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Background: The risk factors of cardiovascular disease (CVD) in end-stage renal
disease (ESRD) with hemodialysis remain not fully understood. In this study,
we developed and validated a clinical-longitudinal model for predicting CVD
in patients with hemodialysis, and employed Mendelian randomization to
evaluate the causal 6study included 468 hemodialysis patients, and
biochemical parameters were evaluated every three months. A generalized
linear mixed (GLM) predictive model was applied to longitudinal clinical data.
Calibration curves and area under the receiver operating characteristic curves
(AUCs) were used to evaluate the performance of the model. Kaplan-Meier
curves were applied to verify the effect of selected risk factors on the
probability of CVD. Genome-wide association study (GWAS) data for CVD
(n= 218,792,101,866 cases), end-stage renal disease (ESRD, n= 16,405, 326
cases), diabetes (n= 202,046, 9,889 cases), creatinine (n= 7,810), and uric acid
(UA, n= 109,029) were obtained from the large-open GWAS project. The
inverse-variance weighted MR was used as the main analysis to estimate the
causal associations, and several sensitivity analyses were performed to assess
pleiotropy and exclude variants with potential pleiotropic effects.
Results: The AUCs of the GLM model was 0.93 (with accuracy rates of 93.9% and
93.1% for the training set and validation set, sensitivity of 0.95 and 0.94, specificity
of 0.87 and 0.86). The final clinical-longitudinal model consisted of 5 risk factors,
including age, diabetes, ipth, creatinine, and UA. Furthermore, the predicted
CVD response also allowed for significant (p < 0.05) discrimination between the
Kaplan-Meier curves of each age, diabetes, ipth, and creatinine subclassification.
MR analysis indicated that diabetes had a causal role in risk of CVD (β=0.088,
p < 0.0001) and ESRD (β=0.26, p=0.007). In turn, ESRD was found to have a
causal role in risk of diabetes (β=0.027, p=0.013). Additionally, creatinine
exhibited a causal role in the risk of ESRD (β=4.42, p=0.01).
Conclusions: The results showed that old age, diabetes, and low level of ipth,
creatinine, and UA were important risk factors for CVD in hemodialysis patients,
and diabetes played an important bridging role in the link between ESRD and CVD.
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1 Introduction

The end-stage renal disease (ESRD) is the leading cause of

kidney-related mortality (1), accounting of over 1.2 million

associated deaths annually worldwide (2). Patients with ESRD are

candidates for kidney transplants (3), and have an overall 5-year

survival rate reaching 80%−90% after transplants (4). However,

maximizing access to transplants and reducing access disparities

poses a challenge for patients receiving prompt kidney transplants

(5). According to both the European and American ESRD

management guidelines, hemodialysis (HD) is recommended as a

method of renal replacement therapy (6). ESRD patients

underlying HD enjoy a survival benefit (7), but nearly 20% of

these patients would die from cardiovascular disease (CVD) within

three years (8–10). For ESRD patients at high risk of CVD, timely

clinical intervention holds the potential to prevent further

deterioration of the viscera system and prolong survival time,

particularly if targeted therapy can be initiated before ESRD

progresses to the advanced stage (11, 12).

Several clinical factors are potential risk for ESRD who are

likely to have CVD. Aging, hypertension, and diabetes can

cause cardiovascular dysfunction in both the general population

and HD patients (13–16). In addition, certain HD-specific risk

factors, such as anemia, chronic inflammation, and metabolic

disturbance, may be involved in the pathogenesis of CVD in

HD patients (17). Conversely, adopting suitable lifestyle habits,

such as a plant-based diet rich in fiber and low in protein, can

reduce the CVD risk in HD patients (18, 19). Several predictive

studies have been conducted to identify risk factors for CVD in

HD patients and have shown promising results (20–23).

However, these studies have only analyzed data from a single

time point, which limits their ability to capture the

developmental changes in risk factors over time and establish

causal relationships among risk factors, CVD, and ESRD (24).

Furthermore, the cross-sectional datasets used in these studies

relied on simple regression techniques, focusing on population-

averaged inference among variables. These reduce the

performance of models and can lead to inconsistent results

(25, 26). Thus, longitudinal data analysis is needed to identify

clinical risk factors and improve the accuracy of CVD

prediction in HD patients. This will ultimately contribute to

more precise and effective clinical decision-making.

Mendelian randomization (MR) is a novel causality analysis

method that utilizes the random allocation of genetic variants as

instrumental variables to estimate the causal association between

exposure and clinical outcomes (27, 28). MR provides robust

causal inferences and is minimally affected by residual

confounding. This is because genetic variants are randomly

assigned from parents and normally fixed, making them

unaffected by the outcomes and confounders. This random

distribution of confounders is comparable to the randomization

process in randomized controlled trials (29).

Therefore, in this research, longitudinal clinical data of HD

patients would be analyzed to estimate and validate a prediction

model. This model aims to serve as a useful tool for predicting

CVD. Additionally, Mendelian randomization analysis was applied
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to evaluate the causal inferences between the risk factors and CVD

in HD patients.
2 Materials and methods

2.1 The longitudinal population

In this retrospective study, a total of 609 HD patients were

included from the hemodialysis centers of the Third Affiliated

Hospital of Southern Medical University, Third Affiliated Hospital

of Sun Yat-sen University, and Henan Provincial People’s Hospital

according between January 2015 to September 2022 with the

following inclusion criteria: (1) regular hemodialysis for more than

12 months; (2) agegreater than 18 years old; (3) no prior history

of CVD events before starting hemodialysis; (4) availability of

clinical data matrix. Participants who met any of the following

exclusion criteria were not included in this study: (1) pregnant;

(2) currently suffering from ongoing infection; (3) diagnosed

with malignancy. The study protocol was approved by the ethics

committee in the Third Affiliated Hospital of Southern Medical

University, the Third Affiliated Hospital of Sun Yat-sen University,

and Henan Provincial People’s Hospital.
2.2 The longitudinal data collection

At the start of the first hemodialysis therapy, demographic

characteristics, medical history, and dialysis-related information,

including dialysis frequency, dialysis volume, and vascular access

was recorded by trained nurses. Before each hemodialysis session,

patients underwent an assessment to establish the corresponding

dialysis plan. This assessment primarily involved setting the blood

flow rate, dialysis rate, and ultrafiltration rate based on factors such

as body weight, heart rate, and blood pressure. During the

hemodialysis process, real-time monitoring was conducted for the

patient’s blood pressure, heart rate, dialysate temperature, pre-

pump arterial pressure, and post-pump arterial pressure.

Additionally, nurses regularly monitored various indicators

throughout the dialysis session and adjusted the dialysate flow rate

according to the patient’s specific condition. These measures ensure

the safety and effectiveness of the hemodialysis procedure. Every

approximately 4 months, overnight fasting blood samples were

collected from each participant. Nineteen biochemical parameters,

including blood routine (white blood cells (WBC), hemoglobin

(HB), platelets (PLT), neutrophile granulocyte (NEU)), glucose,

lipids (high density lipoprotein (HDL), low density lipoprotein

(LDL), total cholesterol (CHOL), triglyceride (TG)), infectious

disease antigen (HBsAg, hepatitis C virus (HCV), human

immunodeficiency virus (HIV)), as well as liver and kidney

function indicators (intact parathyroid hormone (ipth), neutrophile

granulocyte (BUN), creatinine (CRE), uric acid (UA), calcium (Ca),

phosphorus (P)), were measured at the laboratory and radiology of

the three centers. Additionally, radiological examinations, including

computed tomography, magnetic resonance angiography, and color

ultrasound, were conducted annually for the diagnosis of CVD.
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First non-fatal and fatal CVD events, including valvular heart

disease, myocardial disease, arrhythmia extracorporeal defibrillation,

cerebrovascular disease, and peripheral vascular disease after

hemodialysis, were recorded (30, 31). CVD time was recorded from

the first hemodialysis to the first CVD event. The data were

collected from the three centers until September 30, 2022.
2.3 The longitudinal data analysis

The data was preprocessed using R software (version 4.2.2),

including the following steps. Despite a standardized data

collection form being applied, the presence of missing data in

our data matrix was unavoidable due to measurements not being

taken, failure to send or retrieve questionnaires, and errors in

manual data entry. Firstly, the missing data rate was calculated

for each subject at the identified time points. If a subject’s

missing data rate exceeded 30%, they were removed from

the data matrix (32). Then, the missing values in the cleared

data matrix were imputed using the “MissForest” R package.

This package allows for the imputation of both continuous and

categorical data, taking into account complex interactions and

nonlinear relations (33).

To account for population-averaged inference and within-subject

correlation between the repeated measures, we implemented a

longitudinal model called generalized linear mixed model

(GLMM) using IBM SPSS Statistics (version 26). The GLMM

integrates both the fixed effects and random effects of predictors,

which enhances the validity and reproducibility of the

experimental findings (34). The fixed effects were used to

measure whether candidate factors had an impact on the risk of

CVD. However, considering that these factors were measured

multiple times, there might be correlations introduced due

to multiple measurements of the same observed variable.

To account for this correlation and estimate the results more

accurately, random effects was incorporated in our model to

estimate whether the effect of risk factors varying at different

time points. In the model, we used the logit link function to

model the natural logarithm of the odds of CVD. The model

could be expressed as the following form: log (p/1 - p) = Xβ + Zγ

+ ε, where p represented the p value of CVD; X was the design

matrix for fixed effects; β represented the parameters vector

for fixed effects; Z was the design matrix for random

effects; γ represented the parameter vector for random effects;

ε represented the vector of residual errors.

To compare the results with those of a traditional prediction

model, we conducted a logistic regression model (LRM).

The performance of both models was evaluated using a

calibration curve and the area under the receiver operating

characteristic curve (AUC). The calibration plot for the

probability of objective response showed agreement between the

predicted probabilities computed by the models and actual

observations. The discrimination ability of the two models was

measured by bootstrap-corrected AUCs.

The primary endpoint of interest was the probability of

CVD, and the second endpoint of interest was the survival time.
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The former could be predicted by the GLMM. The variables

which were significant (p < 0.05) in the GLMM were chosen as

risk factors. To assess the survival time across different risk

factors, the continuous variables such as age, ipth, CRE, and UA

were binarization by the “survminer” package, an R package to

determine the optimal cut point (35). The survival curves of each

risk factor were constructed using the Kaplan-Meier method and

compared with the log-rank test.
2.4 Mendelian randomization

The GWAS summary statistics of ERSD, CVD, diabetes,

creatinine, and uric acid were searched and downloaded from the

IEU Open GWAS project (https://gwas.mrcieu.ac.uk/), which

includes large amounts of standard format of human GWAS

summary statistics. There was no overlap between the

participants in the GWAS study and the HD patients used for

longitudinal analysis mentioned above. Some basic information

of the population in the five GWAS statistics was shown in

Supplementary Table S1.

Risk genetic variants [single-nucleotide polymorphisms

(SNPs)] associated (p , 5� 10�8 for CVD, diabetes, creatinine

and uric acid and p , 5� 10�6 for ESRD) with exposures were

selected as instruments. The threshold for ESRD was relaxed

because no SNP reached for p , 5� 10�8 reference to the

strategy applied in previous MR studies (36). SNPs were

excluded in moderate linkage disequilibrium (r2 > 0.001) to

reduce bias due to genetic correlation. The linkage disequilibrium

across these SNPs were calculated based on the European 1000-

Genomers reference panel. SNPs who had association

(p , 5� 10�2) with outcomes were excluded to obtain the

assumption of MR that instrumental variables are strongly

associated with exposure and have no direct association with

the outcome. We also excluded SNPs that were palindromic

and had an intermediate allele frequency to further reduce

potential bias and uncertainty, as previously described (37).

Outliers were determined with respect to their contribution to

global heterogeneity, quantified by Cochran’s Q-statistic, using

a significance threshold of 0.05 for p-value, 1 for the

inverse variance weights, and 0.0001 for the tolerance threshold

for performing the iterative inverse-variance weighted

(IVW) approach (38).

The following bidirectional univariate MR analyses were

conducted separately to determine the causal effects of each of

genetically predicted risk factors (diabetes, creatinine, and uric

acid) phenotype on CVD and ERSD risk, and then vice versa.

The IVW approach was applied as the main MR model,

which provides most accurate estimate under the assumption

that the instrumental variables were all valid (39). In order to

account for potential heterogeneity and horizontal pleiotropy,

three additional approaches for MR analyses including

MR-Egger regression, weighted median and weighted mode

methods, were applied. Cochran’s Q test and MR-Egger

intercept test were used to detect the heterogeneity and

horizontal pleiotropy, respectively.
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TABLE 1 The demographic information and biochemical parameters at
baseline.

CVD(-) CVD(+) χ2/t p
Sex Male 193 116 0.58 0.45

Female 105 54

Age 52.07 ± 15.39 59.84 ± 14.13 5.41 <0.001

Tian et al. 10.3389/fcvm.2024.1306159
The odds ratios (ORs) and corresponding 95% confidence

intervals (CSs) were used to assess the strength of causal

associations. All p values were two-sided and this study used

conventional significance level (p < 0.05). Genetic instrument

selection and MR analyses were carried out using

“TwoSampleMR” and “RadialMR” package in R.

Vascular access (fistula/
catheter)

246/52 127/43 3.65 0.056

amount 1,859.02 ±
731.79

2,075.49 ±
1,273.03

2.34 0.02

Primary renal
disease

+ 138 85 0.59 0.44

- 160 85

Hypertension + 231 136 0.39 0.53

- 67 34

Diabetes + 81 76 14.91 <0.001

- 217 94

Contagion + 67 31 1.18 0.28

- 231 139

Combined
disease

+ 147 91 0.76 0.38

- 151 79

HBsAg + 61 26 1.92 0.17

- 237 144

HCV + 2 2 0.33 0.57

- 296 168

Syphilis + 1 3 2.61 0.11

- 297 167

HIV + 0 0 – –

- 298 170

WBC 6.96 ± 2.99 7.67 ± 3.09 2.43 0.02

HB 95.61 ± 24.21 99.91 ± 20.70 1.94 0.05

PLT 198.86 ± 71.99 218.64 ± 72.74 2.85 0.005

NEU 4.84 ± 2.74 5.18 ± 2.81 1.27 0.21

lymph 1.43 ± 1.16 2.12 ± 2.81 3.71 <0.001

ipth 507.75 ± 430.19 361.67 ± 274.27 3.99 <0.001

BUN 25.07 ± 9.90 22.69 ± 11.16 2.39 0.02

CRE 943.21 ± 340.93 709.31 ± 422.84 6.53 <0.001

UA 499.01 ± 134.85 503.24 ± 129.07 0.33 0.74

CA 2.19 ± 0.43 2.19 ± 0.22 0.04 0.97

P 1.97 ± 0.60 1.76 ± 0.62 3.51 <0.001

CHOL 4.37 ± 1.08 4.57 ± 1.25 1.78 0.08

TG 1.69 ± 0.91 1.77 ± 1.27 0.74 0.46

HDL 1.05 ± 0.25 1.08 ± 0.38 0.86 0.40

LDL 2.65 ± 0.77 2.65 ± 0.83 1.75 0.08

WBC, white blood cells; HB, hemoglobin; PLT, platelets; NEU, neutrophile

granulocyte; ipth, intact parathyroid hormone; BUN, blood urea nitrogen; CRE,

creatinine; UA, uric acid; CA, calcium; P, phosphorus; CHOL, total cholesterol;

TG, triglyceride; HDL, high density lipoprotein; LDL, low density lipoprotein.
3 Results

Four hundred sixty-eight subjects were included after data

cleaning, 221 from the Third Affiliated Hospital of Southern

Medical University, 179 from the Third Affiliated Hospital of

Sun Yat-sen University, and 68 from the Henan Provincial

People’s Hospital. Demographic information and biochemical

parameters at baseline were shown in Table 1. 36.75% of the

HD patients developed CVD within the following 4.7 years.

Chi-square test showed that subjects with diabetes were more

likely to have CVD (44.71% vs. 27.18%, p < 0.001). Two sample

t-test showed that the CVD group had higher age (59.84 ± 14.13

vs. 52.07 ± 15.39, p < 0.001), WBC (7.67 ± 3.09 vs. 6.96 ± 2.99,

p = 0.02), PLT (218.64 ± 72.74 vs. 198.86 ± 71.99, p = 0.005),

lymph (2.12 ± 2.81 vs. 1.43 ± 1.16, p < 0.001), as well as lower

ipth (361.67 ± 274.27 vs. 507.75 ± 430.19, p < 0.001), BUN

(22.69 ± 11.16 vs. 25.07 ± 9.90, p = 0.02), CRE (709.31 ± 422.84 vs.

943.21 ± 340.93, p < 0.001), and P (1.76 ± 0.62 vs. 1.97 ± 0.60,

p < 0.001), compared to the non-CVD group. No other group

differences were found at baseline. The change over time of

continuous biochemical parameters was shown in Figure 1.

The total classification accuracy for the LRM and GLMM

models was 81.4% and 93.9%, respectively. The coefficient of age,

diabetes, combined disease, WBC, PLT, NEUT, lymph, P,

HBsAg, and HIV was significant (p < 0.05) in the LRM. In the

GLMM model, the fixed effects of age, diabetes, ipth, CRE, and

UA were statistically significant (p < 0.05); the random effect of

ipth and P was significant (p < 0.05). The detail of the two

models was shown in Table 2. The calibration plot for the

GLMM was closer to the ideal curve than the calibration plot for

the LRM (Figure 1A). The AUCs of the LRM and GLMM were

0.833 and 0.93, respectively (Figure 2B).

The cut points for age, ipth, CRE, and UA were 56 years old,

489 pg/ml, 7.53 umol/L, and 1.42 umol/L. The cut points divided

these continuum factors into two hierarchical levels. The Kaplan-

Meier curves for CVD outcome between two hierarchical levels

satisfied statistically significant differences (p < 0.05) in the actual

CVD response and predicted response by the GLMM model,

except risk factor of UA (Figure 3).
3.1 Causal-relationships among risk factors,
ESRD, and CVD

The possible causal relationships among risk factors, ESRD,

and CVD was shown in Figure 4. The two-sample IVW MR

provided evidence for a causal role of diabetes in risk of

CVD (β = 0.088, p < 0.0001) and ERSD (β = 0.26, p = 0.007).
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In turn, ERSD had a causal role of diabetes (β = 0.027, p = 0.013).

In addition, diabetes could decrease the level of uric acid

(β =−0.033, p = 0.045). The increase of creatinine level had a

causal role in risk of ESRD (β = 4.42, p = 0.01). There was no

evidence of horizontal pleiotropy (p of EI > 0.05) in these causal

inferences except the causal inference from diabetes to CVD

(p of EI = 0.045) (Supplementary Tables S2–S6). There was no

evidence of heterogeneity except in the causal inference from

diabetes to CVD, uric acid, and ESRD (p of Q < 0.05). No other

causal relationship was found in this study (Supplementary

Table S2–S6). The F statistics of SNPs were shown in

Supplementary Table S7. The effect size of individual SNP and

all SNPs was shown in Supplementary Figure S1.
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FIGURE 1

The changes of continuous biochemical variables. The interval between each time point on the horizontal coordinate is 4 months. The vertical axis
represents the content of each variable. CVD, cardiovascular disease; WBC, white blood cells; HB, hemoglobin; PLT, platelets; NEU, neutrophile
granulocyte; ipth, intact parathyroid hormone; BUN, blood urea nitrogen; CRE, creatinine; UA, uric acid; CA, calcium; P, phosphorus; CHOL, total
cholesterol; TG, triglyceride; HDL, high density lipoprotein; LDL, low density lipoprotein.

TABLE 2 The comparison of the two models.

Significant (p < 0.05)variables
selected by the model

(b represented coefficient)

Training set (N = 389) Testing set (N = 97)

Sensitivity
%

Specificity
%

Accuracy
%

AUC
(95% CI)

Sensitivity
%

Specificity
%

Accuracy
%

AUC
(95% CI)

Logist Age (b = 0.029, p < 0.001), sex (b = 0.193,
p = 0.038), P (b = 0.413, p < 0.001),
diabetes (b = 0.46, p < 0.001),
combined disease (b = 0.232, p = 0.007),
WBC (b = 0.137, p < 0.001), PLT
(b = 0.003, p < 0.001),
NEUT(-0.108, p < 0.001), lymph
(b = 0.052, p = 0.012),
HBsAg (b = −0.469, p = 0.004), HIV
(b = 4.282, p < 0.001)

82.3 59.0 81.4 0.73
(0.69–0.77)

81.2 59.1 80.4 0.70
(0.68–0.72)

GLMM Fixed
effects

Age (b = 0.059, p < 0.001),
diabetes (b = 0.879,
p = 0.005), ipth (b = 0.001,
p = 0.002), CRE (b = 0.002,
p < 0.001), UA (b =−0.002,
p < 0.001)

95.4 86.7 93.9 0.98
(0.97–0.98)

94.0 85.5 93.1 0.97
(0.97–0.98)

Random
effects

Variation (ipth) = 5.27e-6,
p < 0.001
Variation (P) = 0.47,
p = 0.005

AUC, area under the receiver operating characteristic curves; P, the concentration of P; WBC, white blood cells count; NEUT, neutrophil count; CRE, creatinine; UA, uric

acid.

Tian et al. 10.3389/fcvm.2024.1306159
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FIGURE 2

The calibration curve and receiver operation characteristic curve. (A and B) Represented the calibration curve in the training cohort and validation
cohort, respectively. (C and D) Represented the receiver operation characteristic curve in the training cohort and validation cohort, respectively.
GLMM, generalized linear mixed model; Logist, logistic regression model; AUC, area under the receiver operating characteristic curves.

Tian et al. 10.3389/fcvm.2024.1306159
4 Discussion

To the best of our knowledge, this was the first longitudinal

cohort study to investigate the causal relationships among risk

factors of CVD in patients with ESRD. We developed and

validated a clinical GLMM model for selecting risk factors of

CVD in patients with hemodialysis based on longitudinal data.

Additionally, MR analyses were performed to evaluate the causal

relationships among risk factors, CVD, and ESRD. The GLMM

model revealed that diabetes, creatinine, UA, and ipth were risk

factors for CVD. The MR analyses provided robust genetic

evidence supporting the notion that diabetes played a causal role

in the relationship between ESRD and CVD, which raised the

importance of blood sugar control.

The predictors used in our prediction model integrated

various clinical variables and were found to be one of the most
Frontiers in Cardiovascular Medicine 06
important components in estimating the status of the body

system. Notably, most of the significant predictors, such as

diabetes, ipth, CRE, and UA, were related to metabolism. This

finding in consistent with previous studies that have shown

metabolic dysfunctions, including diabetes, obesity, and

uarthritis, to be involved in aberrations preceding clinically

overt CVD (40–43). Furthermore, a recent meta-analysis

corroborated these results, revealing association between

metabolic dysfunction and CVD (44).

Previous studies have primarily focused on the effects of

predictors at a single time point, neglecting the longitudinal

effectsin the analysis. In this study, we aimed to examine the

potential risk factors for both independence and relevance by

using the GLMM model with longitudinal clinical data. Recent

studies on degenerative joint disease, COVID-19, and pulmonary

parenchymal lesions have revealed that associations that are not
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FIGURE 3

The kaplan-meier curve for the cardiovascular disease response. (A–E) Represent Kaplan-Meier curves for each sub-classification of age, diabetes,
ipth, CRE, and UA, respectively. The cut points for age, ipth, CRE, and UA were 56 years old, 489 pg/ml, 7.53 umol/L, and 1.42 umol/L. In sub-
figure b, diabetes = 0 represented no diabetes group, and diabetes = 1 represented diabetes group. CVD, cardiovascular disease; HD, hemodialysis
patients; ipth, intact parathyroid hormone; CRE, creatinine; UA, uric acid (UA).

FIGURE 4

The causal relationship among risk factors, CVD, and ESRD. CVD,
cardiovascular disease; ESRD, end-stage renal disease.
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apparent in other frameworks can be elucidated using GLMMs

(45–47). In our study, compared to the traditional logistic

regression model, the GLMM model exhibited higher classification

accuracy, indicating a better ability to explain variability. Hence,

we selected and identified the results from the GLMM for further

analysis in this study. Notably, a significant difference between the

two models lies in the predictors. The traditional logistic

regression model indicated that predictors such as WBC, PLT,

NEUT, and lymph were primarily associated with the immune

system. While, in the GLMM, predictors like ipth, CRE, and UA,

were predominantly linked to the metabolism system and were not

significant in the logistic regression model. Although inflammation

has long been considered to be associated with CVD in
Frontiers in Cardiovascular Medicine 07
hemodialysis patients, recent evidence has demonstrated a close

relationship between ipth, CRE, UA and CVD (48–51). It is

important to note that these predictors had considerable standard

deviations, implying substantial interindividual variability, which

poses a challenge to the consistency of the results. This variability

might explain why the effects of ipth and CRE on CVD in HD

patients show inconsistent directions, as both negative (26, 52, 53)

and positive (54–56) associations have been reported. On the other

hand, clinical data inherently exhibits universal and

multidimensional variability due to factors such as exercise, diet,

psychology, and some random or non-random noise. However,

longitudinal analysis can help “minimized” this variability by

capturing diverse patterns of intra- and/or inter-personal

variability (57). Therefore, even though no significant differences

were observed in UA levels at the baseline, the GLMM revealed

UA as a significant predictor (p < 0.05). This finding is consistent

with a recent meta study that a robust and independent

association between elevated UA levels and lower risk of

cardiovascular mortality in maintenance hemodialysis patients (58).

In addition to assessing CVD occurrence, the performance of

our GLMM was evaluated by the Kaplan-Meier curves. It was

observed that the Kaplan-Meier curve of the CVD occurrence or

no occurrence predicted by our GLMM was similar to the curve of

the CVD status observed by a physician. In addition, the utility of

the GLMM was convincingly supported by the significant

differences in Kaplan-Meier curves across different levels of age,

diabetes, ipth, CRE, and UA, all of which were identified as

significant predictors by the GLMM. Our results showed that

patients with older age, diabetes, lower ipth, lower CRE, or lower

UA were at a higher risk of CVD. The causal role of old age and

diabetes have long been recognized, and the possible mechanisms

have been extensively studies (59, 60). There is ample evidence to

suggest that lower ipth, CRE, or UA is associated with a loss of
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autonomy or inflammation (61–63). However, the relationships

among these risk factors, CVD and ESRD remain unclear.

Our MR analyses showed that diabetes played an important

bridging role among them, suggesting the importance of blood

glucose control in preventing both CVD and ESRD. Consistent

with previous MR results, diabetes has causal effect on

cardiovascular injury and kidney disease (64, 65). Recent MR

studies from different cohorts have reported no causal effect of

uric acid type 2 diabetes, although a significant association have

been widely reported, which is in line with our result (66–68).

Unlike previous MR studies, bidirectional causal effect was

considered to identify some new causal effects in this study.

Through bidirectional MR analysis, diabetes was also found to

have a causal role in the decrease of uric acid and creatinine,

which were risk factors identified by the longitudinal analysis.

Our findings may help explain the associations between diabetes

and clinical factors such as uric acid and creatinine observed in

previous observational studies (69, 70).

Despite the causal relationships between the risk factors and CVD

in HD, this study has several limitations. Firstly, this is a retrospective

study, and several clinical variables could not be measured. For

example, the absence of various proinflammatory cytokines, such as

interleukin-1 beta, interleukin 6, and transforming growth factor

beta (71), makes it impossible to further explore the relationship

between the inflammatory response and the risk factors identified

in this research. In addition, the nutritional status is also an

important indicator, as dialysis patients often face the problem of

inadequate nutrition intake, and nutrition can potentially affect

patients’ quality of life and treatment outcomes (72). Secondly,

although subjects were selected based on the inclusion criteria, the

heterogeneity across patients due to factors like medication, lifestyle

habits, and uncounted confounding factors, might yeild a null

hypothesis. Thirdly, we did not classify the type of CVD, but the

impact of risk factors might differ across CVD subtypes. Future

studies with sufficiently large sample sizes can be carried out to

explore the difference among CVD subtypes. Currently, our model

assists clinicians in selecting targeted agents in advance to enable

appropriate treatment choices for HD patients. Finally, horizontal

pleiotropy and heterogeneity resulting from population variances in

GWAS statistics can affect the MR results. In order to provide

consistent and robust causal estimation, multiple sensitivity analyses,

such as simple median, weighted median, and MR-Egger methods,

were employed in this study. In future, larger sample size studies

are needed to validate these issues.

In conclusion, our longitudinal model revealed that old age,

diabetes, depressed ipth, CRE, and UA were risk factors for CVD

in HD patients, with diabetes playing an important bridging role

among them. Effective blood glucose control is crucial for

preventing CVD in HD patients.
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