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Application of adipose-derived
stem cells in ischemic heart
disease: theory, potency, and
advantage
Weizhang Xiao and Jiahai Shi*

Department of Cardiothoracic Surgery, Affiliated Hospital and Medical School of Nantong University,
Nantong, China
Adipose-derived mesenchymal stem cells (ASCs) represent an innovative
candidate to treat ischemic heart disease (IHD) due to their abundance,
renewable sources, minor invasiveness to obtain, and no ethical limitations.
Compared with other mesenchymal stem cells, ASCs have demonstrated great
advantages, especially in the commercialization of stem cell-based therapy.
Mechanistically, ASCs exert a cardioprotective effect not only through
differentiation into functional cells but also via robust paracrine of various
bioactive factors that promote angiogenesis and immunomodulation.
Exosomes from ASCs also play an indispensable role in this process. However,
due to the distinct biological functions of ASCs from different origins or
donors with varing health statuses (such as aging, diabetes, or atherosclerosis),
the heterogeneity of ASCs deserves more attention. This prompts scientists to
select optimal donors for clinical applications. In addition, to overcome the
primary obstacle of poor retention and low survival after transplantation, a
variety of studies have been dedicated to the engineering of ASCs with
biomaterials. Besides, clinical trials have confirmed the safety and efficacy of
ASCs therapy in the context of heart failure or myocardial infarction. This
article reviews the theory, efficacy, and advantages of ASCs-based therapy, the
factors affecting ASCs function, heterogeneity, engineering strategies and
clinical application of ASCs.
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Introduction

Ischemic heart disease (IHD), the most prevalent cardiovascular disease, is the culprit

in majority of acute heart events, and remains the leading cause of death globally (1). This

condition arises from the stenosis and blockage of coronary arteries, which inevitably leads

to a decreased blood supply to the heart, resulting in irreversible damage to myocardium

filling with necrotic cardiomyocytes. Significant decline in cardiac function develops,

progresses to heart failure and death ultimately. Despite remarkable progress in drug

development and advancements in interventional and surgical treatments over the

centuries, neither of them can reverse the myocardial necrosis caused by extended

periods of hypoxia. Given the limited regenerative capacity of cardiovascular tissue after

injury in mammals, stem cells have emerged as a promising strategy for treating IHD.

Mesenchymal stem cells (MSCs) are a subset of stem cell family that reside in virtually

all tissues with specific stem cell niches in the human body (2). MSCs can be obtained
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2024.1324447&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fcvm.2024.1324447
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1324447/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1324447/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1324447/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1324447/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2024.1324447
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Xiao and Shi 10.3389/fcvm.2024.1324447
from various depots, including bone marrow (BM-MSCs),

umbilical cord (UC-MSCs), adipose tissue. Among them,

adipose-derived mesenchymal stem cells (ASCs) are particularly

appealing due to their high accessibility, minimally invasive

harvesting, high stem cell density, low immunogenicity, and no

ethical restrictions (3). In this review, we highlight the

advantages of ASCs-based therapy compared to other MSCs and

explore the heterogeneity of ASCs. We focus on the therapeutic

potential of ASCs in treating IHD through differentiation into

functional cells, puissant paracrine that facilitates

immunomodulation and angiogenesis, as well as engineering

strategies and current clinical applications of ASCs.
What are the advantages of ASCs
compared with BM-MSCs and
UC-MSCs?

Besides readily access and high yield, ASCs present some

unique biological features compared to BM-MSCs and UC-

MSCs. Table 1 summarizes the differences among these three

types of MSCs. Specifically, to exclude the impact of donor

health status, origin of MSCs, and culture strategy on the growth

profile and senescence of MSCs, researchers isolated BMSCs and

ASCs from the same donor. Their findings suggested that

compared with BM-MSCs, ASCs displayed faster proliferation,

shorter doubling time, and postponed senescence featured with

longer telomere and lower expression of p16ink4a (a characteristic

gene of senescence) (4). Intriguingly, ASCs exhibited preferential

adipogenesis, while BMSCs retained superior osteogenesis, which

might be related to their distinct origin (5–9). Furthermore,

ASCs have shown enhanced improvement in wound healing

compared to their bone marrow-treated counterparts, suggesting

a superior paracrine potential (10). In addition, higher

concentration of cytokines including interlukin-6 (IL-6) and

transforming growth factor-β (TGF-β) was observed in the

supernatant of ASCs compared to BM-MSCs (11). ASCs also

exerted potent immunosuppressive effects on T cells and DCs,

along with upregulation of indoleamine 2,3-dioxygenase (IDO), a

marker of MSCs immunosuppression on mononuclear cells

(11–13), insinuating a stronger immunosuppressive capacity.

Meanwhile, it is undeniable that the accessibility, high yield, and

cultural expandability of cell candidates in vitro are crucial for
TABLE 1 Different characteristics of ASCs compared with BM-MSCs and UC-

Features ASCs BM-MS
Availability High Low

Process of procurement Safe Invasive,

Cell yield High Low

Doubling time Controversial

Senescence rate Controversial

Adipogenesis High Medium

Osteogenesis Medium High

Chondrogenesis Controversial

Pro-angiogenesis High Medium

Immunomodulation High Medium
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successful cell-based therapy. In this respect, ASCs offer several

advantages, including abundant sources, efficient scalability, low

immunogenicity, and powerful immunosuppressive capacity. These

features make ASCs suitable for both autologous and allogeneic

transplantation and have exhibited exciting prospects for the

commercialization of stem cell-based therapy.
How does it work: the mechanism of
ASCs treatment for IHD?

The views on the mechanisms behind the use of ASCs in the

treatment of IHD continues to evolve over time. These

developing theories will undoubtedly drive the better

administration of ASCs. As illustrated in Figure 1, ASCs possess

competent differentiation and paracrine potential, enabling them

to effectively treat IHD from multiple aspects.
Is differentiation potential the primary
mechanism behind ASCs-based
therapy?

The differentiation of ASCs into other cell lines was once

perceived as the key mechanism behind ASCs-based therapy.

Beyond their fundamental trilineage potential in vitro, ASCs have

been widely observed to differentiate into endothelial cells (ECs)

and cardiomyocytes (CMs) under certain circumstances (14, 15).

For instance, Kendra Clark, et al. observed the endothelial

differentiation of ASCs when cultured in endothelial differentiation

media. A specific 3D culture system enhanced this process, and a

high concentration of vascular endothelial growth factor (VEGF)

further augmented endothelial differentiation (16). Meanwhile,

hypoxia treatment, which mimics the native physiological niche of

ASCs, was found to facilitate the endothelial lineage differentiation

of ASCs under stimulation with VEGF and bone morphogenetic

protein-4 (BMP4) (17). Except VEGF, basic-fibroblast growth

factor (bFGF) is another effective inducer of ECs differentiation

from ASCs, with an induction rate exceeding 85% (18). Moreover,

shear stress, which simulated the ECs environment in vivo, has

been found to facilitate endothelial differentiation of ASCs and

upregulate the expression of anti-thrombogenic markers (19). In

animal models, plentiful human CD31-positive cells and
MSCs.

Cs UC-MSCs
Medium

painful, risky of infection Safe, non-invasive

High

Low

Medium

Medium

Medium
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FIGURE 1

Schematic illustration of the mechanism of ASCs treatment for IHD. ASCs can differentiate into CMs, ECs, and beating cells/pacemaker cells. ASCs own
robust paracrine function which promotes angiogenesis and immunomodulation on macrophage polarization and atherosclerosis. Exosomes released
from ASCs contain biologically active substances such as proteins, lipids, and mRNA which possess comparable therapeutic effects on IHD.
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regenerated blood vessels were observed in mouse hindlimbs injected

with human stromal-vascular fraction (SVF), the origin of ASCs,

suggesting that SVF cells have the potential to differentiate into

endothelial cells and promote vascular regeneration directly (20).

In terms of mechanism, miR-145 was identified as a key

component in EC differentiation of ASCs, Upregulation of miR-

145 suppressed the EC differentiation via regulating ETS1

expression, which can be reversed by overexpression of ETS1 (21).

UTP is considered as another regulator of ASCs cardioprotective

property in IHD, which not only enhances the revascularization in

ischemic myocardium, but also directly promotes the endothelial

differentiation of ASCs (22, 23).

On the other hand, although it seems more difficult for ASCs to

differentiate into cardiomyocyte-like cells compared to endothelial

cells, there are still numerous studies that have discovered this

differentiation potential of ASCs. For instance, in 2015, HIROKI,

et al. have found ASCs derived from cardiac adipose tissue could

directly differentiate into cTnT-positive cells in vivo, while ASCs

from subcutaneous, visceral, and subscapular adipose tissue failed

to differentiate into cardiomyocytes (15). This finding indirectly

highlights the challenges associated with cardiomyocyte

differentiation of ASCs. To effectively induce ASC differentiation

into cardiomyocytes, Zhang and his colleagues designed a type of

gelatin/polycaprolactone fibers which promoted cardiomyocyte

differentiation and facilitated ASCs proliferation as well (24).
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Wang, et al. discovered that chitosan can facilitate cardiac

differentiation of ASCs through enhancing the collagen synthesis

(25). They developed an injectable chitosan hydrogel as a deliverer

for ASCs, which not only enhanced the cardiomyocyte

differentiation, but also improve the survival of ASCs in infarcted

hearts. Furthermore, Yan, et al, cultured ASCs on a polylactic acid

(PLA) nanopillar array, then observed distinct cardiomyocyte-like

cell markers and the induced ASCs injected into the myocardium

exhibited significant protective effects on ischemic myocardium

(26). Therefore, the differentiation of ASCs into cardiomyocytes is

not only possible, but also feasible and holds great promise.

Besides, ASCs possess the potential of differentiating into

pacemaker cells, giving insight into the treatment of arrhythmia,

one common complication of IHD (27). To achieve that,

scientists added certain differentiation factors such as BMP4 into

the culture medium (28), or transfected ASCs with specific genes

closely related to sinoatrial node function, such as TBXs (29, 30).

Nevertheless, the statement that ASCs differentiate into

functional cells is not rigorous. It seems more appropriate to call

these differentiated cells “endothelial-like cells, cardiomyocyte-

like cells, and pacemaker-like cells”. Meanwhile, ASCs implanted

into the ischemic myocardium, either locally or systemically, will

struggle with a harsh microenvironment characterized by

hypoxia, elevated oxidative stress, free radical production, limited

nutrient supply, and the presence of proinflammatory cytokines,
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along with infiltration of immune cells (31). As a result, only a few

ASCs are retained within proximity to the graft site and effectively

integrate into the affected host tissue (32). Therefore, it may be the

other mechanism rather than differentiation capability dominates

the ASCs-based therapy.
What is the role of proangiogenic
paracrine of ASCs?

Since the implanted cells hardly survive in the tough soil in

vivo, the potent paracrine of ASCs may be responsible for the

compensatory angiogenesis in the ischemic area. Numerous

studies have revealed that ASCs produced a variety of cytokines

that promote angiogenesis, including VEGF, bFGF, hepatocyte

growth factor (HGF), platelet-derived growth factor (PDGF),

insulin-like growth factor-1 (IGF-1), et al. (33–36). Among these

various angiogenic cytokines, VEGF is particularly notable due to

its close relation to angiogenesis. In vitro studies have shown that

ASCs generate high concentration of VEGF into the supernatant,

especially when cocultured with human umbilical vein

endothelial cells or endothelial progenitor cells (14, 37).

Furthermore, under the hypoxic conditions which imitated the in

vivo environment of IHD, ASCs secreted higher amounts of

VEGF, HGF, and stromal-derived factor-1 (SDF-1) compared to

normoxic conditions (38–40). The lesion-associated hypoxia,

which curbed the survival of engrafted stem cells, would

inevitably lead to the activation of hypoxia-inducible factor 1,

resulting in increased VEGF release, its classical target gene (41).

Additionally, pretreating ASCs with endothelial differentiation

medium dramatically enhanced their proangiogenic action by

increasing the amount of microvesicles released by ASCs (42).

The underlying mechanism involves the transfer of microRNAs

in microvesicles from ASCs to the vascular endothelial cells.

The potent proangiogenic function of ASCs has also been

confirmed in vivo. In murine models of skin pressure ulcers and

ischemic hindlimbs, injection of ASCs led to the formation of high-

density capillary and branched tubelike structures, accompanied by

accelerated recovery (43–45). Similarly, in a rat model of

myocardial infarction (MI), administration of ASCs increased

angiogenesis in the ischemic area, decreased infarct size, and

improved heart function (46). Comparable results were observed in

the swine model, which was closer to humans (47). Furthermore, a

clinical study conducted in Japan utilized autologous ASCs for

patients with limb ischemia. The application of ASCs significantly

improved the clinical outcomes through angiogenesis without

adverse events (48). Collectively, angiogenesis, driven by the robust

paracrine action of ASCs, has been identified to play a primary role

in the ASC-based IHD therapy.
How does ASCs achieve therapeutic
action via immunomodulation?

Following an MI, the innate immune response is triggered,

characterized by the recruitment and infiltration of massive
Frontiers in Cardiovascular Medicine 04
inflammatory immune cells, such as monocytes-derived-M1

macrophages, which eventually transformed into anti-

inflammatory M2 macrophages, accompanied by the release of

various pro- and anti-inflammatory cytokines. Studies have

shown that coculture of ASCs and macrophages in vitro

significantly induced macrophages toward reparative M2

phenotype and altered their cytokine secretion (49). Additionally,

ASCs-based therapy has been found to increase the percentage of

M2 macrophages in both spontaneously hypertensive rats and

ischemic cardiomyopathy models, leading to improved disease

prognoses (50, 51), indicating the therapeutic potential of ASCs

in modulating the innate immune system.

Importantly, ASCs transplantation has been extensively

proposed as an effective approach to treat atherosclerosis (ATH),

which underlies many vascular disorders, such as aneurysm,

atherosclerosis obliterans, and IHD. The protective potency of

ASCs on ATH is primarily attributed to their robust paracrine

action, which involves the release of various bioactive factors,

such as IDO, TGF-β1, and IL-10, along with decreased release of

pro-inflammatory cytokines, including TNF-α and IL-1β (52, 53).

IDO is widely considered to suppress the proliferation of T cell

and NK cells, impede TH17 differentiation and DCs maturation

(13, 54), while IL-10 blocks macrophage activation, disrupts the

production of pro-inflammatory cytokines and matrix

metalloproteinase (MMP), and represses T cell proliferation,

thereby impacting the local inflammatory response within the

lesion (55). Moreover, TGF-β1 is involved in the decrease of NK

cells proliferation and the MSC-mediated induction of

CD4 +CD25 + Foxp3+ regulatory T cells (Tregs) (53). Tregs then

exert a protective effect by suppressing the function of Th1/Th2

cells and DCs and promoting the stability of atherosclerotic

lesions by inhibiting the expression of MMP-2 and MMP-9,

which are crucial in degrading extracellular matrix proteins (56).

Intriguingly, T cell activation was significantly inhibited when

cocultured with ASCs under hypoxia, manifested by the

upregulation of anti-inflammatory cytokines including PDCD1,

Foxp3, and TGFβ1, and downregulation of genes involved in

pro-inflammatory response such as IL2 and IFNG (57). In

animal models of ATH, ASCs transplantation dramatically

reduced the total cholesterol, triglyceride, and low-density

lipoprotein cholesterol levels, while increasing high-density

lipoprotein cholesterol levels, and ameliorating the pathological

status of aortic ATH (58). Therefore, ASCs exert a positive effect

on IHD from the immunopathology.
ASC-derived exosomes and IHD

Exosomes are nano-vesicles secreted by cells into the

extracellular environment, containing biologically active

substances such as proteins, lipids, and mRNA. In recent years,

ASC-derived exosomes have demonstrated similar therapeutic

effects on IHD as ASCs. For instance, Xing, et, al. revealed

ASCs-derived exosome delayed the development of ATH through

a miR-342-5p mediated endothelial protection (59). In animal

MI models, exosomes extracted from ASCs exerted therapeutic
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effect by promoting angiogenesis via miR-205 and miR-31 (60, 61),

preventing cardiomyocyte apoptosis and hypertrophy via miR-221/

222 (62–64), enhancing M2 macrophage polarization (65),

ameliorating excessive ROS production, and attenuating cardiac

fibrosis (66). To enhance the retention of exosomes in ischemic

myocardium, Ankita and his colleagues constructed a

polyurethane modified with antioxidant gallic acid (PUGA) and

decellularized extracellular matrix dECM combined scaffold

patch to deliver ASC-derived exosomes (67). Their results

showed decreased fibrosis, promoted angiogenesis, reduced

oxidative stress after application of patch, as well as improved

cardiac function. Nowadays, due to their low immunogenicity,

minimal tumorigenicity, and easy storage and transportation,

exosomes have garnered increasing attention as a potential

therapeutic tool for IHD.
Does the tissue type or origin of ASCs
affect their biological function?

Mammalian adipose tissue comes in three types: white, brown,

and beige (68). White adipose tissue (WAT), as the primary

energy-storing organ and chief culprit of obesity, occurs in various

locations, including intraabdominal and subcutaneous sites; brown

adipose tissue (BAT) exists in cervical, axillary, periadrenal, and

perirenal area in the fetus and newborn and then transforms into

WAT with aging. Nowadays, emerging shreds of evidences have

supported the presence of BAT in adults human, located in the

supraclavicular, perirenal, and deep neck region, with a

thermogenic function (69). Beige adipose tissue, also known as

brite adipose tissue, is a phenotype that arises from the

“browning” of WAT upon cold exposure (70). Currently, there is

limited research on the differences between ASCs obtained from

BAT and WAT, partly due to scarcity of BAT depots, especially in

humans. However, studies have shown enhanced proliferation,

differentiation, and paracrine potential of ASCs isolated from BAT

in contrast to WAT. For instance, ASCs obtained from pericardial

and thymic depots exhibited longer doubling time compared to

those from the subcutaneous or intraperitoneal region (71).

Moreover, ASCs obtained from BAT have demonstrated

spontaneous differentiation into cardiomyocytes, which can be

further accelerated by chitosan hydrogel (25).

Except for tissue type, the organ origin of adipose tissue also

affects the characteristics of ASCs. ASCs derived from the

epicardial fat of cardiac patients have been found to induce a

superior angiogenic effect and produce higher amounts of

angiogenic, trophic, and inflammatory cytokines compared with

ASCs from subcutaneous fat, which can result in worse heart

function after MI due to their proinflammatory properties (36).

Furthermore, scientists have demonstrated that subcutaneous

ASCs and ASCs from the intraabdominal region, both of which

belong to WAT, develop different proliferation and adipogenic

differentiation potential. ASCs from subcutaneous adipose tissue

display an enhanced adipogenesis potential, while progenitor cells

isolated from the infrapatellar fat pad express higher levels of

chondrogenic markers (72). Therefore, considering the distinct
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biological behavior of ASCS from different origins, it is crucial to

select suitable cell candidates for preclinical application.
Factors affecting the function of ASCs:
aging, diabetes mellitus, and
atherosclerosis

Currently, autologous transplantation remains the

predominant strategy for stem cell-based therapy. However, the

viability and quality of stem cells can be significantly affected by

the general health of donors. In clinical settings, patients

undergoing cell transplantation usually suffer from systemic

pathologies such as hypertension, diabetes, or autoimmune

disease. The heterogeneity of ASCs remarkably imposes

restrictions on the efficacy of autologous transplantation,

highlighting the importance of selecting the optimal donor for

allotransplantation. Given that patients with IHD are typically

elderly and often have diabetes or atherosclerosis, these three

factors have been studied extensively as a matter of course. The

factors that impact the function of ASCs are detailed below and

summarized in the accompanying figures (Figure 2).
Aging

While the decrease in the number of ASCs with increasing age

remains controversial (73), there is no denying that aging exerts a

negative impact on the biological feature of ASCs. Firstly, studies

have shown that the proliferative rate of ASCs obtained from older

animals or individuals declined dramatically (74, 75). Additionally,

ASCs derived from older donors exhibited typical senescence

phenotypes, including an increased percentage of G1/G0 phase-

arrested cells, decreased telomere length, elevated β-galactosidase

activity, and binucleation as well (76). Moreover, the differentiation

capability of ASCs from older donors was reduced, although it

might be rescued by different cell culture procedures (77).

Furthermore, the decline in function of ASCs from older patients

was evident in their reduced production of pro-angiogenic factors

such as VEGF, HGF, PIGF, and ANG, as well as their inferior

attenuation of CD4+ T cells proliferation, indicating an age-

associated reduction in paracrine and immunomodulatory capacity

(78). Given that MSCs, including ASCs, play a crucial role in repair

after injury, the decreased function due to aging can be a significant

pathogenic factor in age-related pathologies such as atherosclerosis,

diabetes, and arterial hypertension.
Diabetes mellitus

In the microenvironment of patients with diabetes mellitus

(DM), some subtle changes occurs, including hyperglycemia,

excessive oxidative stress, mitochondrial dysfunction,

proinflammatory cell status, and hypoxia, which inevitably

impact ASCs to some extent (79, 80). Scientists have reported

decreased proliferation, increased senescence and apoptosis, and
frontiersin.org
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FIGURE 2

Factors affecting the function of ASCs. Aging, ATH, and DM exert negative impact on the characteristic and function of ASCs through different
mechanisms.
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downregulated VEGF expression in diabetic ASCs (81, 82), as well

as impaired EC differentiation manifested by declined vWF and

CD31 compared with healthy counterparts (83, 84). In addition

to VEGF, diabetic ASCs secreted lower levels of angiogenic

factors than healthy ASCs, including FGF, PDGF, SDF-1,

osteopontin, insulin-like growth factor binding protein-3, and

monocyte chemoattractant protein-1 (82). They failed to form

tubular structures in Matrigel, and their potential of promoting

angiogenesis was notably impaired (85). Consistent with in vitro

study results, the degree of vascularization and wound healing in

the mice wound model with implantation of diabetic ASCs was

significantly reduced compared with that with nondiabetic ASCs

(82, 86). Besides, the adipogenesis (84) and osteogenic

differentiation (87) potential of diabetic ASCs also declined,

indicating a loss of cell stemness in the hyperglycemic

environment. It has been reported that hyperglycemia generates

advanced glycation end products (AGEs), which induces

osteoclast formation and apoptosis of osteoblasts (87). However,

this effect may differ in humans, as ASCs from DM patients

demonstrated robust osteoblast differentiation, indicating the

complexity of ASCs biological behavior (88). Moreover, ASCs

derived from DM patients exhibit an inflammatory phenotype,

characterized by activation of NLRP3 inflammasome and

subsequent alterations in immunomodulatory capacity (89).

Furthermore, in pressure-ulcer model, mice treated with

nondiabetic ASCs displayed less infiltration of inflammatory cells

into the dermis and more new blood vessels in situ during the

first 2 weeks compared with diabetic ASCs; however, these

advantages disappeared afterward (43). The underlying

mechanism of adverse effect of hyperglycemic microenvironment

of DM on ASCs remains to be further explored.
Atherosclerosis

ASCs play a protective role in the development of ATH. In turn,

ASCs from ATH subjects (ATH-ASCs) exhibit distinct features

compared with those isolated from non-ATH donors. Scientists have
Frontiers in Cardiovascular Medicine 06
found elevated intracellular reactive oxidative stress (ROS) and

mitochondrial ROS in ATH-ASCs (90). ROS activates NF-κB as a

secondary messenger, leading to the increased accumulation of HIF-

1α and upregulated expression of pro-inflammatory cytokine and

chemokine (91). The ROS scavenger N-acetyl-L-cysteine can reduce

the secretion of these cytokines in ATH-ASCs, enhance their survival

and immune potency. Additionally, patients with ATH displayed a

higher level of CD4+ T cells activation compared to those without

ATH, and ASCs from non-ATH patients demonstrated superior

inhibition on proliferating CD4+ T cells (78). Therefore, it is evident

that ATH significantly impairs the immunomodulatory function of

ASCs and negatively affect their therapeutic efficiency. In this case, it

is advisable to exclude ATH subjects from the selection of suitable

donors for regenerative medicine.
Engineered ASCs

The primary obstacles to effective cell therapy include inadequate

cell retention and low survival rates, which limit further clinical

application. For decades, extensive studies have focused on

encapsulation of ASCs within a variety of biomaterials to enhance

their delivery and retention in ischemic myocardium. For instance,

Follin, et al. (92) embedded human ASCs in an alginate hydrogel

and reported no adverse effects on cell viability, phenotype,

immunogenic properties, or paracrine activity. Similarly, the

fullerenol/alginate hydrogel was found to dramatically scavenge the

superoxide anions in ischemic area, thereby enhancing ASCs

retention and survival, and ultimately promoting cardiac recovery

in a rat MI model (93). Besides, chitosan hydrogel has been

considered an ideal carrier due to its components facilitating

cardiac differentiation of ASCs (25). In vivo studies have revealed

enhanced survival of engrafted ASCs, increased generation of

ASCs-derived cardiomyocytes, improved angiogenesis, and

preserved cardiac healing. In addition to various hydrogels (94, 95),

a growing number of biomaterials have also shown promise in

enhancing cell retention and promoting cardiac repair, including

Matrigel (96), collagen type-1 scaffold (97), superparamagnetic iron
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oxide nanoparticles (98), poly(lactic-co-glycolic acid) (PLGA) (99),

decellularized pericardium (100), poly(ε-caprolactone-co-glycolic

acid) and poly(ethylene glycol) (tri-PCG) (101), conductive

electrospun nanofibers (102), injectable cryogels (103), et al.

Biomaterials for ASCs delivery have demonstrated great potential in

preclinical studies and provide guidance for their application in the

treatment of MI in human clinical studies.
Clinical trials

Based on various in vitro and in vivo studies, ASCs

transplantation has been widely utilized for IHD treatment in

clinical trials. Quantities of clinical trials have been conducted to

assess the safety, feasibility, and effectiveness of ASC in

individuals with heart diseases (Table 2). However, due to the

complexity and severity of IHD, the current clinical applications

of ASCs in the field remain in the early phases (phage I/II).

The Netherlands clinical trial conducted by Jaco H. Houtgraaf

and his colleagues in 2007 (NCT00442806) (104) was the first

clinical trial using ASCs in IHD. This trial was a randomized,

parallel assigned, double-blinded clinical trial for ST-segment

elevation acute myocardial infarction. Totally 14 patients were

enrolled and after 6 months of follow-up, the study uncovered

that intracoronary injection of freshly isolated ASCs was safe

and effective, with no adverse effect related to ASCs
TABLE 2 Completed and ongoing trials of ASCs in heart disease.

Clinicaltrials.gov
identifier

Study design Disease type

NCT01709279 Single group assignment, open label Ischemic heart failure

NCT00426868 Randomized, parallel assignment,
phase I

Ischemic heart disease

NCT00442806 Randomized, parallel assignment,
phase I

Acute myocardial
infarction

NCT01449032 Double-blind, parallel assignment,
phase II

Chronic ischemic hea
disease

NCT03746938 Single group assignment, open
label, phase I

Heart failure with
reduced ejection fract

NCT02387723 Single group assignment, open
label, phase I

Heart failure

NCT02673164 Double-blind, parallel assignment,
phase II

Heart failure

NCT03092284 Double-blind, parallel assignment,
phase II

Heart failure

NCT01556022 Randomized, parallel assignment,
phase II

Myocardial ischemia

NCT01216995 Randomized, parallel assignment,
phase II

Acute myocardial
infarction

NCT02052427 Randomized, parallel assignment,
phase II

Myocardial ischemia

NCT04005989 Double-blind, parallel assignment,
Phase III

Ischemic heart disease

NCT03797092 Randomized, parallel assignment,
phase II

Non-ischemic dilated
cardiomyopathy

NCT02673164 Randomized, parallel assignment,
double-blind, placebo-controlled,
phase II

Heart failure with
reduced ejection fract

MACCE, major adverse cardiac and cerebral events; LVESV, left ventricular end-systoli
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implantation, no decline of coronary blood flow, improved

cardiac function, and reduction of scar formation. Besides, a

recent 3-year follow-up MyStromalCell Trial (NCT01449032)

(105) performed by Abbas Ali Qayyum and colleagues published

the data of autologous ASCs treatment in 60 patients with

chronic refractory angina. This study observed a marked decline

in chest discomfort and a decrease in frequency of angina

attacks in the ASCs group. However, no significant differences

were observed between the two groups in the exercise tolerance

testing. In their latest SCIENCE trial (NCT02673164) (106),

allogeneic ASCs from healthy donors were injected

intramyocardially into 133 IHD patients with reduced ejection

fraction. Three-year follow-up data disclosed the safety of

allogeneic ASCs therapy. However, there were no significant

differences in cardiac function including LVEF, LVESV, and

LVEDV between ASCs and placebo group. In clinical trial

NCT03797092 (107), scientists utilized the cryopreserved

product ASCs from healthy donors to treat patients with IHD

and observed improved cardiac function without ASCs-related

immune response after 6-months of follow-up. In another

research followed-up for 12-month, authors utilized cardiac

magnetic resonance to evaluate the improvement of cardiac

function. Thirteen patients with IHD were enrolled and accepted

ASCs implantation. Their results disclosed increased stroke

volume and left ventricle ejection fraction, as well as improved

cardiac output after 12 months of follow-up (108).
Route of
delivery

Endpoint Enrolled
number

Status

Intracoronary
injection

All cause harmful
events

6 Enrolling by
invitation

Transendocardial
injections

Safety, feasibility 27 Completed

Intracoronary
injection

Safety, feasibility 14 Completed

rt Intramyocardial
injection

Exercise test,
clinical evaluation

60 Completed

ion
Collagen membrane
seeded

MACCE 10 Recruiting

Intramyocardial
injection

Safety, cardiac
efficacy

10 Completed

Intramyocardial
injection

LVESV, safety 133 Active, not
recruiting

Intramyocardial
injection

LVESV, safety 81 Active, not
recruiting

Intramyocardial
injection

Safety, cardiac
function

28 Completed

Intracoronary
injection

Reduction in infarct
size, MACCE

23 Completed

Intracoronary
injection

Cardiac function,
safety

3 Completed

Intracoronary
injection

All cause harmful
events

40 Not yet
recruiting

Intramyocardial
injection

LVESV, LVEF 30 Recruiting

ion
Intramyocardial
injection

LVESV, safety 133 Completed

c volume.
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The completed clinical trials in Table 2 showed the safety and

efficacy of ASCs therapy in IHD without exception. However, most

studies evaluated the major adverse cardiac and cerebral events

(MACCE) as the adverse effect and cardiac function at a very

early stage, which might overlook the potential risks and

overstate the benefit of ASCs implantation. Inflammation and

embolism have been recognized as the major blight of ASCs

application. Longtime follow-up clinical trials with a large sample

size will provide more supportive data for this procedure.
Conclusion

ASCs are readily obtained, with minimal invasiveness, high

yield, low immunogenicity, and no ethical issues, which enable

them an innovative option in regenerative medicine. Meanwhile,

ASCs have exhibited great advantages both in autologous and

allogeneic transplantation, especially in the commercialization of

stem cell-based therapy. ASCs play a protective role in IHD

through differentiation into cardiomyocytes and endothelial cells,

but more importantly acting as “paracrine factories” where a

large quantity of cytokines is produced to trigger angiogenesis

and modulate the immune system. However, the heterogeneity of

ASCs should attract more attention due to that tissue origin or

health state of donors affects cell properties and functions.

Therefore, a critical and proper criterion will enable us to select

the appropriate donors for clinical applications. Moreover, to

overcome the limitation of low retention after engraftment,

engineered ASCs through biomaterials have exhibited great

potential in preclinical studies. Continuously optimized delivery

strategies are of great value in clinical transformation of ASCs.
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