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MRI pattern characterization of
cerebral cardioembolic lesions
following atrial fibrillation
ablation
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Hospital, Turin, Italy, 2Department of Medical Sciences, University of Turin, Turin, Italy, 3Division of
Cardiology, Santa Croce e Carle Hospital, Cuneo, Italy, 4Department of Cardiology, Civic Hospital of
Chivasso, Chivasso, Italy
Background: Recognizing etiology is essential for treatment and secondary
prevention of cerebral ischemic events. A magnetic resonance imaging (MRI)
pattern suggestive of an embolic etiology has been described but, to date,
there are no uniformly accepted criteria.
Aim: The purpose of the study is to describe MRI features of ischemic cerebral
lesions occurring after transcatheter ablation of atrial fibrillation (AF).
Methods: A systematic review and meta-analysis of studies performing brain
imaging investigations before and after AF transcatheter ablation was
performed. The incidence of cerebral ischemic lesions after AF transcatheter
ablation was the primary endpoint. The co-primary endpoints were the
prevalence of the different neuroimaging features regarding the embolic
cerebral ischemic lesions.
Results: A total of 25 studies, encompassing 3,304 patients, were included in the
final analysis. The incidence of ischemic cerebral lesions following AF
transcatheter ablation was 17.2% [95% confidence interval (CI) 12.2%–23.8%], of
which a minimal fraction was symptomatic [0.60% (95% CI 0.09%–3.9%)]. Only
1.6% of the lesions (95% CI 0.9%–3.0%) had a diameter >10 mm, and in 20.5%
of the cases the lesions were multiple (95% CI 17.1%–24.4%). Brain lesions were
equally distributed across the two hemispheres and the different lobes; cortical
location was more frequent [64.0% (95% CI 42.9%–80.8%)] while the middle
cerebral artery territory was the most involved 37.0% (95% CI 27.3–48.0).
Conclusions: The prevailing MRI pattern comprises a predominance of
small (<10 mm) cortical lesions, more prevalent in the territory of the middle
cerebral artery.
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Introduction

Stroke is a leading cause of mortality and long-term disability (1); recognizing the

underlying cause of stroke is relevant for treatment, prognosis, and secondary

prevention (2). However, about 25% of strokes are defined “cryptogenic” because the

etiology remains unknown in spite of exhaustive investigations (3). Hart et al. recently

proposed to call these types of lesions “embolic strokes of undetermined source”
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(ESUS) (4), considering that the vast majority recognizes an

embolic etiology. Detecting a potential mechanism would,

indeed, be relevant, when therapeutic options aiming at

preventing recurrences are available, such as the initiation of oral

anticoagulation in case of atrial fibrillation (AF) or percutaneous

closure in case of suspected paradoxical embolism through a

patent foramen oval (PFO).

With the development of computerized tomography (CT) and

magnetic resonance imaging (MRI) techniques, a specific imaging

pattern of brain lesions for every etiologic type of acute stroke has

been hypothesized. A number of studies have concluded that in

cardioembolic strokes, lesions are mostly multiple and cortical in

location (5–7), but a systematic description of the neuroimaging

features associated with a cardioembolic genesis of ischemic

strokes is presently lacking. In the past two decades, silent

cerebral lesions have been described at MRI following AF

transcatheter ablation (8). These lesions have been carefully

identified by comparing imaging before and after the procedure

with MRI diffusion-weighted imaging (DWI) sequences, the most

sensitive technique for the detection of acute cerebral ischemia (9).

Because during an uncomplicated transcatheter AF ablation the

patient does not experience hemodynamic compromise, we

hypothesize that the pathophysiological mechanism underlying

brain lesions is embolic, and not related to hypoperfusive genesis.

The major mechanisms involved include endothelium damage at

transseptal puncture, conventional clotting (e.g., from the groin)

and crossed emboli in the iatrogenic interatrial septum defect,

and thermal thrombus formation in the left atrium (charring and

gas embolism). In addition, during a transcatheter ablation the

introduction of bulky devices, such as multielectrode catheters,

and balloons carries a risk of air embolism (10).

In the present study we conducted a systematic review and

meta-analysis to describe the neuroimaging features of newly

formed cardioembolic lesions after AF transcatheter ablation.
Methods

This work was conducted following the Preferred Reporting

Items for Systematic reviews and Meta-Analyses (PRISMA)

guidelines (11).
Search strategy

Pertinent articles were searched in MEDLINE/PubMed with

MeSH strategy, using the following terms: ((cerebral lesion* OR

stroke OR silent cerebral lesion OR SCI embolism) AND cerebral

MRI AND (Atrial fibrillation ablation OR Fib ablation OR AF

ablation)). The search was ended on 30 January 2023.
Study selection and data extraction

Two independent reviewers (EB, MB) screened the retrieved

citations through title and/or abstract. When potentially
Frontiers in Cardiovascular Medicine 02
pertinent, the studies were appraised as complete reports

according to the following inclusion/exclusion criteria:

• They reported the absolute number of new ischemic cerebral

lesions that occurred after AF transcatheter ablation; this

implies that the included studies were designed to perform

cerebral MRI scan prior to and immediately after the

ablation procedure.

• They reported at least one of the evaluated characteristics of the

ischemic cerebral lesions (please refer to the following section

regarding the specific study endpoints for detailed description

of evaluated features).

Exclusion criteria were non-human setting; duplicate reporting (in

which case, the manuscript reporting the largest sample of patients

was selected).

Two independent, unblinded reviewers (EB and

MB) abstracted the following data on prespecified forms:

authors, journal, year of publication, baseline clinical and

interventional features, cerebral MRI protocol, and

neuroimaging features. Data collection was conducted by

mutual agreement and all potential disagreement was resolved

by a third reviewer (AS).
Study endpoints

The incidence of new cerebral ischemic lesions after AF

transcatheter ablation was the primary endpoint. The co-primary

endpoints were the prevalence of the following neuroimaging

features regarding new cerebral ischemic lesions:

• Lesion dimension: size > 10 mm;

• Multiple lesions;

• Left vs. right hemisphere location;

• Cortical, subcortical (white matter and/or basal ganglia), or

cerebellar location;

• Involved anatomical lobe: frontal, parietal, occipital, temporal;

• Involved vascular territory: anterior cerebral artery (ACA),

middle cerebral artery (MCA), posterior cerebral artery (PCA),

and border zone (BZ).

The secondary endpoint was the incidence of symptomatic cerebral

ischemic events (stroke/transient ischemic attack).
Statistical analysis

The baseline characteristics of the pooled study populations

were reported as median values and their interquartile ranges

(IQRs). The meta-analysis of the proportions (crude incidence

of new cerebral ischemic lesions and prevalence of the

prespecified neuroimaging features) was performed using a

generalized linear mixed models (12) under a random-effect

framework and the results were reported together with the

corresponding 95% confidence interval (CI). Cochrane I2 test

was used to investigate heterogeneity, with I2 values of 25%,

50%, and 75% representing, respectively, mild, moderate, and

extensive heterogeneity. Statistical analyses were performed with
frontiersin.org
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R version 4.0.0 (R Foundation for Statistical Computing,

Vienna, Austria) and p-values less than 0.05 were considered

statistically significant.
Results

The initial search retrieved 125 studies. Among these, three

studies were removed because of duplication, and one study

was not assessed for eligibility because of the unavailability of
FIGURE 1

PRISMA flowchart of the study selection process.
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the English translation. Given that 39 studies were not

pertinent to the topic of the meta-analyses, 82 studies were

assessed for eligibility, and 25 eventually included (13–37).

Figure 1 reports the detailed PRISMA flowchart of the selection

process. The resulting meta-analytic population encompassed

3,304 patients who had undergone AF transcatheter ablation

and pre- and post-procedure cerebral MRI scans to detect new

ischemic lesions. More details regarding the included studies, in

particular concerning the adopted cerebral MRI protocol, the

ablation technique, and the energy source are reported in
frontiersin.org
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TABLE 1 General characteristics of the included studies.

Study Patients Study-specific MRI definition
of cerebral ischemic lesions

Number of
lesions

Ablation details

Lickfett et al. (13) 20 DWI/FLAIR/TSE sequences 3 RF, point-by-point

Gaita et al. (14) 232 DWI EPI sequences 34 RF, point-by-point

Neumann et al. (24) 89 DWI EPI sequences 7 RF, point-by-point (49.4%)/Cryobaloon, single shot (50.6%)

Gaita et al. (31) 108 DWI/FLAIR sequences 36 RF, point-by-point (66.7%)/Cryobaloon, single shot (33.3%)

Deneke et al. (32) 86 DWI EPI sequences 119 RF, point-by-point

Siklódy et al. (33) 74 DWI EPI sequences 30 RF, point-by-point (68.9%)/Cryobaloon, single shot (31.1%)

Scaglione et al. (34) 80 DWI EPI sequences 7 RF, point by point

Rillig et al. (35) 70 FLAIR/DWI EPI sequences/T1 16 RF, point-by-point

Sramko et al. (36) 58 DWI sequences 1 RF, point-by-point

Herm et al. (37) 37 DWI sequences 56 RF, point-by-point

Verma et al. (15) 60 DWI sequences 1 RF, point-by-point

Martinek (16) 131 DWI EPI sequences 25 RF, point-by-point

Haeusler et al. (17) 37 DWI EPI sequences 22 RF, point-by-point

Deneke et al. (18) 88 DWI sequences 51 RF, point-by-point (46.6%)/Cryobaloon, single shot (22.7%)/
Laserbaloon, single shot (30.7%)

Di Biase et al. (19) 428 DWI EPI sequences 42 RF, point-by-point

Deneke et al. (20) 43 DWI sequences 26 RF, point-by-point

Wissner et al. (21) 86 DWI sequences 21 RF, point-by-point (25.6%)/Cryobaloon, single shot (23.2%)/
Laserbaloon, single shot (51.2%)

Von Bary et al. (22) 52 DWI/FLAIR sequences 54 RF, point-by-point (90.4%)/Cryobaloon, single shot (9.6%)

Bergui et al. (23) 927 DWI sequences 164 RF, point-by-point/Cryobaloon, single shota

Nakamura et al. (25) 160 DWI/FLAIR sequences 64 RF, point-by-point/Cryobaloon, single shota

Nagy-Balò et al. (26) 27 DWI/FLAIR sequences 11 RF, point-by-point

Miyazaki et al. (27) 256 DWI/FLAIR sequences 180 RF, point-by-point/Cryobaloon, single shota

Keçe et al. (28) 70 DWI/FLAIR/TSE sequences 18 RF, point-by-point

Yu et al. (29) 55 DWI sequences 106 RF, point-by-point

Malikova et al. (30) 30 DWI/FLAIR sequences 3 RF, point-by-point

FLAIR, fluid attenuated inversion recovery; EPI, echo-planar imaging; RF, radiofrequency.
aPercentages not available.
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Table 1. The AF type was paroxysmal in the majority of the

patients (69%, IQR 59%–97%). The median age was 61 (IQR

58–63) years with a nearly 2:1 male-to-female ratio (males

68%, IQR 63–75).

The incidence of new ischemic cerebral lesions in patients that

had undergone AF transcatheter ablation was 17.2% (95% CI

12.2%–23.8%; I2: 93%) (Figure 2A). Among these lesions, only a

minimal proportion had ischemic symptoms [0.60% (95% CI

0.09%–3.9%; I2: 56%)] (Figure 2B).

Concerning the neuroimaging features of the new cerebral

ischemic lesions, the size, reported in 16 studies (evaluating 778

lesions), had a diameter of above 10 mm in 1.6% (95% CI 0.9%–

3.0%; I2: 10%) of the cases (Figure 3A). Multiple lesions,

described in 13 studies (464 lesions), were reported in 20.5%

(95% CI 17.1%–24.4%; I2: 0%) of the scans (Figure 3B). The

pooled prevalence of left hemisphere location, reported in 14

studies (667 lesions), was 42.3% (95% CI 31.7%–53.7%; I2: 83%)

(Figure 3C). The cortical location (reported in 13 studies, 661

lesions) showed the highest pooled prevalence [64.0% (95% CI

42.9%–80.8%; I2: 94%); Figure 3D] while lesions were, instead,

subcortical (5 studies, 266 lesions) or cerebellar (12 studies, 627

lesions) in 25.5% (95% CI 7.1%–60.7%; I2: 91%; Supplementary

Figure S1) and 15.2% (95% CI 9.7%–23.1%; I2: 75%;

Supplementary Figure S2) of the cases, respectively. The pooled

prevalence of frontal lobe location (13 studies, 627 lesions) was

19.7% (95% CI 14.3%–26.5%; I2: 63%; Figure 3E), while parietal
Frontiers in Cardiovascular Medicine 04
(12 studies, 595 lesions), occipital (12 studies, 593 lesions), and

temporal (10 studies, 537 lesions) lobes were involved in 17.1%

(95% CI 9.3%–29.5%; I2: 87%; Supplementary Figure S3), 12.1%

(95% CI 8.9%–16.1%; I2: 29%; Supplementary Figure S4), and

8.6% (95% CI 3.5%–19.8%; I2: 79%; Supplementary Figure S5) of

the scans, respectively. The vascular territory of the MCA was

the most commonly involved (3 studies, 81 lesions), reported in

37.0% (95% CI 27.3%–48.0%; I2: 0%; Figure 3F) of the cases.

ACA (3 studies, 242 lesions), PCA (3 studies, 242 lesions), and

border zone (3 studies, 108 lesions) territories were involved in

28.5% (95% CI 23.2%–34.5%; I2: 0%; Supplementary Figure S6),

28.1% (95% CI 22.8%–34.1%; I2: 0%; Supplementary Figure S7),

and 22.9% (95% CI 8.5%–48.8%; I2: 81%; Supplementary

Figure S8) of the scans, respectively.
Discussion

The main findings of the present analysis are as follows

(Figure 4—Graphical Abstract):

• Among the proportion of patients presenting a cerebral

ischemic lesion at cerebral MRI after AF transcatheter ablation

(17%), 0.6% are symptomatic from a neurological standpoint.

• These cardioembolic cerebral lesions are generally balanced

between the right and the left sides and are ubiquitously detected

in all cerebral lobes; the lesions are typically small (diameter less
frontiersin.org
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FIGURE 2

Forest plot for (A) overall and (B) symptomatic periprocedural cerebral ischemic lesions incidence.
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than 10 mm), generally single (multiple only in about 20% of the

cases), and they preferentially affect the cerebral cortex (in nearly

two-third of the cases) of the MCA vascular territory.
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Determining the underlying cause of an acute stroke is

important not only to guide patient’s immediate management but

also to prevent new events, given that stroke recurrence is strongly
frontiersin.org
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FIGURE 3

Forest plot of the different neuroimaging features: (A) diameter more than 10 mm, (B) multiple lesions, (C) left hemisphere location, (D) cortical
location, (E) frontal lobe location, and (F) middle cerebral artery territory location.
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related to its specific etiology (38–40). Imaging has a primary role in

early diagnosis of strokes: in fact, some patterns of brain infarction

may suggest a specific cause. In particular, regarding ESUS, early

identification of a potential cause underlying the ischemic event

might be of paramount importance, since it could expedite the

clinical decision process leading to the adoption of therapeutic

strategies, such as initiation of oral anticoagulation in case of an

AF-related genesis. Moreover, considering that patients with AF

frequently present asymptomatic cerebral lesions (41), keeping in
Frontiers in Cardiovascular Medicine 06
mind that AF-related subclinical lesions might be due to several

mechanisms (42–47), recognizing a certified neuroimaging pattern

suggestive of subclinical AF-related lesions might even help

prevent the occurrence of clinically relevant events.

Despite these potential benefits, a systematic description of the

neuroimaging features associated with a cardioembolic genesis of

ischemic strokes is presently lacking. For this purpose, AF

transcatheter ablation can be regarded as an in vivo model of

cardioembolic lesions, used to derive a neuroimaging
frontiersin.org
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FIGURE 4

Graphical abstract.
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“fingerprint” of typical cardioembolic lesions. In fact, during an

uncomplicated transcatheter AF ablation the patient does not

experience hemodynamic compromise, making a hypoperfusive

genesis (due to transient reduction of cardiac output) of new

cerebral ischemic lesions not plausible. Other cardioembolic

models, such as cardiac surgery [during which hypotensive

episodes might occur (48)] or transcatheter aortic valve

replacement [the rapid ventricular pacing performed during valve

deployment temporarily reduces cardiac output (49)], certainly

do not share this feature.

The present analysis suggests that typical cardioembolic

lesions, such as occurring during an AF ablation procedure, tend

to be located at a cortical level and, particularly, in the vascular

territory of the middle cerebral artery. Cerebral lesions related to

a hypoperfusive genesis, instead, more commonly are subcortical

and determine watershed infarcts (50–52). Watershed infarcts

occur at the border between cerebral vascular territories where

the tissue is furthest from arterial supply and thus most

vulnerable to hypotension and hypoperfusion, or might

exacerbate embolism-related damage (e.g., delayed embolism

“washout,” impaired perfusion of ischemic penumbra) (53). In

any case, this neuroimaging “fingerprint” differs quite clearly

from that of cerebral lesions related to a cardioembolic genesis.
Limitations

The analysis is limited by the inherent limitations of a

meta-analysis. In particular, although all studies performed
Frontiers in Cardiovascular Medicine 07
diffusion-weighted imaging sequences to detect new cerebral

lesions, hidden technicalities across the different studies

cannot be excluded. Moreover, the present results might

apply prevalently to a population of paroxysmal AF patients

undergoing catheter ablation. In addition, although we selected

a cut-off value of 10 mm to distinguish between smaller and

larger lesions, we cannot exclude that different cut-offs (e.g., 3

or 5 mm) might be more appropriate and provide different

trends. Finally, we cannot directly exclude that the populations

included in studies from the same Research Groups might

present partial overlaps.
Conclusions

In conclusion, by thoroughly assessing incidence and

neuroimaging features of cerebral ischemic lesions following AF

transcatheter ablation, it emerges that in predominance they

consist of small (<10 mm) cortical lesions, almost ubiquitous in

all cerebral lobes and in both hemispheres, prevalent in the

territory of the middle cerebral artery.

The present analysis supports the existence of an, at least,

suspicious neuroimaging “fingerprint” of cardioembolic brain

lesions. If confirmed in specifically designed studies, specific

neuroimaging features in de novo cerebral lesions would

rapidly prompt a tailored clinical management, shortening time

to diagnosis of the underlying etiology, and, potentially,

preventing recurrences.
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