM, external elastic membrane border; TCFA, thin-cap fibroatheroma.

Biccirè et al. 10.3389/fcvm.2024.1332925
Fibrous cap thickness
Among 8 OCT studies investigating automatic assessment of

fibrous cap thickness or TCFA, 3 (38%) reported diagnostic

accuracy in the training set and 4 (50%) in the testing set. The

discriminatory ability was consistently high in both sets,

ranging from 0.81 to 0.93 in the training sets and 0.82–0.94 in

the testing set. Two IVUS studies described the diagnostic

accuracy for TCFA in the training set and one in a testing

set. Bae et al. (26) used a 200 µm threshold (due to the
Frontiers in Cardiovascular Medicine 06
IVUS resolution) and trained IVUS against OCT images,

reporting a diagnostic accuracy of 0.80 in the training set and

0.82 in the testing set for IVUS to detect TCFA <200 µm. Jun

et al. (27) used OCT and IVUS images in a common pre-

processing to train IVUS images in recognized OCT-detected

TCFA <65 µm. By training the CNN classifier with an

augmented IVUS image, the tool increased considerably the

discriminatory accuracy to 0.91.
Other features
Other plaque features were investigated only in OCT studies:

one study reported diagnostic accuracy for pathological intimal

thickening (0.85 in the testing set), 1 study reported diagnostic

accuracy for neovascularization in training set (0.90) and 2 in

testing set (0.90 and 0.99), 1 study reported diagnostic accuracy

for macrophage detection (0.88 in the training set) and 1 study

reported diagnostic accuracy for calcified nodules (0.91 in both

training and testing set).
Discussion

Summary of evidence

Tools for automatic real-time imaging analysis acquired by ICI

imaging methods are increasingly applied to improve the

diagnostic performance. Although such machine learning-based

tools have been introduced with high expectations, their clinical

applications are still limited. Our evaluation showed that:

- A limited number of automatic machine learning-based

tools for ICI analysis is currently available, without proven

clinical validity.

- The majority have been developed for calcium detection

for either OCT or IVUS images, for assessment of lipid and

FCT/TFA content on OCT images, and plaque burden on

IVUS images.

- The reporting of development and clinical validation process of

these tools is lacking critical information.
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Appropriate interpretation of medical images can be

challenging, time-consuming and is associated with high inter-

observer variability (28). Against this background, researchers

and physicians have recently started benefiting from computer-

assisted imaging evaluations (29). In our scoping review, we

found that studies investigating automatic ICI tools have

considerably increased over time, but still the number of

available tools are limited with no proven clinical validity. In

addition, the vast majority of them are non-industry funded

and investigator-initiated, reflecting the clinical need and

interest of clinicians to get access to such tools in routine

clinical practice.
Development of automatic tools ICI analysis
Plaque tissue characterization involves the identification and

classification of different tissue layers. Automation of the tissue

characterization process requires a machine learning-based

software tool to provide a real-time analysis able to help

physicians in routine clinical practice. Generally, machine

learning-based algorithms require the use of a gold standard as

prior information, and based on these prior labels (classes)

(supervised approaches), training coefficients are estimated

using the training image dataset. Among machine learning

techniques, convolutional neural networks (CNNs), a deep

learning-based technique, has gained a lot of attention in

medical imaging mainly due to the ability to extract more

high-level features (29). We found that CNN was the most

commonly used method to develop the imaging analysis

algorithm in OCT (71%) but not in IVUS studies (34%). This

is probably related to the increasing number of automated

OCT automatic tools in the recent years, while most IVUS
FIGURE 2

Distribution of discriminatory performance (area under the curve) of autom
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tools were developed more than 5 years ago. When considering

IVUS studies published in the last 3 years, most of them

applied CCNs.
Imaging characteristics assessed with automated
ICI tools

In our study, we found an increasing use of automated OCT

tools, especially for calcium (62%), lipids (62%), fibrous tissue

(31%) and fibrous cap thickness (19%). Conversely, IVUS studies

have increased less in recent years, and focused more on the

automatic assessment of plaque burden (58%), and on

calcium (46%) (Graphical Abstract).

Previous data have shown that the detection of plaque calcium

burden can identify vessels at higher risk of suboptimal stent

implantation in which more aggressive debulking techniques can

be of benefit (3). As the presence of calcium can be detected

with good accuracy at both OCT and IVUS manual assessment,

it is not surprising that the vast majority of both OCT and IVUS

studies developed algorithms to automatically detect calcium.

The accuracy described with both techniques was high and

consistent (0.72–0.98 with OCT and 0.89–0.98 with IVUS),

although OCT studies reported more frequently accuracy metrics

than IVUS (Figure 2). Of note, the accuracy shown by IVUS

techniques was not dependent on the frequency of image

acquisition (30). Collectively, these data suggest that automated

calcium assessment stands out as a tool suitable for early

integration into clinical practice.

A large lipid core and a TCFA are well-described characteristic

of plaque vulnerability and represent important information during

PCI to achieve adequate lesion coverage and safe landing zones

(12, 31). Nonetheless, routine manual assessment of lipid
atic tools in training and testing datasets for OCT and IVUS.
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components and fibrous cap thickness remains challenging and

study investigating the inter-observer variability showed

controversial results (19, 20). In our study, lipid and fibrous cap

thickness automatic measurements represented the second and

third most frequent OCT features under investigation,

respectively. A cap thickness of 65 μm was used to differentiate

TCFA and fibroatheroma in OCT studies (32–34). OCT software

showed high accuracy >0.80–0.85 for both lipid and FCT/TCFA

automatic evaluation. However, only two studies described the

accuracy for automatic lipid detection and four for automatic cap

thickness quantification (22, 32–36). No IVUS software was

developed to detect intra-plaque lipid accumulation. It is well

acknowledged that greyscale IVUS is affected by a low accuracy

in recognizing hypoechogenic tissues like lipids. This limitation

has been overcome with the introduction of the combination

catheter IVUS-near-infrared spectroscopy (IVUS-NIRS), a

modality that can recognize intraplaque cholesterol accumulation

with chemograms (37). A few studies investigated tools to

automatically detect FCT/TCFA on IVUS images. However,

despite good accuracy, the cut-off of 65 μm could not be applied

in IVUS studies due to the lower resolution of this technique.

The 200 µm IVUS threshold used by Bae et al. (26) to identify

IVUS-derived TCFA has not been clinically validated for clinical

outcomes and is far from the plaque vulnerability thresholds

shown by pathologic studies (38). A higher number of studies

investigated the automatic quantification of plaque burden at

IVUS images. Even though this could be the most valuable

application of machine learning-based tools in IVUS images,

only one reported the diagnostic performance in the testing

dataset, which was moderate (diagnostic accuracy of 0.70) (26).

Clinical application and future considerations
Distinct steps of development (training and testing),

validation and clinical evaluation of machine learning-based

algorithms for diagnosis or prediction purposes have been

established (39–42). In the case of machine learning-derived

tools either as standalone medical device software or embedded

within an intracoronary imaging modality, there are additional

challenges to be considered (43). A few studies have already

reported effective applications of automatic ICI evaluation in a

clinical context. In 103 patients undergoing high-intensity

statin therapy, Blanco et al. showed similar results between

manual annotation and machine learning-based evaluation in

detecting favorable changes in percent of atheroma volume

(44). The potential usefulness of a machine learning-based

approach for the study of plaque vulnerability was recently

shown in a CLIMA substudy investigating an OCT-derived

lipid core burden index (OCT-LCBI). A large lipid

accumulation detected by a CNN algorithm (maximum OCT-

LCBI in 4 mm segment ≥400) was significantly associated with

a thin fibrous cap <75 µm and future cardiac events (45).

Similarly, Niioka et al. reported that an OCT-derived TCFA,

diagnosed by a CNN-based algorithm, was independently

associated with clinical events (36). Recently, integrated

dual-modality imaging systems combining OCT with NIRS or

near-infrared fluorescence have been explored in ex-vivo
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and experimental studies to implement chemogram-based

lipid detection in OCT catheters (46–48). However, definitive

data and clinical application of these techniques are lacking

to date (49, 50).
Limitations

Our study has several limitations. First, we investigated

only diagnostic accuracy, without reporting other metrics

such as calibration and correlation coefficients. However,

the included studies were characterized by inadequate and

considerably heterogeneous reporting, which did not allow

us to summarize other quantitative metrics of interest. This

also suggests that the specific field requires the establishment

of standardized approaches on how to develop and report

such machine learning-derived algorithms for ICI evaluation.

Second, due to the heterogeneous reporting in diagnostic

performance metrics, we were not able to derive any

conclusions about the comparative performance among

these newly developed machine learning-based tools and

across the distinct steps of training/testing. Third, we included

only machine learning-based tools described in peer-

reviewed publications. This approach may have excluded

tools which are described only on companies’ websites or

preprint platforms.
Conclusions

A limited number of automatic machine learning-derived

tools for ICI analysis is currently available, without proven

clinical validity. The majority have been developed for calcium

detection for either OCT or IVUS images. The reporting of the

development and validation process of automated

intracoronary imaging analyses is heterogeneous and lacks

critical detail.
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