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Construction and validation
of risk prediction models
for pulmonary embolism
in hospitalized patients based
on different machine
learning methods
Tao Huang1†, Zhihai Huang1†, Xiaodong Peng1†, Lingpin Pang1,
Jie Sun1, Jinbo Wu1, Jinman He1, Kaili Fu2, Jun Wu2* and
Xishi Sun1*
1Emergency Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang,
Guangdong, China, 2Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical
University, Zhanjiang, Guangdong, China
Objective: This study aims to apply different machine learning (ML) methods to
construct risk prediction models for pulmonary embolism (PE) in hospitalized
patients, and to evaluate and compare the predictive efficacy and clinical
benefit of each model.
Methods: We conducted a retrospective study involving 332 participants (172 PE
positive cases and 160 PE negative cases) recruited from Guangdong Medical
University. Participants were randomly divided into a training group (70%) and
a validation group (30%). Baseline data were analyzed using univariate analysis,
and potential independent risk factors associated with PE were further
identified through univariate and multivariate logistic regression analysis. Six
ML models, namely Logistic Regression (LR), Decision Tree (DT), Random
Forest (RF), Naive Bayes (NB), Support Vector Machine (SVM), and AdaBoost
were developed. The predictive efficacy of each model was compared using
the receiver operating characteristic (ROC) curve analysis and the area under
the curve (AUC). Clinical benefit was assessed using decision curve
analysis (DCA).
Results: Logistic regression analysis identified lower extremity deep venous
thrombosis, elevated D-dimer, shortened activated partial prothrombin time,
and increased red blood cell distribution width as potential independent risk
factors for PE. Among the six ML models, the RF model achieved the highest
AUC of 0.778. Additionally, DCA consistently indicated that the RF model
offered the greatest clinical benefit.
Conclusion: This study developed six ML models, with the RF model exhibiting
the highest predictive efficacy and clinical benefit in the identification and
prediction of PE occurrence in hospitalized patients.

KEYWORDS

pulmonary embolism, hospitalized patients, machine learning, prediction models,

random forest
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2024.1308017&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fcvm.2024.1308017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1308017/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1308017/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1308017/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1308017/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1308017/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1308017/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2024.1308017
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Huang et al. 10.3389/fcvm.2024.1308017
Introduction

Venous thromboembolism (VTE), including deep vein

thrombosis (DVT) and pulmonary embolism (PE), is a common

and life-threatening condition (1). PE is a general term for a

group of diseases or clinical symptoms caused by various emboli

from different sources and types (thrombus, fat embolus,

amniotic fluid embolus, air embolus, etc.) entering the main

pulmonary artery and its branches, thus causing pulmonary

artery stenosis or even occlusion. PE is categorized into several

types based on different sources of emboli, including pulmonary

thromboembolism (PTE), fat embolism syndrome, amniotic fluid

embolism, air embolism, etc. Among these, PTE is the most

frequently observed (2).

PE ranks as the third leading cause of cardiovascular mortality

globally, following stroke and myocardial infarction (3). In the

United States, approximately 360,000 people are diagnosed with

PE each year, and approximately 60,000–100,000 patients die from

PE each year (4). However, as a cardiopulmonary vascular disease

with high morbidity and mortality, most patients with PE have

diverse and atypical clinical symptoms, and some routine

examinations lack specificity, resulting in high rates of clinical

misdiagnosis and underdiagnosis. Once diagnosed accurately at an

early stage and given appropriate treatment, the morbidity and

mortality of PE can be effectively reduced. Therefore, early

diagnosis of PE and timely assessment of the risk of PE are

crucial. Due to the lack of specificity in the clinical symptoms of

PE, patients’ lack of attention, the absence of hospital instruments

and equipment, and the limited knowledge of medical workers,

the screening and diagnosis of PE become challenging.

Although some scoring rules have been developed for assessing

the risk of PE, such as the Wells score and the revised Geneva

score, which are often used in clinical practice, they are mainly

designed for outpatients with suspected PE and are inaccurate for

use in hospitalized patients (5, 6). Consequently, there is a need

to develop a predictive tool with high efficacy specifically for

assessing the risk of PE in hospitalized patients.

In recent years, significant strides in computer performance

have led to a notable phenomenon of medical-industrial

integration, marked by the gradual introduction of machine

learning algorithms into the medical domain. Machine learning

(ML) have been extensively employed in the detection and

diagnosis of various diseases, including heart disease (7), kidney

disease (8), liver disease (9), and diabetes (10). Furthermore, the

utilization of ML in PE is prevalent. For instance, Villacorta et al.

employed ML to investigate the role of D-dimer in risk

stratification of PE (11). Su et al. devised a ML technique to

discern the severity of PE using clinical features and

hematological indicators (12). Wang et al. utilized ML to forecast

the 30-day mortality rate of critically ill PE patients (13). These

studies underscore the promising application of ML techniques,

developed from high-dimensional medical data, for PE. Notably,

there remains a dearth of attention on the development and

utilization of machine learning to identify the risk of PE in

hospitalized patients. Consequently, the objective of this study

was to employ different ML methods to construct risk prediction
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models for PE in hospitalized patients and to assess and compare

the predictive efficacy and clinical benefit of each model, aiming

to determine the optimal model.
Patients and methods

Study design and patients

This study was approved by the Medical Ethics Committee of

the Affiliated Hospital of Guangdong Medical University (Ethics

Number: YJYS2021172). Figure 1 shows an overview of our study.

In this study, we retrospectively collected the clinical data of all

hospitalized patients who underwent CTPA at the Affiliated

Hospital of Guangdong Medical University from November 2021

to September 2019. After implementing inclusion and exclusion

criteria, a total of 332 patients were screened, resulting in the

selection of 172 positive cases and 160 negative cases. The

inclusion criteria were as follows: patients aged between 18 and

90 years who had been hospitalized for a minimum period of 3

days; patients with a favorable computed tomographic pulmonary

angiography (CTPA) showing a definitive diagnosis or exclusion

of PE; and the patients’ medical records (medical history, clinical

manifestations, and laboratory results, etc.) are comparatively

complete. The exclusion criteria were as follows: patients with a

previous history of PE or currently taking medication for its

prevention; women during pregnancy.
Diagnostic criteria of PE

The diagnosis of pulmonary embolism was established through

the analysis of the patient’s CTPA, which revealed the presence of

filling defects in the pulmonary arteries and their branches.

Patients exhibiting filling defects in the pulmonary arteries or any

of their branches were categorized as PE-positive. Conversely,

patients whose pulmonary arteries appeared suitably opacified

without any filling defects were classified as PE-negative (14).
Data collection and processing

Clinical features and laboratory parameters of all subjects

enrolled in the study were retrospectively gathered. Clinical features

comprised gender, age, tachypnea, chest pain, cough, hemoptysis,

lower extremity pain, hypertension, coronary heart disease, chronic

obstructive pulmonary disease (COPD), cancer, recent surgery,

atrial fibrillation, cerebrovascular accident, and lower extremity

deep vein thrombosis (LE-DVT). The set of laboratory parameters

included prothrombin time (PT), activated partial thromboplastin

time (APTT), thrombin time (TT), D-dimer, total protein (TP),

red blood cell count (RBC), red blood cell distribution width

(RDW), platelet count (PLT), platelet distribution width (PDW),

albumin, cystatin C, creatinine, and triglycerides.

Data cleaning procedures were executed using R software

(version 4.2.1). Initially, features and parameters with more than
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FIGURE 1

Study workflow chart. PE, pulmonary embolism; LE-DVT, lower extremity deep venous thrombosis; ATTP, activated partial thromboplastin time; RDW,
red blood cell distribution width; ML, machine learning; LR, logistic regression; DT, decision tree; RF, random forest; NB, naive bayes; SVM, support
vector machine; ROC, receiver operating characteristic curve; DCA, decision curve analysis. The figure was designed by Figdraw (www.figdraw.com).
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5% missing data (cancer, recent surgery, atrial fibrillation,

cerebrovascular accident, creatinine, and tri glycerides) were

excluded. This resulted in the identification of 11 clinical features

(gender, age, tachypnea, chest pain, cough, hemoptysis, lower

extremity pain, hypertension, coronary heart disease, COPD, and

LE-DVT) and 11 laboratory parameters (PT, APTT, TT,

D-dimer, TP, RBC, RDW, PLT, PDW, albumin, and cystatin C).

Subsequently, mean values were employed to estimate missing

values for continuous variables, while categorical variables, being

devoid of deficiencies, were not subject to processing.
Machine learning models

Using the ML algorithm, six models were developed to predict

the risk of PE in hospitalized patients, namely Logistic Regression

(LR), Decision Trees (DT), Random Forest (RF), Naive Bayes (NB),

Support Vector Machine (SVM), and AdaBoost. The dataset was

randomly split into a 70% training group and a 30%

independent validation group. During models’ construction, the

ten-fold cross-validation method was employed. Specifically, the

training group data were randomly partitioned into 10 subsets,

with 9 subsets used for models training and 1 for algorithm

performance evaluation. This process iterated 10 times to

encompass all possible subset combinations, resulting in 10

models. These models were then evaluated on the independent

validation group, and mean values of evaluation metrics were

computed. The evaluation metrics comprised sensitivity,
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specificity, area under the curve (AUC), receiver operating

characteristic (ROC) curve, and decision curve analysis (DCA).

Furthermore, a grid search was conducted to optimize

parameters for the ML models.
Statistical analysis

All statistical tests were implemented based on R 4.2.1. A

completely randomized sampling method was employed to

allocate 332 patients into a training group and a validation

group, with a ratio of 7:3. The Shapiro–Wilk test was used to

assess the normality of continuous variables. Normally

distributed continuous variables were evaluated using

independent samples t-tests and presented as mean ± standard

deviation (SD). Non-normally distributed continuous variables

were assessed using the Wilcoxon rank sum test and reported as

median (Q1, Q3). Categorical variables were analyzed using

the chi-square test and presented as numbers (n, %). A value of

p < 0.05 was considered statistically significant. Subsequently,

statistically significant variables were subjected to univariate and

multivariate logistic regression analyses to determine potential

independent risk factors associated with PE. These potential risk

factors for PE were employed as predictor variables for the

training and evaluating of ML models.

In this study, the “glm()” function was used to perform

univariate and multivariate logistic regression analysis, the “caret”

package was used to construct ML models, the “ggplot2” package
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was used to generate ROC curves, and the “dca.r” package was used

to plot DCA curves.
Results

Baseline characteristics

A total of 332 patients were included in this study. The

participants were divided into training and validation groups

using complete randomized sampling, with a ratio of 7:3. The

training group consisted of 232 patients, including 128 positive

cases and 104 negative cases. The validation group consisted of

100 patients, with 44 positive cases and 56 negative cases. In the

training group dataset, statistically significant differences were

observed between PE-positive and PE-negative patients (P < 0.05)

in terms of lower extremity pain, LE-DVT, D-dimer, ATPP,

RDW, tachypnea, and cough. However, no statistically significant

differences were found between PE-positive patients and PE-

negative patients in terms of gender, age, chest pain, hemoptysis,

hypertension, coronary heart disease, COPD, PT, TT, RBC, PLT,

PDW, TP, albumin, and cystatin C (P > 0.05). The baseline

characteristics of the patients are presented in Table 1.
Logistic regression analysis

Based on the baseline characteristics of the patients, we

conducted screening of seven variables (tachypnea, cough, lower

extremity pain, LE-DVT, D-dimer, ATPP, and RDW) that

exhibited statistical significance (P < 0.05) in the training group.

Subsequently, these variables were included in both univariate

and multivariate logistic regression analyses. The univariate

logistic regression analysis identified tachypnea, cough, lower

extremity pain, LE-DVT, D-dimer, ATPP, and RDW as potential

influencing factors for PE (p < 0.05, Table 2), which aligns with

the findings presented in Table 1. To eliminate the effect of

confounding factors, we incorporated the influencing factors of

PE into the multivariate logistic regression analysis. The results

of this analysis indicated that LE-DVT, elevated D-dimer levels,

shortened ATPP, and increased RDW may be potential

independent risk factors for PE patients (p < 0.05, Table 2).
Construction and validation of machine
learning models

Following multivariate logistic regression screening, four

potential independent risk factors (LE-DVT, D-dimer, ATPP,

and RDW) among PE patients were identified as predictors for

constructing six ML models, whose performance was evaluated

on the validation dataset. Table 3 presents four metrics for

assessing model performance, including AUC with 95%

confidence intervals, sensitivity, specificity, and accuracy. The

AUC, sensitivity, specificity, and accuracy of these ML models

were LR (0.735, 75.0%, 51.8%, 62.0%), DT (0.749, 75.0%, 69.6%,
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72.0%), RF (0.778, 77.3%, 60.7%, 68.0%), NBC (0.682, 34.1%,

87.5%, 64%), SVM (0.726, 75%, 55.4%, 64%), and AdaBoost

(0.723, 65.9%, 57.1%, 61%) (Table 3). Notably, RF demonstrated

the most robust predictive performance among these ML models,

exhibiting the highest AUC of 0.778. This finding was further

corroborated by ROC analysis, as depicted in Figure 2.

Furthermore, DCA analysis illustrated that RF yielded the highest

net benefit across most risk thresholds, thereby affirming its

superiority (Figure 3). Figure 4 depicts the importance of

predictor variables in the RF model, with D-dimer exerting the

greatest impact, followed by RDW, ATPP, and LE-DVT.
Discussion

In this study, we developed six ML models for predicting the

occurrence of PE in hospitalized patients. The training group

dataset was utilized to construct these models, and their efficacy

was assessed using the independent validation group dataset. The

careful selection of candidate variables plays a crucial role in

constructing accurate prediction models for PE occurrence in

hospitalized patients. Initially, we screened seven statistically

significant candidate variables by comparing baseline

characteristics of PE-positive and PE-negative patients. To assess

the significance of these variables, univariate logistic regression

analysis was employed. Furthermore, multivariate logistic

regression was utilized to address potential confounding factors

and refine the selection of candidate variables. Finally, integrating

findings from existing studies and clinical practices, the pool of

candidate variables was narrowed down to four: LE-DVT,

D-dimer, ATPP, and RDW. These four variables were then

incorporated into the construction of our PE risk prediction models.

Our study demonstrated that patients with combined LE-DVT

have a 12.001-fold higher risk of developing PE compared to

patients without combined LE-DVT. This finding emphasizes

LE-DVT as an risk factor for the development of PE, supporting

previous reports (15).

Plasma D-dimer, a specific fibrin degradation product, serves as

a reliable marker for thrombus formation (16). According to Schutte

et al., elevated D-dimer levels are considered a risk factor for PE (17).

Alexander’s study indicated that D-dimer levels exceeding 2,000 μg/L

are associated with a 33.9% risk of PE, further confirming high

D-dimer levels as an independent risk factor for PE (18).

Consistent with the aforementioned study, our research revealed

that elevated levels of D-dimer may increase the risk of PE.

APTT serves as a comprehensive coagulation screening test,

sensitive to deficiencies in factors II, V, VIII, IX, X, XI, XII, and

fibrinogen (19, 20). Studies have demonstrated that decreased

APTT levels are associated with an elevated risk of thrombosis,

potentially attributed to an altered coagulation mechanism

resulting from increased coagulation factor activity (21).

Armando’s study independently correlated hypercoagulability,

detected by shortened APTT, with the risk of VTE (22).

According to Zakai et al., the cumulative incidence of VTE over

a 13-year follow-up period is correlated with APTT levels, with

shortened APTT increasing the risk of future VTE (23).
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TABLE 1 Baseline characteristics of the patients.

Variables Training group (n = 232) Validation group (n = 100)

PPE positive (n = 128) PE negative (n = 104) P PE positive (n = 44) PE negative (n = 56)
Gender, n (%) 0.974 0.482

Male 70 (54.7) 58 (55.8) 26 (59.1) 28 (50.0)

Female 58 (45.3) 46 (44.2) 18 (40.9) 28 (50.0)

Tachypnea, n (%) 0.009 0.546

Yes 58 (45.3) 66 (63.5) 20 (45.5) 30 (53.6)

No 70 (54.7) 38 (36.5) 24 (54.5) 26 (46.4)

Chest pain, n (%) 0.117 0.034

Yes 61 (47.7) 38 (36.5) 19 (43.2) 12 (21.4)

No 67 (52.3) 66 (63.5) 25 (56.8) 44 (78.6)

Cough, n (%) 0.022 0.070

Yes 51 (39.8) 58 (55.8) 17 (38.6) 33 (58.9)

No 77 (60.2) 46 (44.2) 27 (61.4) 23 (41.1)

Hemoptysis, n (%) 0.951 0.692

Yes 10 (7.8) 7 (6.7) 2 (4.5) 4 (7.1)

No 118 (92.2) 97 (93.3) 42 (95.5) 52 (92.9)

Lower extremity pain, n (%) 0.037 0.235

Yes 14 (10.9) 3 (2.9) 5 (11.4) 2 (3.6)

No 114 (89.1) 101 (97.1) 39 (88.6) 54 (96.4)

LE-DVT, n (%) 0.003 0.006

Yes 15 (11.7) 1 (1.0) 6 (13.6) 0 (0.0)

No 113 (88.3) 103 (99.0) 38 (86.4) 56 (100.0)

Hypertension, n (%) 0.359 0.908

Yes 44 (34.4) 29 (27.9) 12 (27.3) 17 (30.4)

No 84 (65.6) 75 (72.1) 32 (72.7) 39 (69.6)

Coronary heart disease, n (%) 0.709 0.052

Yes 18 (14.1) 12 (11.5) 10 (22.7) 4 (7.1)

No 110 (85.9) 92 (88.5) 34 (77.3) 52 (92.9)

COPD, n (%) 0.599 0.206

Yes 11 (8.6) 12 (11.5) 7 (15.9) 4 (7.1)

No 117 (91.4) 92 (88.5) 37 (84.1) 52 (92.9)

Age (years), median (Q1, Q3) 70.00 (55.00, 80.00) 66.00 (57.00, 73.25) 0.159 65.50 (53.75, 76.25) 63.50 (50.75, 78.00) 0.581

D-dimer (mg/L), median (Q1, Q3) 7.62 (3.65, 14.84) 2.71 (1.12, 7.41) <0.001 7.78 (4.08, 13.60) 2.34 (0.94, 9.18) 0.001

PT (s), median (Q1, Q3) 13.00 (12.30, 13.85) 13.40 (12.40, 14.33) 0.250 13.50 (12.40, 15.03) 13.50 (12.70, 15.33) 0.434

APTT (s), median (Q1, Q3) 32.65 (27.73, 38.43) 35.70 (31.50, 39.60) 0.005 33.85 (29.80, 37.43) 35.35 (32.63, 40.90) 0.025

TT (s), median (Q1, Q3) 17.00 (15.20, 18.20) 17.15 (16.08, 18.70) 0.148 16.90 (15.68, 18.48) 17.10 (16.08, 18.60) 0.569

RBC (*109 /L), Mean ± SD 4.13 ± 0.70 3.99 ± 0.78 0.141 3.96 ± 0.87 3.82 ± 0.77 0.418

RDW (%), median (Q1, Q3) 13.90 (12.98, 15.10) 13.20 (12.60, 14.00) <0.001 15.15 (13.48, 16.93) 13.65 (13.10, 15.23) 0.038

PLT (*109 /L), median (Q1, Q3) 226.50 (174.00, 292.50) 228.00 (176.75, 317.00) 0.704 208.00 (155.25, 272.25) 241.50 (152.50, 278.00) 0.652

PDW (%), median (Q1, Q3) 12.20 (10.40, 16.30) 12.00 (9.80, 15.63) 0.115 15.30 (11.68, 16.38) 11.15 (9.88, 15.73) 0.001

TP (g/L), mean ± SD 61.99 ± 7.88 62.73 ± 7.82 0.480 62.97 ± 7.87 62.11 ± 9.56 0.622

Albumin (g/L), median (Q1, Q3) 35.85 (30.48, 39.32) 36.15 (30.18, 39.08) 0.944 35.65 (31.70, 38.05) 36.30 (31.20, 39.65) 0.857

Cystatin C(mg/L), median (Q1, Q3) 0.88 (0.72, 1.03) 0.86 (0.75, 1.08) 0.277 0.98 (0.80, 1.10) 0.94 (0.78, 1.08) 0.378

PE, pulmonary embolism; COPD, chronic obstructive pulmonary disease; LE-DVT, lower extremity deep venous thrombosis; PT, prothrombin time; APTT, activated

partial thromboplastin time; TT, thrombin time; RBC, blood cell count; RDW, red blood cell distribution width; PLT, platelet count; PDW, platelet distribution width;

TP, total protein.
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Corresponding to the aforementioned studies, our study revealed

that APTT shortening may increase the risk of PE.

Furthermore, our study demonstrated that increased RDW may

be a risk factor for PE, consistent with related studies (24). RDW, a

simple parameter derived from blood routine, reflects the

heterogeneity of circulating red blood cell size (25). Multiple studies

have confirmed the association between RDW and the severity,

prognosis, and predictive value of PE (26–28). Additionally, elevated

RDW levels serve as an independent predictor of early PE-related

mortality (29). The potential mechanism for the association

between RDW and PE could involve the relationship between
Frontiers in Cardiovascular Medicine 05
RDW, acute inflammatory markers, and alterations in blood

viscosity (26). However, this mechanism has not been extensively

investigated and requires further detailed research.

In conclusion, there exists a close association between LE-DVT,

D-dimer, ATPP, and RDW with PE. Therefore, it is justifiable to

incorporate these variables in the development of a predictive

model for assessing the risk of PE.

In this study, we employed six common supervised machine

learning methods, namely LR, DT, RF, NB, SVM, and AdaBoost, to

construct risk prediction models. These methods are widely used in

data mining and analysis, as well as for the prediction of various
frontiersin.org
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TABLE 2 Univariate and multivariate logistic regression analysis.

Variables Univariate analysis Multivariate analysis

OR 95% CI p-value OR 95% CI p-value
Tachypnea 0.477 0.279–0.807 0.006 0.761 0.416–1.395 0.376

Cough 0.525 0.310–0.885 0.016 0.68 0.378–1.221 0.196

Lower extremity pain 4.135 1.304–18.306 0.029 1.251 0.312–6.231 0.762

LE-DVT 13.673 2.699–249.410 0.012 12.001 2.160–225.754 0.021

D-dimer 1.036 1.012–1.067 0.01 1.029 1.004–1.061 0.042

ATPP 0.952 0.921–0.982 0.003 0.951 0.918–0.983 0.004

RDW 1.196 1.053–1.382 0.01 1.206 1.043–1.417 0.016

PE, pulmonary embolism; OR, odds ratio; CI, confidence interval; LE-DVT, lower extremity deep venous thrombosis; ATPP, activated partial thromboplastin time; RWD, red

blood cell distribution width.
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diseases. For instance, LR has been employed for the prediction of

liver disease (30), DT for heart disease (31), RF for diabetes (32),

NB for cardiovascular disease (33), SVM for hypertension (34), and

AdaBoost for Parkinson’s disease (35). LR is a classification model

that calculates the probability of PE occurrence in patients by fitting

a Sigmoid Function to the input sample data. SVM projects data

from all patients onto a higher-dimensional feature space and

creates a decision boundary to differentiate between PE-positive and

PE-negative patients. NB independently learns the distribution of

each variable in the PE-positive and PE-negative cohorts, allowing it

to calculate the probability of PE in each patient. DT is a tree-

structured classifier that makes decisions by asking binary questions.

The construction process of a DT begins at the root node and

continues through the internal nodes, where binary questions are

posed. The algorithm selects the next branch of the tree based on

the answer to the question (either yes or no), progressing closer to

a leaf node. The root node represents the entire sample, while the

branches depict decision rules, and the leaf nodes indicate the

decision outcomes (36, 37). Both RF and AdaBoost are ensemble

learning methods that aim to create robust classifiers by combining

multiple weak classifiers, thereby enhancing the accuracy of

predictions. However, they employ different training mechanisms.

RF employs the bagging algorithm to independently construct weak

classifiers, whereas AdaBoost, based on the boosting algorithm,

involves an iterative training process for weak classifiers. In

AdaBoost, the results of previous weak classifiers influence the

construction of subsequent weak classifiers (38, 39).

The impact of parameters on the performance of ML models is

widely acknowledged. To mitigate this influence and optimize the

models to the fullest extent possible, a grid search approach was

employed during their construction. Through this method, we
TABLE 3 Predictive efficacy analysis of different ML models for PE.

AUC (95% CI) Sensibility Specificity Accuracy
LR 0.735 (0.633–0.837) 75.0% 51.8% 62.0%

DT 0.749 (0.651–0.846) 75.0% 69.6% 72.0%

RF 0.778 (0.686–0.870) 77.3% 60.7% 68.0%

NB 0.682 (0.572–0.791) 34.1% 87.5% 64.0%

SVM 0.726 (0.622–0.830) 75.0% 55.4% 64.0%

AdaBoost 0.723 (0.623–0.823) 65.9% 57.1% 61.0%

ML, machine learning; PE, pulmonary embolism; LR, logistic regression; DT,

decision tree; RF, random forest; NB, naive bayes; SVM, support vector machine;

AUC, area under the curve.
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systematically explored the parameter space to identify the

optimal parameters or most effective parameter combinations

for each ML model (40). For instance, DT parameter was set to

cp = 0.01, RF parameter to mtry = 1, the parameter combinations

for NB included fL = 0.1, usekernel = False, and adjust = 0.1, while

for SVM, parameters were set to sigma = 0.5 and C = 0.1.

Similarly, AdaBoost parameter combinations were defined as

mfinal = 10, maxdepth = 30, and coeflearn = Freund. However, for

LR, grid search was not conducted, as the “caret” package lacks

parameters for LR. Notably, the parameters or parameter

combinations offered by the “caret” package for the ML models

are not adequately comprehensive, potentially limiting the scope

for achieving greater optimization or tuning of the models.

Through the analysis of ROC and AUC, we observed that the

RF model outperformed other models by achieving the highest

AUC of 0.778, indicating superior predictive efficacy. The

superior performance of the RF model in this context may be

attributed to its compatibility with relatively small sample sizes,

as well as its inherent advantages such as stability, ability to

handle unbalanced datasets, and capability to reduce overfitting

(41, 42). Furthermore, the results of the DCA revealed that the

RF model consistently achieved the highest net benefit across the

majority of threshold intervals, providing further confirmation of

its superior performance over other models.

This study presents several advantages. Firstly, the ML models

developed in this study have been specifically designed for

inpatients and exhibit a high level of accuracy in predicting the

risk of PE. While certain scoring rules, like the commonly used

Well score and revised Geneva score, have been developed to

assess the risk of PE, their validation has predominantly been

limited to outpatients suspected of having PE, and they have not

been adequately validated in the inpatient population (43). In fact,

another study has emphasized that the application of the Well

score in inpatients is inappropriate (6). Although clinical

predictive scores such as the Caprine score (44), Padua score (45),

and IMPROVE score (46) can be utilized to determine the risk of

VTE in hospitalized patients, they are not comprehensive scoring

tools specific to PE risk assessment. Therefore, relying on these

scoring rules to predict the risk of PE in hospitalized patients is

considered unreliable. On the contrary, our ML models have been

developed and evaluated using a broad spectrum of hospitalized

patients, confirming their efficacy, and demonstrating a high level

of accuracy in predicting the risk of PE in hospitalized patients.
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FIGURE 2

ROC for the prediction of PE risk of different ML models. ROC, receiver operating characteristic curve; PE, pulmonary embolism; ML, machine
learning; AUC, area under the curve; LR, logistic regression; DT, decision tree; RF, random forest; NB, naive bayes; SVM, support vector machine.

FIGURE 3

DCA for the prediction of PE risk of different ML models. DCA, decision curve analysis; PE, pulmonary embolism; ML, machine learning; LR, logistic
regression; DT, decision tree; RF, random forest; NB, naive bayes; SVM, support vector machine.
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FIGURE 4

Importance of the four predictors. LE-DVT, lower extremity deep venous thrombosis; RDW, red blood cell distribution width; ATPP, activated partial
thromboplastin time.
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Secondly, given the high accuracy, user-friendly nature, and

cost-effectiveness of the ML models we have developed, they are

expected to play a promising auxiliary role in the detection of PE.

Lastly, this study stands out by developing multiple ML

models. Previous studies have often employed a single ML

method for modeling without providing a clear comparison of

the advantages of different modeling methods. In contrast, we

have trained multiple machine learning models and compared

their efficacy and clinical benefits. This approach informs

subsequent studies on the development of risk prediction

models for PE in hospitalized patients, enabling the selection of

the most suitable model.

Nonetheless, this study possesses several limitations. Firstly, all

cases included in this study originated solely from a single hospital,

thereby lacking data from diverse populations or other healthcare

organizations for external validation. Secondly, the sample size of

the included study is limited, and the clinical data of hospitalized

patients is insufficient. Thirdly, it is a retrospective study and

requires extensive prospective validation.
Conclusion

In this study, we identified several potential independent risk

factors for PE, including EL-DVT, elevated D-dimer levels,

shortened ATPP, and increased RDW. Subsequently, we developed

six ML models to predict the occurrence of PE in hospitalized
Frontiers in Cardiovascular Medicine 08
patients. Among these models, the RF model demonstrated the

highest predictive efficacy and clinical benefit in accurately

identifying and forecasting the risk of PE in hospitalized patients.
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